83 results on '"Heinbockel, T"'
Search Results
2. Ginseng derivative ocotillol enhances neuronal activity through increased glutamate release: a possible mechanism underlying increased spontaneous locomotor activity of mice
- Author
-
Wang, Z.-J., Sun, L., Peng, W., Ma, S., Zhu, C., Fu, F., and Heinbockel, T.
- Published
- 2011
- Full Text
- View/download PDF
3. Representation of binary pheromone blends by glomerulus-specific olfactory projection neurons
- Author
-
Heinbockel, T., Christensen, T. A., and Hildebrand, J. G.
- Published
- 2004
- Full Text
- View/download PDF
4. Antennal receptive fields of pheromone-responsive projection neurons in the antennal lobes of the male sphinx moth Manduca sexta
- Author
-
Heinbockel, T. and Hildebrand, J. G.
- Published
- 1998
- Full Text
- View/download PDF
5. Pheromone-evoked potentials and oscillations in the antennal lobes of the sphinx moth Manduca sexta
- Author
-
Heinbockel, T., Kloppenburg, P., and Hildebrand, J. G.
- Published
- 1998
- Full Text
- View/download PDF
6. Properties of external plexiform layer interneurons in mouse olfactory bulb slices
- Author
-
Hamilton, K.A., Heinbockel, T., Ennis, M., Szabó, G., Erdélyi, F., and Hayar, A.
- Published
- 2005
- Full Text
- View/download PDF
7. Cannabinoid Receptor-Mediated Regulation of Neuronal Activity and Signaling in Glomeruli of the Main Olfactory Bulb
- Author
-
Wang, Z.-J., primary, Sun, L., additional, and Heinbockel, T., additional
- Published
- 2012
- Full Text
- View/download PDF
8. 5-Hydroxy-tryptamine modulates pheromone-evoked local field potentials in the macroglomerular complex of the sphinx moth Manduca sexta
- Author
-
Kloppenburg, P., primary and Heinbockel, T., additional
- Published
- 2000
- Full Text
- View/download PDF
9. Modulatory effects of adenosine on inhibitory postsynaptic potentials in the lateral amygdala of the rat.
- Author
-
Heinbockel, Thomas, Pape, Hans-Christian, Heinbockel, T, and Pape, H C
- Published
- 1999
- Full Text
- View/download PDF
10. Variability of olfactory receptor neuron responses of female silkmoths (Bombyx mori L.) to benzoic acid and ( )-linalool
- Author
-
Heinbockel, T. and Kaissling, K.-E.
- Published
- 1996
- Full Text
- View/download PDF
11. Cannabinoid regulation of sex-dependent murine odorant-stimulated salivation.
- Author
-
Murataeva N, Mattox S, Lemieux J, Griffis J, Yust K, Du W, Heinbockel T, and Straiker A
- Subjects
- Animals, Male, Female, Mice, Odorants, Cannabinoids pharmacology, Mice, Inbred C57BL, Sex Characteristics, Mice, Knockout, Salivation drug effects, Receptor, Cannabinoid, CB1 metabolism
- Abstract
Salivation is easily taken for granted, but without normal salivation, simple essential tasks such as chewing and swallowing become difficult, with consequences for quality of life, nutrition and oral health. Many important drug classes cause dry mouth as a side effect, contributing substantially to patient non-compliance. Available treatments are mostly palliative. Cannabis user complaints of dry mouth prompted a study that showed that basal salivation is likely regulated by cannabinoid CB1 receptors on neurons that innervate the submandibular gland. But what about stimulated salivation? The adjoining parotid gland releases saliva in response to olfactory or other cues and contributes a large portion of the net salivation in humans. We investigated cannabinoid regulation of stimulated salivation using functional and protein-expression studies in mice. In developing a model of stimulated salivary responses to food-related odorants in mice, we noted sex-dependent responses to food-related cues. Only male mice learned to salivate in response to the odor of peanut butter while only female mice responded to a chocolate hazelnut spread. Both males and females responded to sugar or marmite. Testing peanut butter, we found that the cannabinoid receptor agonist CP55940 (0.5 mg/kg, IP) lowered baseline salivation, as shown previously, but also prevented the odorant-induced increase in salivation. CB1 receptors are expressed in axons innervating the parotid gland, paralleling our findings in the submandibular gland. Notably, we also found that CB1 deletion impaired some responses (those to peanut butter and chocolate hazelnut spread) but not others (sugar or marmite). In mice, the CB1 antagonist SR141716 (4 mg/kg, IP) prevented a previously learned salivary response to peanut butter. We find that CB1 receptors are expressed in a subset of glomeruli in coronal sections of olfactory bulb that may serve as a site of action for scent-specific effects of CB1 receptors. We additionally observe CB1 expression in accessory olfactory bulb. In summary, we find a novel sex-dependence in responses to a subset of food-related odorant cues and that cannabinoid receptors regulate some of these responses. We propose that CB1 receptors act at the parotid gland to inhibit stimulated salivation but also in the olfactory system, where functional CB1 receptors are required for salivary responses to specific appetitive odors., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
12. Possible Combinatorial Utilization of Phytochemicals and Extracellular Vesicles for Wound Healing and Regeneration.
- Author
-
Koyama S, Weber EL, and Heinbockel T
- Subjects
- Humans, Animals, Wound Healing drug effects, Extracellular Vesicles metabolism, Phytochemicals pharmacology, Phytochemicals therapeutic use, Regeneration drug effects
- Abstract
Organ and tissue damage can result from injury and disease. How to facilitate regeneration from damage has been a topic for centuries, and still, we are trying to find agents to use for treatments. Two groups of biological substances are known to facilitate wound healing. Phytochemicals with bioactive properties form one group. Many phytochemicals have anti-inflammatory effects and enhance wound healing. Recent studies have described their effects at the gene and protein expression levels, highlighting the receptors and signaling pathways involved. The extremely large number of phytochemicals and the multiple types of receptors they activate suggest a broad range of applicability for their clinical use. The hydrophobic nature of many phytochemicals and the difficulty with chemical stabilization have been a problem. Recent developments in biotechnology and nanotechnology methods are enabling researchers to overcome these problems. The other group of biological substances is extracellular vesicles (EVs), which are now known to have important biological functions, including the improvement of wound healing. The proteins and nanoparticles contained in mammalian EVs as well as the specificity of the targets of microRNAs included in the EVs are becoming clear. Plant-derived EVs have been found to contain phytochemicals. The overlap in the wound-healing capabilities of both phytochemicals and EVs and the differences in their nature suggest the possibility of a combinatorial use of the two groups, which may enhance their effects.
- Published
- 2024
- Full Text
- View/download PDF
13. Dynamic endocannabinoid-mediated neuromodulation of retinal circadian circuitry.
- Author
-
Kumar D, Khan B, Okcay Y, Sis ÇÖ, Abdallah A, Murray F, Sharma A, Uemura M, Taliyan R, Heinbockel T, Rahman S, and Goyal R
- Subjects
- Humans, Animals, Suprachiasmatic Nucleus physiology, Suprachiasmatic Nucleus drug effects, Endocannabinoids metabolism, Endocannabinoids physiology, Circadian Rhythm physiology, Retina physiology, Retina metabolism
- Abstract
Circadian rhythms are biological rhythms that originate from the "master circadian clock," called the suprachiasmatic nucleus (SCN). SCN orchestrates the circadian rhythms using light as a chief zeitgeber, enabling humans to synchronize their daily physio-behavioral activities with the Earth's light-dark cycle. However, chronic/ irregular photic disturbances from the retina via the retinohypothalamic tract (RHT) can disrupt the amplitude and the expression of clock genes, such as the period circadian clock 2, causing circadian rhythm disruption (CRd) and associated neuropathologies. The present review discusses neuromodulation across the RHT originating from retinal photic inputs and modulation offered by endocannabinoids as a function of mitigation of the CRd and associated neuro-dysfunction. Literature indicates that cannabinoid agonists alleviate the SCN's ability to get entrained to light by modulating the activity of its chief neurotransmitter, i.e., γ-aminobutyric acid, thus preventing light-induced disruption of activity rhythms in laboratory animals. In the retina, endocannabinoid signaling modulates the overall gain of the retinal ganglion cells by regulating the membrane currents (Ca
2+ , K+ , and Cl- channels) and glutamatergic neurotransmission of photoreceptors and bipolar cells. Additionally, endocannabinoids signalling also regulate the high-voltage-activated Ca2+ channels to mitigate the retinal ganglion cells and intrinsically photosensitive retinal ganglion cells-mediated glutamate release in the SCN, thus regulating the RHT-mediated light stimulation of SCN neurons to prevent excitotoxicity. As per the literature, cannabinoid receptors 1 and 2 are becoming newer targets in drug discovery paradigms, and the involvement of endocannabinoids in light-induced CRd through the RHT may possibly mitigate severe neuropathologies., Competing Interests: Declaration of Competing Interest None declared., (Copyright © 2024 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
14. Possible roles of phytochemicals with bioactive properties in the prevention of and recovery from COVID-19.
- Author
-
Koyama S, Joseph PV, Shields VDC, Heinbockel T, Adhikari P, Kaur R, Kumar R, Alizadeh R, Bhutani S, Calcinoni O, Mucignat-Caretta C, Chen J, Cooper KW, Das SR, Rohlfs Domínguez P, Guàrdia MD, Klyuchnikova MA, Laktionova TK, Mori E, Namjoo Z, Nguyen H, Özdener MH, Parsa S, Özdener-Poyraz E, Strub DJ, Taghizadeh-Hesary F, Ueha R, and Voznessenskaya VV
- Abstract
Introduction: There have been large geographical differences in the infection and death rates of COVID-19. Foods and beverages containing high amounts of phytochemicals with bioactive properties were suggested to prevent contracting and to facilitate recovery from COVID-19. The goal of our study was to determine the correlation of the type of foods/beverages people consumed and the risk reduction of contracting COVID-19 and the recovery from COVID-19., Methods: We developed an online survey that asked the participants whether they contracted COVID-19, their symptoms, time to recover, and their frequency of eating various types of foods/beverages. The survey was developed in 10 different languages., Results: The participants who did not contract COVID-19 consumed vegetables, herbs/spices, and fermented foods/beverages significantly more than the participants who contracted COVID-19. Among the six countries (India/Iran/Italy/Japan/Russia/Spain) with over 100 participants and high correspondence between the location of the participants and the language of the survey, in India and Japan the people who contracted COVID-19 showed significantly shorter recovery time, and greater daily intake of vegetables, herbs/spices, and fermented foods/beverages was associated with faster recovery., Conclusions: Our results suggest that phytochemical compounds included in the vegetables may have contributed in not only preventing contraction of COVID-19, but also accelerating their recovery., (Copyright © 2024 Koyama, Joseph, Shields, Heinbockel, Adhikari, Kaur, Kumar, Alizadeh, Bhutani, Calcinoni, Mucignat-Caretta, Chen, Cooper, Das, Rohlfs Domínguez, Guàrdia, Klyuchnikova, Laktionova, Mori, Namjoo, Nguyen, Özdener, Parsa, Özdener Poyraz, Strub, Taghizadeh-Hesary, Ueha and Voznessenskaya.)
- Published
- 2024
- Full Text
- View/download PDF
15. Firing Patterns of Mitral Cells and Their Transformation in the Main Olfactory Bulb.
- Author
-
Wang ZJ, Sun L, and Heinbockel T
- Abstract
Mitral cells (MCs) in the main olfactory bulb relay odor information to higher-order olfactory centers by encoding the information in the form of action potentials. The firing patterns of these cells are influenced by both their intrinsic properties and their synaptic connections within the neural network. However, reports on MC firing patterns have been inconsistent, and the mechanisms underlying these patterns remain unclear. Using whole-cell patch-clamp recordings in mouse brain slices, we discovered that MCs exhibit two types of integrative behavior: regular/rhythmic firing and bursts of action potentials. These firing patterns could be transformed both spontaneously and chemically. MCs with regular firing maintained their pattern even in the presence of blockers of fast synaptic transmission, indicating this was an intrinsic property. However, regular firing could be transformed into bursting by applying GABA
A receptor antagonists to block inhibitory synaptic transmission. Burst firing could be reverted to regular firing by blocking ionotropic glutamate receptors, rather than applying a GABAA receptor agonist, indicating that ionotropic glutamatergic transmission mediated this transformation. Further experiments on long-lasting currents (LLCs), which generated burst firing, also supported this mechanism. In addition, cytoplasmic Ca2+ in MCs was involved in the transformation of firing patterns mediated by glutamatergic transmission. Metabotropic glutamate receptors also played a role in LLCs in MCs. These pieces of evidence indicate that odor information can be encoded on a mitral cell (MC) platform, where it can be relayed to higher-order olfactory centers through intrinsic and dendrodendritic mechanisms in MCs.- Published
- 2024
- Full Text
- View/download PDF
16. Giving a Voice to Patients With Smell Disorders Associated With COVID-19: Cross-Sectional Longitudinal Analysis Using Natural Language Processing of Self-Reports.
- Author
-
Menger NS, Tognetti A, Farruggia MC, Mucignat C, Bhutani S, Cooper KW, Rohlfs Domínguez P, Heinbockel T, Shields VDC, D'Errico A, Pereda-Loth V, Pierron D, Koyama S, and Croijmans I
- Subjects
- Humans, Cross-Sectional Studies, Male, Female, Longitudinal Studies, Middle Aged, Adult, Aged, Young Adult, COVID-19 complications, COVID-19 epidemiology, Olfaction Disorders epidemiology, Olfaction Disorders etiology, Self Report, Natural Language Processing
- Abstract
Background: Smell disorders are commonly reported with COVID-19 infection. The smell-related issues associated with COVID-19 may be prolonged, even after the respiratory symptoms are resolved. These smell dysfunctions can range from anosmia (complete loss of smell) or hyposmia (reduced sense of smell) to parosmia (smells perceived differently) or phantosmia (smells perceived without an odor source being present). Similar to the difficulty that people experience when talking about their smell experiences, patients find it difficult to express or label the symptoms they experience, thereby complicating diagnosis. The complexity of these symptoms can be an additional burden for patients and health care providers and thus needs further investigation., Objective: This study aims to explore the smell disorder concerns of patients and to provide an overview for each specific smell disorder by using the longitudinal survey conducted in 2020 by the Global Consortium for Chemosensory Research, an international research group that has been created ad hoc for studying chemosensory dysfunctions. We aimed to extend the existing knowledge on smell disorders related to COVID-19 by analyzing a large data set of self-reported descriptive comments by using methods from natural language processing., Methods: We included self-reported data on the description of changes in smell provided by 1560 participants at 2 timepoints (second survey completed between 23 and 291 days). Text data from participants who still had smell disorders at the second timepoint (long-haulers) were compared with the text data of those who did not (non-long-haulers). Specifically, 3 aims were pursued in this study. The first aim was to classify smell disorders based on the participants' self-reports. The second aim was to classify the sentiment of each self-report by using a machine learning approach, and the third aim was to find particular food and nonfood keywords that were more salient among long-haulers than those among non-long-haulers., Results: We found that parosmia (odds ratio [OR] 1.78, 95% CI 1.35-2.37; P<.001) as well as hyposmia (OR 1.74, 95% CI 1.34-2.26; P<.001) were more frequently reported in long-haulers than in non-long-haulers. Furthermore, a significant relationship was found between long-hauler status and sentiment of self-report (P<.001). Finally, we found specific keywords that were more typical for long-haulers than those for non-long-haulers, for example, fire, gas, wine, and vinegar., Conclusions: Our work shows consistent findings with those of previous studies, which indicate that self-reports, which can easily be extracted online, may offer valuable information to health care and understanding of smell disorders. At the same time, our study on self-reports provides new insights for future studies investigating smell disorders., (©Nick S Menger, Arnaud Tognetti, Michael C Farruggia, Carla Mucignat, Surabhi Bhutani, Keiland W Cooper, Paloma Rohlfs Domínguez, Thomas Heinbockel, Vonnie D C Shields, Anna D'Errico, Veronica Pereda-Loth, Denis Pierron, Sachiko Koyama, Ilja Croijmans. Originally published in JMIR Public Health and Surveillance (https://publichealth.jmir.org), 10.05.2024.)
- Published
- 2024
- Full Text
- View/download PDF
17. Chemosensory Ability and Sensitivity in Health and Disease: Epigenetic Regulation and COVID-19.
- Author
-
Bhatia-Dey N, Csoka AB, and Heinbockel T
- Subjects
- Animals, Humans, Post-Acute COVID-19 Syndrome, Pandemics, Epigenesis, Genetic, COVID-19 complications, Olfaction Disorders
- Abstract
Throughout the animal kingdom, our two chemical senses, olfaction and gustation, are defined by two primary factors: genomic architecture of the organisms and their living environment. During the past three years of the global COVID-19 pandemic, these two sensory modalities have drawn much attention at the basic science and clinical levels because of the strong association of olfactory and gustatory dysfunction with viral infection. Loss of our sense of smell alone, or together with a loss of taste, has emerged as a reliable indicator of COVID-19 infection. Previously, similar dysfunctions have been detected in a large cohort of patients with chronic conditions. The research focus remains on understanding the persistence of olfactory and gustatory disturbances in the post-infection phase, especially in cases with long-term effect of infection (long COVID). Also, both sensory modalities show consistent age-related decline in studies aimed to understand the pathology of neurodegenerative conditions. Some studies using classical model organisms show an impact on neural structure and behavior in offspring as an outcome of parental olfactory experience. The methylation status of specific odorant receptors, activated in parents, is passed on to the offspring. Furthermore, experimental evidence indicates an inverse correlation of gustatory and olfactory abilities with obesity. Such diverse lines of evidence emerging from basic and clinical research studies indicate a complex interplay of genetic factors, evolutionary forces, and epigenetic alterations. Environmental factors that regulate gustation and olfaction could induce epigenetic modulation. However, in turn, such modulation leads to variable effects depending on genetic makeup and physiological status. Therefore, a layered regulatory hierarchy remains active and is passed on to multiple generations. In the present review, we attempt to understand the experimental evidence that indicates variable regulatory mechanisms through multilayered and cross-reacting pathways. Our analytical approach will add to enhancement of prevailing therapeutic interventions and bring to the forefront the significance of chemosensory modalities for the evaluation and maintenance of long-term health.
- Published
- 2023
- Full Text
- View/download PDF
18. Epigenetic Changes Induced by High Glucose in Human Pancreatic Beta Cells.
- Author
-
Alhazzaa RA, McKinley RE, Getachew B, Tizabi Y, Heinbockel T, and Csoka AB
- Subjects
- Humans, DNA Methylation, Epigenesis, Genetic, Insulin Secretion, Glucose pharmacology, Insulin-Secreting Cells
- Abstract
Epigenetic changes in pancreatic beta cells caused by sustained high blood glucose levels, as seen in prediabetic conditions, may contribute to the etiology of diabetes. To delineate a direct cause and effect relationship between high glucose and epigenetic changes, we cultured human pancreatic beta cells derived from induced pluripotent stem cells and treated them with either high or low glucose, for 14 days. We then used the Arraystar 4x180K HG19 RefSeq Promoter Array to perform whole-genome DNA methylation analysis. A total of 478 gene promoters, out of a total of 23,148 present on the array (2.06%), showed substantial differences in methylation ( p < 0.01). Out of these, 285 were hypomethylated, and 193 were hypermethylated in experimental vs. control. Ingenuity Pathway Analysis revealed that the main pathways and networks that were differentially methylated include those involved in many systems, including those related to development, cellular growth, and proliferation. Genes implicated in the etiology of diabetes, including networks involving glucose metabolism, insulin secretion and regulation, and cell cycle regulation, were notably altered. Influence of upstream regulators such as MRTFA, AREG, and NOTCH3 was predicted based on the altered methylation of their downstream targets. The study validated that high glucose levels can directly cause many epigenetic changes in pancreatic beta cells, suggesting that this indeed may be a mechanism involved in the etiology of diabetes., Competing Interests: The authors declare that there are no conflicts of interest regarding the publication of this manuscript., (Copyright © 2023 Rasha A. Alhazzaa et al.)
- Published
- 2023
- Full Text
- View/download PDF
19. Editorial: Physiology and pathophysiology of the olfactory system.
- Author
-
Kashiwadani H, Heinbockel T, Imamura F, Yamaguchi M, Koyama S, and Kondo K
- Abstract
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
- Published
- 2022
- Full Text
- View/download PDF
20. Chemical Constituents of Essential Oils Used in Olfactory Training: Focus on COVID-19 Induced Olfactory Dysfunction.
- Author
-
Koyama S and Heinbockel T
- Abstract
The recent increase in the number of patients with post-viral olfactory dysfunction (PVOD) following the outbreak of COVID-19 has raised the general interest in and concern about olfactory dysfunction. At present, no clear method of treatment for PVOD has been established. Currently the most well-known method to improve the symptoms of olfactory dysfunction is "olfactory training" using essential oils. The essential oils used in olfactory training typically include rose, lemon, clove, and eucalyptus, which were selected based on the odor prism hypothesis proposed by Hans Henning in 1916. He classified odors based on six primary categories or dimensions and suggested that any olfactory stimulus fits into his smell prism, a three-dimensional space. The term "olfactory training" has been used based on the concept of training olfactory sensory neurons to relearn and distinguish olfactory stimuli. However, other mechanisms might contribute to how olfactory training can improve the recovery of the olfactory sense. Possibly, the essential oils contain chemical constituents with bioactive properties that facilitate the recovery of the olfactory sense by suppressing inflammation and enhancing regeneration. In this review, we summarize the chemical constituents of the essential oils of rose, lemon, clove, and eucalyptus and raise the possibility that the chemical constituents with bioactive properties are involved in improving the symptoms of olfactory dysfunction. We also propose that other essential oils that contain chemical constituents with anti-inflammatory effects and have binding affinity with SARS-CoV-2 can be new candidates to test their efficiencies in facilitating the recovery., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Koyama and Heinbockel.)
- Published
- 2022
- Full Text
- View/download PDF
21. Endocannabinoid-mediated neuromodulation in the main olfactory bulb at the interface of environmental stimuli and central neural processing.
- Author
-
Heinbockel T, Bhatia-Dey N, and Shields VDC
- Subjects
- Humans, Neuronal Plasticity physiology, Olfactory Bulb metabolism, Smell physiology, Endocannabinoids metabolism, Olfaction Disorders metabolism
- Abstract
The olfactory system has become an important functional gateway to understand and analyze neuromodulation since olfactory dysfunction and deficits have emerged as prodromal and, at other times, as first symptoms of many of neurodegenerative, neuropsychiatric and communication disorders. Considering olfactory dysfunction as outcome of altered, damaged and/or inefficient olfactory processing, in the current review, we analyze how olfactory processing interacts with the endocannabinoid signaling system. In the human body, endocannabinoid synthesis is a natural and on-demand response to a wide range of physiological and environmental stimuli. Our current understanding of the response dynamics of the endocannabinoid system is based in large part on research advances in limbic system areas, such as the hippocampus and the amygdala. Functional interactions of this signaling system with olfactory processing and associated pathways are just emerging but appear to grow rapidly with multidimensional approaches. Recent work analyzing the crystal structure of endocannabinoid receptors bound to their agonists in a signaling complex has opened avenues for developing specific therapeutic drugs that could help with neuroinflammation, neurodegeneration, and alleviation/reduction of pain. We discuss the role of endocannabinoids as signaling molecules in the olfactory system and the relevance of the endocannabinoid system for synaptic plasticity., (© 2021 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
22. Orchestration of the circadian clock and its association with Alzheimer's disease: Role of endocannabinoid signaling.
- Author
-
Kumar D, Sharma A, Taliyan R, Urmera MT, Herrera-Calderon O, Heinbockel T, Rahman S, and Goyal R
- Subjects
- Circadian Rhythm, Endocannabinoids, Humans, Suprachiasmatic Nucleus, Alzheimer Disease, Circadian Clocks
- Abstract
Circadian rhythms are 24-hour natural rhythms regulated by the suprachiasmatic nucleus, also known as the "master clock". The retino-hypothalamic tract entrains suprachiasmatic nucleus with photic information to synchronise endogenous circadian rhythms with the Earth's light-dark cycle. However, despite the robustness of circadian rhythms, an unhealthy lifestyle and chronic photic disturbances cause circadian rhythm disruption in the suprachiasmatic nucleus's TTFL loops via affecting glutamate and γ-aminobutyric acid-mediated neurotransmission in the suprachiasmatic nucleus. Recently, considerable evidence has been shown correlating CRd with the incidence of Alzheimer's disease. The present review aims to identify the existence and signalling of endocannabinoids in CRd induced Alzheimer's disease through retino-hypothalamic tract- suprachiasmatic nucleus-cortex. Immunohistochemistry has confirmed the expression of cannabinoid receptor 1 in the suprachiasmatic nucleus to modulate the circadian phases of the master clock. Literature also suggests that cannabinoids may alter activity of suprachiasmatic nucleus by influencing the activity of their major neurotransmitter γ-aminobutyric acid or by interacting indirectly with the suprachiasmatic nucleus's two other major inputs i.e., the geniculo-hypothalamic tract-mediated release of neuropeptide Y and serotonergic inputs from the dorsal raphe nuclei. Besides, the expression of cannabinoid receptor 2 ameliorates cognitive deficits via reduction of tauopathy and microglial activation. In conclusion, endocannabinoids may be identified as a putative target for correcting CRd and decelerating Alzheimer's disease., (Copyright © 2021 Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
23. Possible Use of Phytochemicals for Recovery from COVID-19-Induced Anosmia and Ageusia.
- Author
-
Koyama S, Kondo K, Ueha R, Kashiwadani H, and Heinbockel T
- Subjects
- Ageusia metabolism, Anosmia diagnosis, Anosmia metabolism, COVID-19 complications, Humans, Phytochemicals pharmacology, SARS-CoV-2 isolation & purification, Ageusia drug therapy, Ageusia virology, Anosmia drug therapy, Anosmia virology, Phytochemicals therapeutic use, COVID-19 Drug Treatment
- Abstract
The year 2020 became the year of the outbreak of coronavirus, SARS-CoV-2, which escalated into a worldwide pandemic and continued into 2021. One of the unique symptoms of the SARS-CoV-2 disease, COVID-19, is the loss of chemical senses, i.e., smell and taste. Smell training is one of the methods used in facilitating recovery of the olfactory sense, and it uses essential oils of lemon, rose, clove, and eucalyptus. These essential oils were not selected based on their chemical constituents. Although scientific studies have shown that they improve recovery, there may be better combinations for facilitating recovery. Many phytochemicals have bioactive properties with anti-inflammatory and anti-viral effects. In this review, we describe the chemical compounds with anti- inflammatory and anti-viral effects, and we list the plants that contain these chemical compounds. We expand the review from terpenes to the less volatile flavonoids in order to propose a combination of essential oils and diets that can be used to develop a new taste training method, as there has been no taste training so far. Finally, we discuss the possible use of these in clinical settings.
- Published
- 2021
- Full Text
- View/download PDF
24. Cannabinoids Regulate Sensory Processing in Early Olfactory and Visual Neural Circuits.
- Author
-
Heinbockel T and Straiker A
- Subjects
- Animals, Cannabinoids administration & dosage, Humans, Neuronal Plasticity drug effects, Olfactory Bulb drug effects, Receptor, Cannabinoid, CB1 agonists, Receptor, Cannabinoid, CB1 metabolism, Retina drug effects, Retina metabolism, Smell drug effects, Visual Pathways drug effects, Visual Perception drug effects, Cannabinoids metabolism, Neuronal Plasticity physiology, Olfactory Bulb metabolism, Smell physiology, Visual Pathways metabolism, Visual Perception physiology
- Abstract
Our sensory systems such as the olfactory and visual systems are the target of neuromodulatory regulation. This neuromodulation starts at the level of sensory receptors and extends into cortical processing. A relatively new group of neuromodulators includes cannabinoids. These form a group of chemical substances that are found in the cannabis plant. Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are the main cannabinoids. THC acts in the brain and nervous system like the chemical substances that our body produces, the endogenous cannabinoids or endocannabinoids, also nicknamed the brain's own cannabis. While the function of the endocannabinoid system is understood fairly well in limbic structures such as the hippocampus and the amygdala, this signaling system is less well understood in the olfactory pathway and the visual system. Here, we describe and compare endocannabinoids as signaling molecules in the early processing centers of the olfactory and visual system, the olfactory bulb, and the retina, and the relevance of the endocannabinoid system for synaptic plasticity., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Heinbockel and Straiker.)
- Published
- 2021
- Full Text
- View/download PDF
25. The Olfactory System as Marker of Neurodegeneration in Aging, Neurological and Neuropsychiatric Disorders.
- Author
-
Bhatia-Dey N and Heinbockel T
- Subjects
- Aging, Humans, Neurons, Smell, Neurodegenerative Diseases, Olfactory Bulb
- Abstract
Research studies that focus on understanding the onset of neurodegenerative pathology and therapeutic interventions to inhibit its causative factors, have shown a crucial role of olfactory bulb neurons as they transmit and propagate nerve impulses to higher cortical and limbic structures. In rodent models, removal of the olfactory bulb results in pathology of the frontal cortex that shows striking similarity with frontal cortex features of patients diagnosed with neurodegenerative disorders. Widely different approaches involving behavioral symptom analysis, histopathological and molecular alterations, genetic and environmental influences, along with age-related alterations in cellular pathways, indicate a strong correlation of olfactory dysfunction and neurodegeneration. Indeed, declining olfactory acuity and olfactory deficits emerge either as the very first symptoms or as prodromal symptoms of progressing neurodegeneration of classical conditions. Olfactory dysfunction has been associated with most neurodegenerative, neuropsychiatric, and communication disorders. Evidence revealing the dual molecular function of the olfactory receptor neurons at dendritic and axonal ends indicates the significance of olfactory processing pathways that come under environmental pressure right from the onset. Here, we review findings that olfactory bulb neuronal processing serves as a marker of neuropsychiatric and neurodegenerative disorders.
- Published
- 2021
- Full Text
- View/download PDF
26. Corrigendum to: More Than Smell-COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis.
- Author
-
Parma V, Ohla K, Veldhuizen MG, Niv MY, Kelly CE, Bakke AJ, Cooper KW, Bouysset C, Pirastu N, Dibattista M, Kaur R, Liuzza MT, Pepino MY, Schöpf V, Pereda-Loth V, Olsson SB, Gerkin RC, Rohlfs Domínguez P, Albayay J, Farruggia MC, Bhutani S, Fjaeldstad AW, Kumar R, Menini A, Bensafi M, Sandell M, Konstantinidis I, Di Pizio A, Genovese F, Öztürk L, Thomas-Danguin T, Frasnelli J, Boesveldt S, Saatci Ö, Saraiva LR, Lin C, Golebiowski J, Hwang LD, Ozdener MH, Guàrdia MD, Laudamiel C, Ritchie M, Havlícek J, Pierron D, Roura E, Navarro M, Nolden AA, Lim J, Whitcroft KL, Colquitt LR, Ferdenzi C, Brindha EV, Altundag A, Macchi A, Nunez-Parra A, Patel ZM, Fiorucci S, Philpott CM, Smith BC, Lundström JN, Mucignat C, Parker JK, van den Brink M, Schmuker M, Fischmeister FPS, Heinbockel T, Shields VDC, Faraji F, Santamaría E, Fredborg WEA, Morini G, Olofsson JK, Jalessi M, Karni N, D'Errico A, Alizadeh R, Pellegrino R, Meyer P, Huart C, Chen B, Soler GM, Alwashahi MK, Welge-Lüssen A, Freiherr J, de Groot JHB, Klein H, Okamoto M, Singh PB, Hsieh JW, Reed DR, Hummel T, Munger SD, and Hayes JE
- Published
- 2021
- Full Text
- View/download PDF
27. Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms.
- Author
-
Gerkin RC, Ohla K, Veldhuizen MG, Joseph PV, Kelly CE, Bakke AJ, Steele KE, Farruggia MC, Pellegrino R, Pepino MY, Bouysset C, Soler GM, Pereda-Loth V, Dibattista M, Cooper KW, Croijmans I, Di Pizio A, Ozdener MH, Fjaeldstad AW, Lin C, Sandell MA, Singh PB, Brindha VE, Olsson SB, Saraiva LR, Ahuja G, Alwashahi MK, Bhutani S, D'Errico A, Fornazieri MA, Golebiowski J, Dar Hwang L, Öztürk L, Roura E, Spinelli S, Whitcroft KL, Faraji F, Fischmeister FPS, Heinbockel T, Hsieh JW, Huart C, Konstantinidis I, Menini A, Morini G, Olofsson JK, Philpott CM, Pierron D, Shields VDC, Voznessenskaya VV, Albayay J, Altundag A, Bensafi M, Bock MA, Calcinoni O, Fredborg W, Laudamiel C, Lim J, Lundström JN, Macchi A, Meyer P, Moein ST, Santamaría E, Sengupta D, Rohlfs Dominguez P, Yanik H, Hummel T, Hayes JE, Reed DR, Niv MY, Munger SD, and Parma V
- Subjects
- Adult, Anosmia etiology, COVID-19 complications, Cross-Sectional Studies, Female, Humans, Male, Middle Aged, Prognosis, SARS-CoV-2 isolation & purification, Self Report, Smell, Anosmia diagnosis, COVID-19 diagnosis
- Abstract
In a preregistered, cross-sectional study, we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n = 4148) or negative (C19-; n = 546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean ± SD, C19+: -82.5 ± 27.2 points; C19-: -59.8 ± 37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC = 0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0-10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4 < OR < 10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable., (© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2021
- Full Text
- View/download PDF
28. More Than Smell-COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis.
- Author
-
Parma V, Ohla K, Veldhuizen MG, Niv MY, Kelly CE, Bakke AJ, Cooper KW, Bouysset C, Pirastu N, Dibattista M, Kaur R, Liuzza MT, Pepino MY, Schöpf V, Pereda-Loth V, Olsson SB, Gerkin RC, Rohlfs Domínguez P, Albayay J, Farruggia MC, Bhutani S, Fjaeldstad AW, Kumar R, Menini A, Bensafi M, Sandell M, Konstantinidis I, Di Pizio A, Genovese F, Öztürk L, Thomas-Danguin T, Frasnelli J, Boesveldt S, Saatci Ö, Saraiva LR, Lin C, Golebiowski J, Hwang LD, Ozdener MH, Guàrdia MD, Laudamiel C, Ritchie M, Havlícek J, Pierron D, Roura E, Navarro M, Nolden AA, Lim J, Whitcroft KL, Colquitt LR, Ferdenzi C, Brindha EV, Altundag A, Macchi A, Nunez-Parra A, Patel ZM, Fiorucci S, Philpott CM, Smith BC, Lundström JN, Mucignat C, Parker JK, van den Brink M, Schmuker M, Fischmeister FPS, Heinbockel T, Shields VDC, Faraji F, Santamaría E, Fredborg WEA, Morini G, Olofsson JK, Jalessi M, Karni N, D'Errico A, Alizadeh R, Pellegrino R, Meyer P, Huart C, Chen B, Soler GM, Alwashahi MK, Welge-Lüssen A, Freiherr J, de Groot JHB, Klein H, Okamoto M, Singh PB, Hsieh JW, Reed DR, Hummel T, Munger SD, and Hayes JE
- Subjects
- Adult, Aged, COVID-19, Coronavirus Infections diagnosis, Coronavirus Infections virology, Female, Humans, Male, Middle Aged, Olfaction Disorders virology, Pandemics, Pneumonia, Viral diagnosis, Pneumonia, Viral virology, SARS-CoV-2, Self Report, Smell, Somatosensory Disorders virology, Surveys and Questionnaires, Taste, Taste Disorders virology, Young Adult, Betacoronavirus isolation & purification, Coronavirus Infections complications, Olfaction Disorders etiology, Pneumonia, Viral complications, Somatosensory Disorders etiology, Taste Disorders etiology
- Abstract
Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments, such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, and generally lacked quantitative measurements. Here, we report the development, implementation, and initial results of a multilingual, international questionnaire to assess self-reported quantity and quality of perception in 3 distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, and 8 others, aged 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste, and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change ±100) revealed a mean reduction of smell (-79.7 ± 28.7, mean ± standard deviation), taste (-69.0 ± 32.6), and chemesthetic (-37.3 ± 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell but also affects taste and chemesthesis. The multimodal impact of COVID-19 and the lack of perceived nasal obstruction suggest that severe acute respiratory syndrome coronavirus strain 2 (SARS-CoV-2) infection may disrupt sensory-neural mechanisms., (© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF
29. The best COVID-19 predictor is recent smell loss: a cross-sectional study.
- Author
-
Gerkin RC, Ohla K, Veldhuizen MG, Joseph PV, Kelly CE, Bakke AJ, Steele KE, Farruggia MC, Pellegrino R, Pepino MY, Bouysset C, Soler GM, Pereda-Loth V, Dibattista M, Cooper KW, Croijmans I, Di Pizio A, Ozdener MH, Fjaeldstad AW, Lin C, Sandell MA, Singh PB, Brindha VE, Olsson SB, Saraiva LR, Ahuja G, Alwashahi MK, Bhutani S, D'Errico A, Fornazieri MA, Golebiowski J, Hwang LD, Öztürk L, Roura E, Spinelli S, Whitcroft KL, Faraji F, Fischmeister FPS, Heinbockel T, Hsieh JW, Huart C, Konstantinidis I, Menini A, Morini G, Olofsson JK, Philpott CM, Pierron D, Shields VDC, Voznessenskaya VV, Albayay J, Altundag A, Bensafi M, Bock MA, Calcinoni O, Fredborg W, Laudamiel C, Lim J, Lundström JN, Macchi A, Meyer P, Moein ST, Santamaría E, Sengupta D, Domínguez PP, Yanık H, Boesveldt S, de Groot JHB, Dinnella C, Freiherr J, Laktionova T, Mariño S, Monteleone E, Nunez-Parra A, Abdulrahman O, Ritchie M, Thomas-Danguin T, Walsh-Messinger J, Al Abri R, Alizadeh R, Bignon E, Cantone E, Cecchini MP, Chen J, Guàrdia MD, Hoover KC, Karni N, Navarro M, Nolden AA, Mazal PP, Rowan NR, Sarabi-Jamab A, Archer NS, Chen B, Di Valerio EA, Feeney EL, Frasnelli J, Hannum M, Hopkins C, Klein H, Mignot C, Mucignat C, Ning Y, Ozturk EE, Peng M, Saatci O, Sell EA, Yan CH, Alfaro R, Cecchetto C, Coureaud G, Herriman RD, Justice JM, Kaushik PK, Koyama S, Overdevest JB, Pirastu N, Ramirez VA, Roberts SC, Smith BC, Cao H, Wang H, Balungwe P, Baguma M, Hummel T, Hayes JE, Reed DR, Niv MY, Munger SD, and Parma V
- Abstract
Background: COVID-19 has heterogeneous manifestations, though one of the most common symptoms is a sudden loss of smell (anosmia or hyposmia). We investigated whether olfactory loss is a reliable predictor of COVID-19., Methods: This preregistered, cross-sectional study used a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n=4148) or negative (C19-; n=546) COVID-19 laboratory test outcome. Logistic regression models identified singular and cumulative predictors of COVID-19 status and post-COVID-19 olfactory recovery., Results: Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean±SD, C19+: -82.5±27.2 points; C19-: -59.8±37.7). Smell loss during illness was the best predictor of COVID-19 in both single and cumulative feature models (ROC AUC=0.72), with additional features providing no significant model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms, such as fever or cough. Olfactory recovery within 40 days was reported for ~50% of participants and was best predicted by time since illness onset., Conclusions: As smell loss is the best predictor of COVID-19, we developed the ODoR-19 tool, a 0-10 scale to screen for recent olfactory loss. Numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (10
- Published
- 2020
- Full Text
- View/download PDF
30. Endocannabinoid-Mediated Neuromodulation in the Olfactory Bulb: Functional and Therapeutic Significance.
- Author
-
Bhatia-Dey N and Heinbockel T
- Subjects
- Animals, Disease Susceptibility, Humans, Neurodegenerative Diseases etiology, Neurodegenerative Diseases metabolism, Neurodegenerative Diseases pathology, Neuronal Plasticity, Neurons metabolism, Signal Transduction, Endocannabinoids metabolism, Olfactory Bulb metabolism
- Abstract
Endocannabinoid synthesis in the human body is naturally occurring and on-demand. It occurs in response to physiological and environmental stimuli, such as stress, anxiety, hunger, other factors negatively disrupting homeostasis, as well as the therapeutic use of the phytocannabinoid cannabidiol and recreational use of exogenous cannabis, which can lead to cannabis use disorder. Together with their specific receptors CB1R and CB2R, endocannabinoids are major components of endocannabinoid-mediated neuromodulation in a rapid and sustained manner. Extensive research on endocannabinoid function and expression includes studies in limbic system structures such as the hippocampus and amygdala. The wide distribution of endocannabinoids, their on-demand synthesis at widely different sites, their co-existence in specific regions of the body, their quantitative differences in tissue type, and different pathological conditions indicate their diverse biological functions that utilize specific and overlapping pathways in multiple organ systems. Here, we review emerging evidence of these pathways with a special emphasis on the role of endocannabinoids in decelerating neurodegenerative pathology through neural networks initiated by cells in the main olfactory bulb.
- Published
- 2020
- Full Text
- View/download PDF
31. The Effects of Essential Oils and Terpenes in Relation to Their Routes of Intake and Application.
- Author
-
Koyama S and Heinbockel T
- Subjects
- Animals, Gastrointestinal Tract drug effects, Gastrointestinal Tract metabolism, Humans, Oils, Volatile pharmacokinetics, Olfactory Mucosa drug effects, Olfactory Mucosa metabolism, Skin drug effects, Skin metabolism, Terpenes pharmacokinetics, Oils, Volatile pharmacology, Terpenes pharmacology
- Abstract
Essential oils have been used in multiple ways, i.e., inhaling, topically applying on the skin, and drinking. Thus, there are three major routes of intake or application involved: the olfactory system, the skin, and the gastro-intestinal system. Understanding these routes is important for clarifying the mechanisms of action of essential oils. Here we summarize the three systems involved, and the effects of essential oils and their constituents at the cellular and systems level. Many factors affect the rate of uptake of each chemical constituent included in essential oils. It is important to determine how much of each constituent is included in an essential oil and to use single chemical compounds to precisely test their effects. Studies have shown synergistic influences of the constituents, which affect the mechanisms of action of the essential oil constituents. For the skin and digestive system, the chemical components of essential oils can directly activate gamma aminobutyric acid (GABA) receptors and transient receptor potential channels (TRP) channels, whereas in the olfactory system, chemical components activate olfactory receptors. Here, GABA receptors and TRP channels could play a role, mostly when the signals are transferred to the olfactory bulb and the brain., Competing Interests: The authors declare no conflict of interest.
- Published
- 2020
- Full Text
- View/download PDF
32. Cannabinoid receptor-mediated modulation of inhibitory inputs to mitral cells in the main olfactory bulb.
- Author
-
Wang ZJ, Hu SS, Bradshaw HB, Sun L, Mackie K, Straiker A, and Heinbockel T
- Subjects
- Animals, Female, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Olfactory Bulb cytology, Patch-Clamp Techniques, Receptor, Cannabinoid, CB1 antagonists & inhibitors, Endocannabinoids metabolism, Interneurons metabolism, Olfactory Bulb metabolism, Receptor, Cannabinoid, CB1 metabolism, Signal Transduction, gamma-Aminobutyric Acid metabolism
- Abstract
The endocannabinoid (eCB) signaling system has been functionally implicated in many brain regions. Our understanding of the role of cannabinoid receptor type 1 (CB
1 ) in olfactory processing remains limited. Cannabinoid signaling is involved in regulating glomerular activity in the main olfactory bulb (MOB). However, the cannabinoid-related circuitry of inputs to mitral cells in the MOB has not been fully determined. Using anatomical and functional approaches we have explored this question. CB1 was present in periglomerular processes of a GAD65-positive subpopulation of interneurons but not in mitral cells. We detected eCBs in the mouse MOB as well as the expression of CB1 and other genes associated with cannabinoid signaling in the MOB. Patch-clamp electrophysiology demonstrated that CB1 agonists activated mitral cells and evoked an inward current, while CB1 antagonists reduced firing and evoked an outward current. CB1 effects on mitral cells were absent in subglomerular slices in which the olfactory nerve layer and glomerular layer were removed, suggesting the glomerular layer as the site of CB1 action. We previously observed that GABAergic periglomerular cells show the inverse response pattern to CB1 activation compared with mitral cells, suggesting that CB1 indirectly regulates mitral cell activity as a result of cellular activation of glomerular GABAergic processes . This hypothesis was supported by the finding that cannabinoids modulated synaptic transmission to mitral cells. We conclude that CB1 directly regulates GABAergic processes in the glomerular layer to control GABA release and, in turn, regulates mitral cell activity with potential effects on olfactory threshold and behavior. NEW & NOTEWORTHY Cannabinoid signaling with cannabinoid receptor type 1 (CB1 ) is involved in the regulation of glomerular activity in the main olfactory bulb (MOB). We detected endocannabinoids in the mouse MOB. CB1 was present in periglomerular processes of a GAD65-positive subpopulation of interneurons. CB1 agonists activated mitral cells. CB1 directly regulates GABAergic processes to control GABA release and, in turn, regulates mitral cell activity with potential effects on olfactory threshold and behavior.- Published
- 2019
- Full Text
- View/download PDF
33. Neuromodulation of Synaptic Transmission in the Main Olfactory Bulb.
- Author
-
Harvey JD and Heinbockel T
- Subjects
- Humans, Brain physiology, Neurotransmitter Agents physiology, Olfactory Bulb physiology, Smell physiology, Synaptic Transmission physiology
- Abstract
A major step in our understanding of brain function is to determine how neural circuits are altered in their function by signaling molecules or neuromodulators. Neuromodulation is the neurochemical process that modifies the computations performed by a neuron or network based on changing the functional needs or behavioral state of the subject. These modulations have the effect of altering the responsivity to synaptic inputs. Early sensory processing areas, such as the main olfactory bulb, provide an accessible window for investigating how neuromodulation regulates the functional states of neural networks and influences how we process sensory information. Olfaction is an attractive model system in this regard because of its relative simplicity and because it links primary olfactory sensory neurons to higher olfactory and associational networks. Likewise, centrifugal fibers from higher order brain centers target neurons in the main olfactory bulb to regulate synaptic processing. The neuromodulatory systems that provide regulatory inputs and play important roles in olfactory sensory processing and behaviors include the endocannabinoid system, the dopaminergic system, the cholinergic system, the noradrenergic system and the serotonergic system. Here, we present a brief survey of neuromodulation of olfactory signals in the main olfactory bulb with an emphasis on the endocannabinoid system.
- Published
- 2018
- Full Text
- View/download PDF
34. Protective Effects of Donepezil Against Alcohol-Induced Toxicity in Cell Culture: Role of Caspase-3.
- Author
-
Getachew B, Hudson T, Heinbockel T, Csoka AB, and Tizabi Y
- Subjects
- Cell Line, Tumor, Central Nervous System Depressants, Donepezil, Dose-Response Relationship, Drug, Drug Synergism, Humans, Neuroblastoma pathology, Caspase 3 metabolism, Ethanol toxicity, Indans pharmacology, Neuroprotective Agents pharmacology, Piperidines pharmacology
- Abstract
Ethanol (EtOH) is one of the most frequently abused drugs with heavy health, economic, and societal burdens. Although moderate to low EtOH may have some neuroprotective effects, heavy EtOH consumption associated with high blood alcohol level (BAL) can be quite detrimental. The brain is particularly vulnerable to the damaging effects of high BAL, leading to neuronal loss, cognitive, and behavioral deficits. Although the exact causes of these detriments are not fully elucidated, it is believed that damage to the cholinergic system is at least partially responsible for the cognitive impairment. Thus, high BAL may result in selective apoptotic damage to the cholinergic neurons. Donepezil (DON), a centrally acting, reversible and non-competitive acetylcholinesterase (AChE) inhibitor, approved for use in Alzheimer's disease (AD), may also attenuate EtOH-induced cognitive impairment. Cognitive effects of DON might be due to an anti-apoptotic activity as some AChE inhibitors have been shown to have this property. The aim of this study was to determine whether DON might protect against EtOH-induced toxicity and whether such protection might be apoptotically mediated. We exposed the human neuroblastoma-derived, SH-SY5Y cells to a relatively high concentration of EtOH (500 mM) for 24 h and evaluated the effects of two concentrations of DON (0.1 and 1.0 μM) on alcohol-induced toxicity and caspase-3, an apoptotic marker. We found a dose-dependent protection of DON against EtOH-induced toxicity as well as dose-dependent attenuation of EtOH-induced increases in caspase-3 levels. Thus, DON may inhibit apoptosis as well as alcohol-induced toxicity.
- Published
- 2018
- Full Text
- View/download PDF
35. Epigenetic Effects of Drugs of Abuse.
- Author
-
Heinbockel T and Csoka AB
- Subjects
- Cannabis toxicity, Gene Expression drug effects, Humans, Marijuana Abuse therapy, Substance-Related Disorders therapy, Cannabinoids toxicity, Cannabis chemistry, Epigenesis, Genetic drug effects, Illicit Drugs toxicity
- Abstract
Drug addiction affects a large extent of young people and disadvantaged populations. Drugs of abuse impede brain circuits or affect the functionality of brain circuits and interfere with bodily functions. Cannabinoids (Δ9-tetrahydrocannabinol) form key constituents of marijuana derived from the cannabis plant. Marijuana is a frequently used illegal drug in the USA. Here, we review the effects of cannabinoids at the epigenetic level and the potential role of these epigenetic effects in health and disease. Epigenetics is the study of alterations in gene expression that are transmitted across generations and take place without an alteration in DNA sequence, but are due to modulation of chromatin associated factors by environmental effects. Epigenetics is now known to offer an extra mechanism of control over transcription and how genes are expressed. Insights from research at the genetic and epigenetic level potentially provide venues that allow the translation of the biology of abused drugs to new means of how to treat marijuana substance use disorder or other addictions using pharmacotherapeutic tools.
- Published
- 2018
- Full Text
- View/download PDF
36. 6 Hz Active Anticonvulsant Fluorinated N-Benzamide Enaminones and Their Inhibitory Neuronal Activity.
- Author
-
Amaye IJ, Heinbockel T, Woods J, Wang Z, Martin-Caraballo M, and Jackson-Ayotunde P
- Subjects
- Animals, Cell Line, Neurons drug effects, Patch-Clamp Techniques, Rodentia, Anticonvulsants chemical synthesis, Anticonvulsants therapeutic use, Benzamides chemical synthesis, Benzamides therapeutic use
- Abstract
A small library of novel fluorinated N-benzamide enaminones were synthesized and evaluated in a battery of acute preclinical seizure models. Three compounds (GSA 62, TTA 35, and WWB 67) were found to have good anticonvulsant activity in the 6-Hz 'psychomotor' 44-mA rodent model. The focus of this study was to elucidate the active analogs' mode of action on seizure-related molecular targets. Electrophysiology studies were employed to evaluate the compounds' ability to inhibit neuronal activity in central olfactory neurons, mitral cells, and sensory-like ND7/23 cells, which express an assortment of voltage and ligand-gated ion channels. We did not find any significant effects of the three compounds on action potential generation in mitral cells. The treatment of ND7/23 cells with 50 µM of GSA 62, TTA 35, and WWB 67 generated a significant reduction in the amplitude of whole-cell sodium currents. Similar treatment of ND7/23 cells with these compounds had no effect on T-type calcium currents, indicating that fluorinated N-benzamide enaminone analogs may have a selective effect on voltage-gated sodium channels, but not calcium channels.
- Published
- 2018
- Full Text
- View/download PDF
37. The Effect of Citalopram on Genome-Wide DNA Methylation of Human Cells.
- Author
-
Kanherkar RR, Getachew B, Ben-Sheetrit J, Varma S, Heinbockel T, Tizabi Y, and Csoka AB
- Abstract
Commonly used pharmaceutical drugs might alter the epigenetic state of cells, leading to varying degrees of long-term repercussions to human health. To test this hypothesis, we cultured HEK-293 cells in the presence of 50 μ M citalopram, a common antidepressant, for 30 days and performed whole-genome DNA methylation analysis using the NimbleGen Human DNA Methylation 3x720K Promoter Plus CpG Island Array. A total of 626 gene promoters, out of a total of 25,437 queried genes on the array (2.46%), showed significant differential methylation ( p < 0.01); among these, 272 were hypomethylated and 354 were hypermethylated in treated versus control. Using Ingenuity Pathway Analysis, we found that the chief gene networks and signaling pathways that are differentially regulated include those involved in nervous system development and function and cellular growth and proliferation. Genes implicated in depression, as well as genetic networks involving nucleic acid metabolism, small molecule biochemistry, and cell cycle regulation were significantly modified. Involvement of upstream regulators such as BDNF, FSH, and NF κ B was predicted based on differential methylation of their downstream targets. The study validates our hypothesis that pharmaceutical drugs can have off-target epigenetic effects and reveals affected networks and pathways. We view this study as a first step towards understanding the long-term epigenetic consequences of prescription drugs on human health.
- Published
- 2018
- Full Text
- View/download PDF
38. The Effects of Quinine on Neurophysiological Properties of Dopaminergic Neurons.
- Author
-
Zou L, Xue Y, Jones M, Heinbockel T, Ying M, and Zhan X
- Subjects
- Animals, Biotin analogs & derivatives, Biotin metabolism, Cardiovascular Agents pharmacology, Dose-Response Relationship, Drug, Female, Humans, In Vitro Techniques, Male, Mice, Mice, Inbred C57BL, Patch-Clamp Techniques, Piperidines pharmacology, Pluripotent Stem Cells drug effects, Pluripotent Stem Cells physiology, Potassium Channel Blockers pharmacology, Pyrimidines pharmacology, Sodium Channel Blockers pharmacology, Substantia Nigra cytology, Tetrodotoxin pharmacology, Tyrosine 3-Monooxygenase metabolism, Action Potentials drug effects, Analgesics, Non-Narcotic pharmacology, Autistic Disorder genetics, Dopaminergic Neurons drug effects, Quinine pharmacology
- Abstract
Quinine is an antimalarial drug that is toxic to the auditory system by commonly inducing hearing loss and tinnitus, presumably due to its ototoxic effects on disruption of cochlear hair cells and blockade of ion channels of neurons in the auditory system. To a lesser extent, quinine also causes ataxia, tremor, and dystonic reactions. As dopaminergic neurons are implicated to play a role in all of these diseases, we tested the toxicity of quinine on induced dopaminergic (iDA) neurons derived from human pluripotent stem cells (iPSCs) and primary dopaminergic (DA) neurons of substantia nigra from mice brain slices. Patch clamp recordings and combined drug treatments were performed to examine key physiological properties of the DA neurons. We found that quinine (12.5-200 μM) depolarized the resting membrane potential and attenuated the amplitudes of rebound spikes induced by hyperpolarization. Action potentials were also broadened in spontaneously spiking neurons. In addition to quinine attenuating hyperpolarization-dependent conductance, the tail currents following withdrawal of hyperpolarizing currents were also attenuated. Taken together, we found that iPSC-derived DA neurons recapitulated all the tested physiological properties of human DA neurons, and quinine had distinct effects on the physiology of both iDA and primary DA neurons. This toxicity of quinine may be the underlying mechanism for the movement disorders of cinchonism or quinism and may play a role in tinnitus modulation.
- Published
- 2018
- Full Text
- View/download PDF
39. Essential Oils and Their Constituents Targeting the GABAergic System and Sodium Channels as Treatment of Neurological Diseases.
- Author
-
Wang ZJ and Heinbockel T
- Subjects
- Analgesics chemistry, Animals, Anti-Anxiety Agents chemistry, Anxiety metabolism, Humans, Nervous System Diseases metabolism, Oils, Volatile chemistry, Pain metabolism, Analgesics therapeutic use, Anti-Anxiety Agents therapeutic use, Anxiety drug therapy, Nervous System Diseases drug therapy, Oils, Volatile therapeutic use, Pain drug therapy, Receptors, GABA-A metabolism, Sodium Channels metabolism
- Abstract
Essential oils and the constituents in them exhibit different pharmacological activities, such as antinociceptive, anxiolytic-like, and anticonvulsant effects. They are widely applied as a complementary therapy for people with anxiety, insomnia, convulsion, pain, and cognitive deficit symptoms through inhalation, oral administration, and aromatherapy. Recent studies show that essential oils are emerging as a promising source for modulation of the GABAergic system and sodium ion channels. This review summarizes the recent findings regarding the pharmacological properties of essential oils and compounds from the oils and the mechanisms underlying their effects. Specifically, the review focuses on the essential oils and their constituents targeting the GABAergic system and sodium channels, and their antinociceptive, anxiolytic, and anticonvulsant properties. Some constituents target transient receptor potential (TRP) channels to exert analgesic effects. Some components could interact with multiple therapeutic target proteins, for example, inhibit the function of sodium channels and, at the same time, activate GABA
A receptors. The review concentrates on perspective compounds that could be better candidates for new drug development in the control of pain and anxiety syndromes., Competing Interests: The authors declare no conflict of interest.- Published
- 2018
- Full Text
- View/download PDF
40. Cellular Mechanisms of Action of Drug Abuse on Olfactory Neurons.
- Author
-
Heinbockel T and Wang ZJ
- Subjects
- Cannabis chemistry, Humans, Smell drug effects, United States, Brain drug effects, Cannabinoid Receptor Modulators physiology, Endocannabinoids physiology, Marijuana Abuse physiopathology, Neurons drug effects, Receptors, Cannabinoid drug effects, Signal Transduction drug effects
- Abstract
Cannabinoids (Δ9-tetrahydrocannabinol) are the active ingredient of marijuana (cannabis) which is the most commonly abused illicit drug in the USA. In addition to being known and used as recreational drugs, cannabinoids are produced endogenously by neurons in the brain (endocannabinoids) and serve as important signaling molecules in the nervous system and the rest of the body. Cannabinoids have been implicated in bodily processes both in health and disease. Recent pharmacological and physiological experiments have described novel aspects of classic brain signaling mechanisms or revealed unknown mechanisms of cellular communication involving the endocannabinoid system. While several forms of signaling have been described for endocannabinoids, the most distinguishing feature of endocannabinoids is their ability to act as retrograde messengers in neural circuits. Neurons in the main olfactory bulb express high levels of cannabinoid receptors. Here, we describe the cellular mechanisms and function of this novel brain signaling system in regulating neural activity at synapses in olfactory circuits. Results from basic research have the potential to provide the groundwork for translating the neurobiology of drug abuse to the realm of the pharmacotherapeutic treatment of addiction, specifically marijuana substance use disorder.
- Published
- 2015
- Full Text
- View/download PDF
41. Inhibition of Nav1.7 channels by methyl eugenol as a mechanism underlying its antinociceptive and anesthetic actions.
- Author
-
Wang ZJ, Tabakoff B, Levinson SR, and Heinbockel T
- Subjects
- Animals, CHO Cells, Cricetinae, Cricetulus, Dose-Response Relationship, Drug, Eugenol pharmacology, Humans, Analgesics pharmacology, Anesthetics pharmacology, Eugenol analogs & derivatives, NAV1.7 Voltage-Gated Sodium Channel physiology, Sodium Channel Blockers pharmacology
- Abstract
Aim: Methyl eugenol is a major active component extracted from the Chinese herb Asari Radix et Rhizoma, which has been used to treat toothache and other pain. Previous in vivo studies have shown that methyl eugenol has anesthetic and antinociceptive effects. The aim of this study was to determine the possible mechanism underlying its effect on nervous system disorders., Methods: The direct interaction of methyl eugenol with Na(+) channels was explored and characterized using electrophysiological recordings from Nav1.7-transfected CHO cells., Results: In whole-cell patch clamp mode, methyl eugenol tonically inhibited peripheral nerve Nav1.7 currents in a concentration- and voltage-dependent manner, with an IC50 of 295 μmol/L at a -100 mV holding potential. Functionally, methyl eugenol preferentially bound to Nav1.7 channels in the inactivated and/or open state, with weaker binding to channels in the resting state. Thus, in the presence of methyl eugenol, Nav1.7 channels exhibited reduced availability for activation in a steady-state inactivation protocol, strong use-dependent inhibition, enhanced binding kinetics, and slow recovery from inactivation compared to untreated channels. An estimation of the affinity of methyl eugenol for the resting and inactivated states of the channel also demonstrated that methyl eugenol preferentially binds to inactivated channels, with a 6.4 times greater affinity compared to channels in the resting state. The failure of inactivated channels to completely recover to control levels at higher concentrations of methyl eugenol implies that the drug may drive more drug-bound, fast-inactivated channels into drug-bound, slow-inactivated channels., Conclusion: Methyl eugenol is a potential candidate as an effective local anesthetic and analgesic. The antinociceptive and anesthetic effects of methyl eugenol result from the inhibitory action of methyl eugenol on peripheral Na(+) channels.
- Published
- 2015
- Full Text
- View/download PDF
42. Allosteric Modulation of GABAA Receptors by an Anilino Enaminone in an Olfactory Center of the Mouse Brain.
- Author
-
Heinbockel T, Wang ZJ, and Jackson-Ayotunde PL
- Abstract
In an ongoing effort to identify novel drugs that can be used as neurotherapeutic compounds, we have focused on anilino enaminones as potential anticonvulsant agents. Enaminones are organic compounds containing a conjugated system of an amine, an alkene and a ketone. Here, we review the effects of a small library of anilino enaminones on neuronal activity. Our experimental approach employs an olfactory bulb brain slice preparation using whole-cell patch-clamp recording from mitral cells in the main olfactory bulb. The main olfactory bulb is a key integrative center in the olfactory pathway. Mitral cells are the principal output neurons of the main olfactory bulb, receiving olfactory receptor neuron input at their dendrites within glomeruli, and projecting glutamatergic axons through the lateral olfactory tract to the olfactory cortex. The compounds tested are known to be effective in attenuating pentylenetetrazol (PTZ) induced convulsions in rodent models. One compound in particular, KRS-5Me-4-OCF3, evokes potent inhibition of mitral cell activity. Experiments aimed at understanding the cellular mechanism underlying the inhibitory effect revealed that KRS-5Me-4-OCF3 shifts the concentration-response curve for GABA to the left. KRS-5Me-4-OCF3 enhances GABA affinity and acts as a positive allosteric modulator of GABAA receptors. Application of a benzodiazepine site antagonist blocks the effect of KRS-5Me-4-OCF3 indicating that KRS-5Me-4-OCF3 binds at the classical benzodiazepine site to exert its pharmacological action. This anilino enaminone KRS-5Me-4-OCF3 emerges as a candidate for clinical use as an anticonvulsant agent in the battle against epileptic seizures.
- Published
- 2014
- Full Text
- View/download PDF
43. Resibufogenin and cinobufagin activate central neurons through an ouabain-like action.
- Author
-
Wang ZJ, Sun L, and Heinbockel T
- Subjects
- Amphibian Venoms chemistry, Animals, Bufanolides chemistry, CHO Cells, Cardiotonic Agents pharmacology, Central Nervous System cytology, Cricetinae, Cricetulus, Dose-Response Relationship, Drug, Ion Channel Gating drug effects, Ion Channel Gating genetics, Ion Channel Gating physiology, Membrane Potentials drug effects, Mice, Inbred C57BL, NAV1.2 Voltage-Gated Sodium Channel genetics, NAV1.2 Voltage-Gated Sodium Channel metabolism, NAV1.2 Voltage-Gated Sodium Channel physiology, Neurons metabolism, Olfactory Bulb cytology, Ouabain pharmacology, Patch-Clamp Techniques, Sodium-Potassium-Exchanging ATPase antagonists & inhibitors, Sodium-Potassium-Exchanging ATPase metabolism, Bufanolides pharmacology, Neurons physiology
- Abstract
Cinobufagin and resibufogenin are two major effective bufadienolides of Chan su (toad venom), which is a Chinese medicine obtained from the skin venom gland of toads and is used as a cardiotonic and central nervous system (CNS) respiratory agent, an analgesic and anesthetic, and as a remedy for ulcers. Many clinical cases showed that Chan su has severe side-effects on the CNS, causing shortness of breath, breathlessness, seizure, coma and cardiac arrhythmia. We used whole-cell recordings from brain slices to determine the effects of bufadienolides on excitability of a principal neuron in main olfactory bulb (MOB), mitral cells (MCs), and the cellular mechanism underlying the excitation. At higher concentrations, cinobufagin and resibufogenin induced irreversible over-excitation of MCs indicating a toxic effect. At lower concentrations, they concentration-dependently increased spontaneous firing rate, depolarized the membrane potential of MCs, and elicited inward currents. The excitatory effects were due to a direct action on MCs rather than an indirect phasic action. Bufadienolides and ouabain had similar effects on firing of MCs which suggested that bufadienolides activated neuron through a ouabain-like effect, most likely by inhibiting Na+/K+-ATPase. The direct action of bufadienolide on brain Na+ channels was tested by recordings from stably Nav1.2-transfected cells. Bufadienolides failed to make significant changes of the main properties of Nav1.2 channels in current amplitude, current-voltage (I-V) relationships, activation and inactivation. Our results suggest that inhibition of Na+/K+-ATPase may be involved in both the pharmacological and toxic effects of bufadienolide-evoked CNS excitation.
- Published
- 2014
- Full Text
- View/download PDF
44. Identification of both GABAA receptors and voltage-activated Na(+) channels as molecular targets of anticonvulsant α-asarone.
- Author
-
Wang ZJ, Levinson SR, Sun L, and Heinbockel T
- Abstract
Alpha (α)-asarone, a major effective component isolated from the Chinese medicinal herb Acorus tatarinowii, is clinically used as medication for treating epilepsy, cough, bronchitis, and asthma. In the present study, we demonstrated that α-asarone targets central nervous system GABAA receptor as well as voltage-gated Na(+) channels. Using whole-cell patch-clamp recording, α-asarone inhibited spontaneous firing of output neurons, mitral cells (MCs), in mouse olfactory bulb brain slice preparation and hyperpolarized the membrane potential of MCs. The inhibitory effect of α-asarone persisted in the presence of ionotropic glutamate receptor blockers but was eliminated after adding a GABAA receptor blocker, suggesting that GABAA receptors mediated the inhibition of MCs by α-asarone. This hypothesis was supported by the finding that α-asarone evoked an outward current, but did not influence inhibitory postsynaptic currents (IPSCs). In addition to inhibiting spontaneous firing, α-asarone also inhibited the Nav1.2 channel, a dominant rat brain Na(+) channel subtype. The effects of α-asarone on a defined Nav1.2 were characterized using transfected cells that stably expressed the Nav1.2 channel isoform. α-Asarone displayed strong tonic inhibition of Nav1.2 currents in a concentration- and membrane potential-dependent fashion. α-Asarone reduced channel availability in steady-state inactivation protocols by enhancing or stabilizing Na(+) channel inactivation. Both Na(+) channel blockade and activation of GABAA receptors provide a possible mechanism for the known anti-epileptic effects of α-asarone. It also suggests that α-asarone could benefit patients with cough possibly through inhibiting a Na(+) channel subtype to inhibit peripheral and/or central sensitization of cough reflexes.
- Published
- 2014
- Full Text
- View/download PDF
45. Astrocyte fatty acid binding protein-7 is a marker for neurogenic niches in the rat hippocampus.
- Author
-
Young JK, Heinbockel T, and Gondré-Lewis MC
- Subjects
- Animals, Cell Count, Fatty Acid-Binding Protein 7, Hippocampus metabolism, Ki-67 Antigen metabolism, Male, Neurons metabolism, Rats, Rats, Sprague-Dawley, Astrocytes metabolism, Fatty Acid-Binding Proteins metabolism, Hippocampus cytology, Nerve Tissue Proteins metabolism, Neurogenesis, Stem Cell Niche physiology
- Abstract
Recent research has determined that newborn neurons in the dentate gyrus of the hippocampus of the macaque are frequently adjacent to astrocytes immunoreactive for fatty acid binding protein-7 (FABP7). To investigate if a similar relationship between FABP7-positive (FABP7+) astrocytes and proliferating cells exists in the rodent brain, sections of brains from juvenile rats were stained by immunohistochemistry to demonstrate newborn cells (antibody to Ki67 protein) and FABP7+ astrocytes. In rat brains, FABP7+ astrocytes were particularly abundant in the dentate gyrus of the hippocampus and were frequently close to dividing cells immunoreactive for Ki67 protein. FABP7+ astrocytes were also present in the olfactory bulbs, arcuate nucleus of the hypothalamus, and in the dorsal medulla subjacent to the area postrema, sites where more modest numbers of newborn neurons can also be found. These data suggest that regional accumulations of FABP7+ astrocytes may represent reservoirs of cells having the potential for neurogenesis. Because FABP7+ astrocytes are particularly abundant in the hippocampus, and since the gene for FABP7 has been linked to Alzheimer's disease, age-related changes in FABP7+ astrocytes (mitochondrial degeneration) may be relevant to age-associated disorders of the hippocampus., (Copyright © 2013 Wiley Periodicals, Inc.)
- Published
- 2013
- Full Text
- View/download PDF
46. Glomerular interactions in olfactory processing channels of the antennal lobes.
- Author
-
Heinbockel T, Shields VD, and Reisenman CE
- Subjects
- Animals, Arthropod Antennae physiology, Insecta, Signal Transduction, Arthropod Antennae anatomy & histology, Nerve Net physiology, Olfactory Pathways physiology, Olfactory Receptor Neurons physiology, Smell physiology
- Abstract
An open question in olfactory coding is the extent of interglomerular connectivity: do olfactory glomeruli and their neurons regulate the odorant responses of neurons innervating other glomeruli? In the olfactory system of the moth Manduca sexta, the response properties of different types of antennal olfactory receptor cells are known. Likewise, a subset of antennal lobe glomeruli has been functionally characterized and the olfactory tuning of their innervating neurons identified. This provides a unique opportunity to determine functional interactions between glomeruli of known input, specifically, (1) glomeruli processing plant odors and (2) glomeruli activated by antennal stimulation with pheromone components of conspecific females. Several studies describe reciprocal inhibitory effects between different types of pheromone-responsive projection neurons suggesting lateral inhibitory interactions between pheromone component-selective glomerular neural circuits. Furthermore, antennal lobe projection neurons that respond to host plant volatiles and innervate single, ordinary glomeruli are inhibited during antennal stimulation with the female's sex pheromone. The studies demonstrate the existence of lateral inhibitory effects in response to behaviorally significant odorant stimuli and irrespective of glomerular location in the antennal lobe. Inhibitory interactions are present within and between olfactory subsystems (pheromonal and non-pheromonal subsystems), potentially to enhance contrast and strengthen odorant discrimination.
- Published
- 2013
- Full Text
- View/download PDF
47. The basal forebrain modulates spontaneous activity of principal cells in the main olfactory bulb of anesthetized mice.
- Author
-
Zhan X, Yin P, and Heinbockel T
- Subjects
- Animals, Electric Stimulation, Male, Mice, Mice, Inbred C57BL, Muscarinic Antagonists pharmacology, Neurons cytology, Neurons drug effects, Olfactory Bulb cytology, Olfactory Bulb drug effects, Olfactory Pathways cytology, Olfactory Pathways drug effects, Prosencephalon cytology, Prosencephalon drug effects, Scopolamine pharmacology, Neurons physiology, Olfactory Bulb physiology, Olfactory Pathways physiology, Prosencephalon physiology
- Abstract
Spontaneous activity is an important characteristic of the principal cells in the main olfactory bulb (MOB) for encoding odor information, which is modulated by the basal forebrain. Cholinergic activation has been reported to inhibit all major neuron types in the MOB. In this study, the effect of diagonal band (NDB) stimulation on mitral/tufted (M/T) cell spontaneous activity was examined in anesthetized mice. NDB stimulation increased spontaneous activity in 66 MOB neurons which lasted for 2-35 s before returning to the baseline level. The majority of the effected units showed a decrease of interspike intervals (ISI) at a range of 8-25 ms. Fifty-two percent of NDB stimulation responsive units showed intrinsic rhythmical bursting, which was enhanced temporarily by NDB stimulation, whereas the remaining non-rhythmic units were capable of synchronized bursting. The effect was attenuated by scopolamine in 21 of 27 units tested. Only four NDB units were inhibited by NDB stimulation, an inhibition that lasted less than 10 s. The NDB stimulation responsive neurons appeared to be M/T cells. Our findings demonstrate an NDB excitation effect on M/T neurons that mostly requires muscarinic receptor activation, and is likely due to non-selectivity of electrical stimulation. This suggests that cholinergic and a diverse group of non-cholinergic neurons in the basal forebrain co-ordinately modulate the dynamics of M/T cell spontaneous activity, which is fundamental for odor representation and attentional perception.
- Published
- 2013
- Full Text
- View/download PDF
48. A substituted anilino enaminone acts as a novel positive allosteric modulator of GABA(A) receptors in the mouse brain.
- Author
-
Wang ZJ, Sun L, Jackson PL, Scott KR, and Heinbockel T
- Subjects
- Action Potentials drug effects, Action Potentials physiology, Allosteric Regulation drug effects, Allosteric Regulation physiology, Animals, Anticonvulsants metabolism, Brain metabolism, GABA Modulators metabolism, Mice, Mice, Inbred C57BL, Protein Binding physiology, Anticonvulsants chemistry, Anticonvulsants pharmacology, Brain drug effects, GABA Modulators chemistry, GABA Modulators pharmacology, Receptors, GABA-A physiology
- Abstract
A small library of anilino enaminones was analyzed for potential anticonvulsant agents. We examined the effects of three anilino enaminones on neuronal activity of output neurons, mitral cells (MC), in an olfactory bulb brain slice preparation using whole-cell patch-clamp recording. These compounds are known to be effective in attenuating pentylenetetrazol-induced convulsions. Among the three compounds tested, 5-methyl-3-(4-trifluoromethoxy-phenylamino)-cyclohex-2-enone (KRS-5Me-4-OCF₃) showed potent inhibition of MC activity with an EC₅₀ of 24.5 μM. It hyperpolarized the membrane potential of MCs accompanied by suppression of spontaneous firing. Neither ionotropic glutamate receptor blockers nor a GABA(B) receptor blocker prevented the KRS-5Me-4-OCF(3)-evoked inhibitory effects. In the presence of GABA(A) receptor antagonists, KRS-5Me-4-OCF(3) completely failed to evoke inhibition of MC spiking activity, suggesting that KRS-5Me-4-OCF₃-induced inhibition may be mediated by direct action on GABA(A) receptors or indirect action through the elevation of tissue GABA levels. Neither vigabatrin (a selective GABA-T inhibitor) nor 1,2,5,6-tetrahydro-1-[2-[[(diphenylmethylene)amino]oxy]ethyl]-3-pyridinecarboxylic acid hydrochloride (NNC-711) (a selective inhibitor of GABA uptake by GABA transporter 1) eliminated the effect of KRS-5ME-4-OCF₃ on neuronal excitability, indicating that the inhibitory effect of the enaminone resulted from direct activation of GABA(A) receptors. The concentration-response curves for GABA are left-shifted by KRS-5Me-4-OCF₃, demonstrating that KRS-5Me-4-OCF₃ enhanced GABA affinity and acted as a positive allosteric modulator of GABA(A) receptors. The effect of KRS-5Me-4-OCF₃ was blocked by applying a benzodiazepine site antagonist, suggesting that KRS-5Me-4-OCF₃ binds at the classic benzodiazepine site to exert its pharmacological action. The results suggest clinical use of enaminones as anticonvulsants in seizures and as a potential anxiolytic in mental disorders.
- Published
- 2011
- Full Text
- View/download PDF
49. Metabotropic glutamate receptors and dendrodendritic synapses in the main olfactory bulb.
- Author
-
Dong HW, Heinbockel T, Hamilton KA, Hayar A, and Ennis M
- Subjects
- Animals, Humans, Mice, Olfactory Nerve physiology, gamma-Aminobutyric Acid physiology, Dendrites physiology, Olfactory Bulb physiology, Receptors, Metabotropic Glutamate physiology, Synapses physiology
- Abstract
The main olfactory bulb (MOB) is the first site of synaptic processing in the central nervous system for odor information that is relayed from olfactory receptor neurons in the nasal cavity via the olfactory nerve (ON). Glutamate and ionotropic glutamate receptors (iGluRs) play a dominant role at ON synapses. Similarly, glutamate and iGluRs mediate dendrodendritic transmission between several populations of neurons within the MOB network. Neuroanatomical studies demonstrate that metabotropic glutamate receptors (mGluRs) are densely expressed through the MOB network, and they are particularly abundant at dendrodendritic synapses. Until recently, the physiological roles of mGluRs in the MOB were poorly understood. Over the past several years, mGluRs have been shown to play surprisingly powerful neuromodulatory roles at ON synapses and in dendrodendritic neurotransmission in the MOB. This chapter focuses on recent advances in our understanding of mGluR-mediated signaling components at dendrodendritic synapses.
- Published
- 2009
- Full Text
- View/download PDF
50. Inhibitory interactions among olfactory glomeruli do not necessarily reflect spatial proximity.
- Author
-
Reisenman CE, Heinbockel T, and Hildebrand JG
- Subjects
- Action Potentials drug effects, Action Potentials physiology, Alkadienes pharmacology, Animals, Dose-Response Relationship, Drug, Female, Fluorescent Dyes metabolism, Lepidoptera, Male, Nerve Net drug effects, Nerve Net physiology, Neural Inhibition drug effects, Olfactory Receptor Neurons cytology, Olfactory Receptor Neurons drug effects, Sex Attractants pharmacology, Stimulation, Chemical, Time Factors, Neural Inhibition physiology, Odorants, Olfactory Pathways cytology, Olfactory Receptor Neurons physiology
- Abstract
Inhibitory interactions shape the activity of output neurons in primary olfactory centers and promote contrast enhancement of odor representations. Patterns of interglomerular connectivity, however, are largely unknown. To test whether the proximity of glomeruli to one another is correlated with interglomerular inhibitory interactions, we used intracellular recording and staining methods to record the responses of projection (output) neurons (PNs) associated with glomeruli of known olfactory tuning in the primary olfactory center of the moth Manduca sexta. We focused on Toroid I, a glomerulus in the male-specific macroglomerular complex (MGC) specialized to one of the two key components of the conspecific females' sex pheromone, and the adjacent, sexually isomorphic glomerulus 35, which is highly sensitive to Z-3-hexenyl acetate (Z3-6:OAc). We used the two odorants to activate these reference glomeruli and tested the effects of olfactory activation in other glomeruli. We found that Toroid-I PNs were not inhibited by input to G35, whereas G35 PNs were inhibited by input to Toroid-I PNs. We also recorded the responses of PNs arborizing in other sexually isomorphic glomeruli to stimulation with the sex pheromone and Z3-6:OAc. We found that inhibitory responses were not related to proximity to the MGC and G35: both distant and adjacent PNs were inhibited by stimulation with the sex pheromone, some others were affected by only one odorant, and yet others by neither. Similar results were obtained in female PNs recorded in proximity to female-specific glomeruli. Our findings indicate that inhibitory interactions among glomeruli are widespread and independent of their spatial proximity.
- Published
- 2008
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.