57 results on '"Hein GL"'
Search Results
2. What is the proper concentration of histamine for use as a positive percutaneous skin test control?
- Author
-
Hein GL
- Published
- 2008
- Full Text
- View/download PDF
3. Helper Component-Proteinase of Triticum Mosaic Virus Is a Viral Determinant of Wheat Curl Mite Transmission.
- Author
-
Szydło W, Wosula EN, Knoell E, Hein GL, Mondal S, and Tatineni S
- Subjects
- Animals, Cysteine Endopeptidases genetics, Cysteine Endopeptidases metabolism, Triticum virology, Plant Diseases virology, Mites virology, Viral Proteins genetics, Viral Proteins metabolism, Potyviridae genetics, Potyviridae physiology
- Abstract
Triticum mosaic virus (TriMV; genus Poacevirus ; family Potyviridae ) is an economically important virus in the Great Plains region of the United States. TriMV is transmitted by the wheat curl mite ( Aceria tosichella ) Type 2 genotype but not by Type 1. Helper component-proteinase (HC-Pro) is a vector transmission determinant for several potyvirids, but the role of HC-Pro in TriMV transmission is unknown. In this study, we examined the requirement of the HC-Pro cistron of TriMV for wheat curl mite (Type 2) transmission through deletion and point mutations and constructing TriMV chimeras with heterologous HC-Pros from other potyvirids. TriMV with complete deletion of HC-Pro failed to be transmitted by wheat curl mites at detectable levels. Furthermore, TriMV chimeras with heterologous HC-Pros from aphid-transmitted turnip mosaic virus and tobacco etch virus, or wheat curl mite-transmitted wheat streak mosaic virus, failed to be transmitted by wheat curl mites. These data suggest that heterologous HC-Pros did not complement TriMV for wheat curl mite transmission. A decreasing series of progressive nested in-frame deletions at the N-terminal region of HC-Pro comprising amino acids 3 to 125, 3 to 50, 3 to 25, 3 to 15, 3 to 8, and 3 and 4 abolished TriMV transmission by wheat curl mites. Additionally, mutation of conserved His
20 , Cys49 , or Cys52 to Ala in HC-Pro abolished TriMV transmissibility by wheat curl mites. These data suggest that the N-terminal region of HC-Pro is crucial for TriMV transmission by wheat curl mites. Collectively, these data demonstrate that the HC-Pro cistron of TriMV is a viral determinant for wheat curl mite transmission., Competing Interests: The author(s) declare no conflict of interest.- Published
- 2024
- Full Text
- View/download PDF
4. First report of Triticum mosaic virus infecting oat crop in the United States.
- Author
-
Barman M, Davis TW, Hein GL, Tatineni S, and Mondal S
- Abstract
Triticum mosaic virus (TriMV, genus Poacevirus , family Potyviridae ) was first reported in 2006 (Seifers et al. 2008) to infect wheat, and since then, it has been established as a constraint for US wheat production (Byamukama et al. 2013). In the field, TriMV often exists as a coinfection with wheat streak mosaic virus (WSMV), and these two viruses interact synergistically to produce severe symptoms and greater yield loss (Byamukama et al. 2012; Tatineni et al. 2022). Both TriMV and WSMV are transmitted by wheat curl mites (Aceria tosichella Keifer) (McMechan et al. 2014). Wheat is the primary host reported for TriMV in the field, but Seifers et al. (2010) established oat, rye, barley, and several other cereals and grasses as hosts under controlled conditions. However, there are no documented cases of TriMV infecting oats in the field. Between 10-25 June, 2023, a total of 273 field oat plants showing foliar yellowing, yellow flecking, and streaking symptoms were collected from four different fields in Nebraska (Big Springs: 41.1029° N, 102.1451° W; Mead: 41.2292° N, 96.4938° W; Odell: 40.0459° N, 96.7984° W; Stumf: 40.5048° N, 101.4223° W). Total RNA was extracted using the MagMax Plant RNA Isolation kit (Thermo Fisher Scientific) and the KingFisher Flex Magnetic Particle Processor (Thermo Fisher Scientific) (Mondal et al. 2023). Sample RNA was assayed with a single-step multiplex reverse transcription polymerase chain reaction (RT-PCR) to determine presence of WSMV and TriMV. Out of 273 symptomatic oat plants, 254 (93.04%) tested positive for at least one virus. Out of total positive samples, 238 were positive for WSMV (93.70 %), 12 plants tested positive for both TriMV and WSMV (4.70%), and 4 plants were infected with TriMV alone (1.60%). As a secondary confirmation, amplified fragments from the TriMV single infection were gel purified using a gel extraction kit (QIAquick) and sequenced (Eurofins Genomics). The nucleotide sequences were analysed using the BlastN program, compiled, and edited in the BioEdit software (Hall 1999). Sequences were deposited in the NCBI GenBank database (accession number PP475806). Nucleotide BLAST searches of the target coat protein (CP) gene showed > 98% identity to the corresponding sequences in TriMV accession MK318274. For further validation, virus inoculum was prepared by grinding field-collected plant material from plants with only TriMV present in 20 mM sodium phosphate buffer, pH 7.0, and then mechanically inoculating two-week-old oats (cv. Shaw n=8) and wheat (cv. Sattler, n=8) plants. Three weeks post-inoculation, all the eight wheat plants exhibited mild yellowing and streaking symptoms, while oat plants did not show obvious foliar symptoms. All wheat and oat plants were further tested positive with DAC-ELISA (antibodies produced against TriMV CP at the USDA-ARS facility in Lincoln, NE) and with RT-PCR. The specific attribution of these symptoms to TriMV in oats is not possible as none produced prominent symptoms. Asymptomatic oat infection from symptomatic field-collected oat samples could be due to oat cultivar differences. Although the prevalence of TriMV in wheat has been established across the Great Plains of the United States, to our knowledge, this is the first report of TriMV infection in US oat fields. Our finding warrant further investigation into the incidence and impact of the virus in oat crop and its potential for serving as a asymptomatic virus reservoir.
- Published
- 2024
- Full Text
- View/download PDF
5. Plant Viruses of Agricultural Importance: Current and Future Perspectives of Virus Disease Management Strategies.
- Author
-
Tatineni S and Hein GL
- Subjects
- Plant Diseases, Crops, Agricultural, RNA, Small Interfering, Disease Management, Plant Viruses genetics, Virus Diseases, MicroRNAs
- Abstract
Plant viruses cause significant losses in agricultural crops worldwide, affecting the yield and quality of agricultural products. The emergence of novel viruses or variants through genetic evolution and spillover from reservoir host species, changes in agricultural practices, mixed infections with disease synergism, and impacts from global warming pose continuous challenges for the management of epidemics resulting from emerging plant virus diseases. This review describes some of the most devastating virus diseases plus select virus diseases with regional importance in agriculturally important crops that have caused significant yield losses. The lack of curative measures for plant virus infections prompts the use of risk-reducing measures for managing plant virus diseases. These measures include exclusion, avoidance, and eradication techniques, along with vector management practices. The use of sensitive, high throughput, and user-friendly diagnostic methods is crucial for defining preventive and management strategies against plant viruses. The advent of next-generation sequencing technologies has great potential for detecting unknown viruses in quarantine samples. The deployment of genetic resistance in crop plants is an effective and desirable method of managing virus diseases. Several dominant and recessive resistance genes have been used to manage virus diseases in crops. Recently, RNA-based technologies such as dsRNA- and siRNA-based RNA interference, microRNA, and CRISPR/Cas9 provide transgenic and nontransgenic approaches for developing virus-resistant crop plants. Importantly, the topical application of dsRNA, hairpin RNA, and artificial microRNA and trans-active siRNA molecules on plants has the potential to develop GMO-free virus disease management methods. However, the long-term efficacy and acceptance of these new technologies, especially transgenic methods, remain to be established.
- Published
- 2023
- Full Text
- View/download PDF
6. High Plains wheat mosaic virus: An enigmatic disease of wheat and corn causing the High Plains disease.
- Author
-
Tatineni S and Hein GL
- Subjects
- Plant Diseases, Triticum, Zea mays, Mosaic Viruses, RNA Viruses
- Abstract
Brief History: In 1993, severe mosaic and necrosis symptoms were observed on corn (maize) and wheat from several Great Plains states of the USA. Based on the geographical location of infections, the disease was named High Plains disease and the causal agent was tentatively named High Plains virus. Subsequently, researchers renamed this virus as maize red stripe virus and wheat mosaic virus to represent the host and symptom phenotype of the virus. After sequencing the genome of the pathogen, the causal agent of High Plains disease was officially named as High Plains wheat mosaic virus. Hence, High Plains virus, maize red stripe virus, wheat mosaic virus, and High Plains wheat mosaic virus (HPWMoV) are synonyms for the causal agent of High Plains disease., Taxonomy: High Plains wheat mosaic virus is one of the 21 definitive species in the genus Emaravirus in the family Fimoviridae., Virion: The genomic RNAs are encapsidated in thread-like nucleocapsids in double-membrane 80-200 nm spherical or ovoid virions., Genome Characterization: The HPWMoV genome consists of eight single-stranded negative-sense RNA segments encoding a single open reading frame (ORF) in each genomic RNA segment. RNA 1 is 6,981-nucleotide (nt) long, coding for a 2,272 amino acid protein of RNA-dependent RNA polymerase. RNA 2 is 2,211-nt long and codes for a 667 amino acid glycoprotein precursor. RNA 3 has two variants of 1,439- and 1,441-nt length that code for 286 and 289 amino acid nucleocapsid proteins, respectively. RNA 4 is 1,682-nt long, coding for a 364 amino acid protein. RNA 5 and RNA 6 are 1,715- and 1,752-nt long, respectively, and code for 478 and 492 amino acid proteins, respectively. RNA 7 and RNA 8 are 1,434- and 1,339-nt long, code for 305 and 176 amino acid proteins, respectively., Biological Properties: HPWMoV can infect wheat, corn (maize), barley, rye brome, oat, rye, green foxtail, yellow foxtail, and foxtail barley. HPWMoV is transmitted by the wheat curl mite and through corn seed., Disease Management: Genetic resistance against HPWMoV in wheat is not available, but most commercial corn hybrids are resistant while sweet corn varieties remain susceptible. Even though corn hybrids are resistant to virus, it still serves as a green bridge host that enables mites to carry the virus from corn to new crop wheat in the autumn. The main management strategy for High Plains disease in wheat relies on the management of green bridge hosts. Cultural practices such as avoiding early planting can be used to avoid mite buildup and virus infections., (© 2021 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd. This article has been contributed to by US Government employees and their work is in the public domain in the USA.)
- Published
- 2021
- Full Text
- View/download PDF
7. Phenology and Dispersal of the Wheat Stem Sawfly (Hymenoptera: Cephidae) Into Winter Wheat Fields in Nebraska.
- Author
-
McCullough CT, Hein GL, and Bradshaw JD
- Subjects
- Animals, Colorado, Female, Male, Montana, Nebraska, Wyoming, Hymenoptera
- Abstract
Historically, the wheat stem sawfly, Cephus cinctus Norton was a pest in spring wheat-growing regions of the northern Great Plains. However, in the 1980s, it was found infesting winter wheat fields in Montana. Infestations were first detected in western Nebraska in the 1990s, and have since spread throughout the Nebraska Panhandle. Larval damage occurs from stem-mining, but stem girdling that results in lodged stems that are not harvested results in the greatest yield losses. The biology and phenology of the wheat stem sawfly are well described in the northern portion of its range, but they are lacking in Colorado, southeast Wyoming, and Nebraska. In this study, the phenology and dispersal of the wheat stem sawfly in Nebraska winter wheat fields is described using sweep net and larval sampling. During this 2-yr study, adult activity began on May 23 and ended on June 21. Adult sex ratios were 2.32 males per female in 2014 and 0.46 males per female in 2015. Both sexes demonstrated an edge effect within the wheat fields, with greater densities near the field edge. The edge effect was stronger for male wheat stem sawfly than females. Wheat stem sawfly larval density also had an edge effect, regardless of the density of female wheat stem sawfly present. This information will be useful for developing management plans for the wheat stem sawfly in Nebraska and neighboring regions., (© The Author(s) 2020. Published by Oxford University Press on behalf of Entomological Society of America.)
- Published
- 2020
- Full Text
- View/download PDF
8. P7 and P8 proteins of High Plains wheat mosaic virus, a negative-strand RNA virus, employ distinct mechanisms of RNA silencing suppression.
- Author
-
Gupta AK, Hein GL, and Tatineni S
- Subjects
- DNA Mutational Analysis, Electrophoretic Mobility Shift Assay, Viral Proteins genetics, Host Microbial Interactions, Immune Evasion, Mosaic Viruses immunology, Mosaic Viruses pathogenicity, RNA Interference, Triticum virology, Viral Proteins metabolism
- Abstract
High Plains wheat mosaic virus (genus Emaravirus), an octapartite negative-sense RNA virus, encodes two RNA silencing suppressors, P7 and P8. In this study, we found that P7 and P8 efficiently delayed the onset of dsRNA-induced transitive pathway of RNA silencing. Electrophoretic mobility shift assays (EMSA) revealed that only P7 protected long dsRNAs from dicing in vitro and bound weakly to 21- and 24-nt PTGS-like ds-siRNAs. In contrast, P8 bound strongly and relatively weakly to 21- and 24-nt ds-siRNAs, respectively, suggesting size-specific binding. In EMSA, neither protein bound to 180-nt and 21-nt ssRNAs at detectable levels. Sequence analysis revealed that P7 contains a conserved GW motif. Mutational disruption of this motif resulted in loss of suppression of RNA silencing and pathogenicity enhancement, and failure to complement the silencing suppression-deficient wheat streak mosaic virus. Collectively, these data suggest that P7 and P8 proteins utilize distinct mechanisms to overcome host RNA silencing for successful establishment of systemic infection in planta., (Published by Elsevier Inc.)
- Published
- 2019
- Full Text
- View/download PDF
9. Wheat streak mosaic virus alters the transcriptome of its vector, wheat curl mite (Aceria tosichella Keifer), to enhance mite development and population expansion.
- Author
-
Gupta AK, Scully ED, Palmer NA, Geib SM, Sarath G, Hein GL, and Tatineni S
- Subjects
- Animals, Disease Vectors, Plant Diseases parasitology, Plant Diseases virology, Mites genetics, Mites virology, Potyviridae genetics, Transcriptome genetics, Triticum parasitology, Triticum virology
- Abstract
Wheat streak mosaic virus (WSMV; genus Tritimovirus; family Potyviridae) is an economically important wheat virus that is transmitted by the wheat curl mite (WCM; Aceria tosichella Keifer) in a persistent manner. Virus-vector coevolution may potentially influence vector gene expression to prolong viral association and thus increase virus transmission efficiency and spread. To understand the transcriptomic responses of WCM to WSMV, RNA sequencing was performed to assemble and analyse transcriptomes of WSMV viruliferous and aviruliferous mites. Among 7291 de novo-assembled unigenes, 1020 were differentially expressed between viruliferous and aviruliferous WCMs using edgeR at a false discovery rate ≤0.05. Differentially expressed unigenes were enriched for 108 gene ontology terms, with the majority of the unigenes showing downregulation in viruliferous mites in comparison to only a few unigenes that were upregulated. Protein family and metabolic pathway enrichment analyses revealed that most downregulated unigenes encoded enzymes and proteins linked to stress response, immunity and development. Mechanistically, these predicted changes in mite physiology induced by viral association could be suggestive of pathways needed for promoting virus-vector interactions. Overall, our data suggest that transcriptional changes in viruliferous mites facilitate prolonged viral association and alter WCM development to expedite population expansion, both of which could enhance viral transmission.
- Published
- 2019
- Full Text
- View/download PDF
10. Differential Spatial Gradients of Wheat Streak Mosaic Virus into Winter Wheat from a Central Mite-Virus Source.
- Author
-
Stilwell AR, Rundquist DC, Marx DB, and Hein GL
- Subjects
- Animals, Mites virology, Potyviridae physiology, Triticum virology
- Abstract
The wheat curl mite (WCM), Aceria tosichella Keifer, transmits three potentially devastating viruses to winter wheat. An increased understanding of mite movement and subsequent virus spread through the landscape is necessary to estimate the risk of epidemics by the virus in winter wheat. Owing to the small size of WCMs, their dispersal via wind is hard to monitor; however, the viruses they transmit produce symptoms that can be detected with remote sensing. The objective of this study was to characterize the spatial dispersal of the virus from a central mite-virus source. Virus infection gradients were measured spatially by using aerial remote sensing, ground measurements, geostatistics, and a geographic information system between 2006 and 2009. The red edge position vegetation index as measured via aerial imagery was significantly correlated with in-field biophysical measurements. The occurrence of virus symptoms extended differentially in all directions from mite-virus source plots, and predictions from cokriging revealed an oval pattern surrounding the source but displaced to the southeast. The variable dispersal in different directions appeared to be influenced by the mite source density and wind direction and speed, but temperature also seemed likely to have affected mite spread. The spatial spread revealed in this study may be used to estimate the potential sphere of influence of mite-infested volunteer wheat in production fields. These risk parameter estimates require further validation, but they may potentially aid growers in making better virus management decisions regarding differential virus spread potential away from a central source.
- Published
- 2019
- Full Text
- View/download PDF
11. Comparing the Effects of Two Tillage Operations on Beneficial Epigeal Arthropod Communities and Their Associated Ecosystem Services in Sugar Beets.
- Author
-
Pretorius RJ, Hein GL, Blankenship EE, Purrington FF, Wilson RG, and Bradshaw JD
- Subjects
- Animals, Food Preferences, Plant Weeds, Population Density, Seeds, Weed Control, Agriculture methods, Beta vulgaris, Biodiversity, Coleoptera physiology, Pest Control, Biological
- Abstract
Beneficial arthropods provide important ecosystem services in terms of arthropod pest and weed management, but these services can be adversely affected by farming practices such as tillage. This study investigated the impact of two tillage operations (zone tillage and moldboard plow) on the activity density of several beneficial, epigeal arthropod taxa, and postdispersal weed seed and prey removal in sugar beet agroecosystems. In addition, four omnivorous ground beetle species were selected for a weed-seed choice feeding assay, whereas a single species was selected for a weed-seed age preference assay. Ground beetles were the most commonly collected taxon (via pitfall sampling), with only a few dominant species. Tillage operation did not affect ground beetle activity density; however, spider, centipede, and rove beetle activity densities were higher in the reduced-tillage treatment. Live prey consumption was similar between tillage practices, with more prey consumed during nocturnal hours. More weed seeds were consumed in the reduced-tillage treatment, whereas weed-seed preference differed between the four weed species tested [Setaria pumila (Poir.) Roem. & Schult., Echinochloa crus-galli (L.), Kochia scoparia (L.), and Chenopodium album (L.)]. In the weed-seed choice feeding assay, significantly more broad-leaf weed seeds (C. album and K. scoparia) were consumed compared with grassy weed seeds (E. crus-galli and S. pumila). No preference for seed age was detected for E. crus-galli, but Harpalus pensylvanicus (De Geer) preferred old C. album seeds over fresh seeds. Zone tillage is compatible with ecosystem services, providing critical habitat within agricultural ecosystems needed to conserve beneficial, edaphic arthropods.
- Published
- 2018
- Full Text
- View/download PDF
12. Genetics and mechanisms underlying transmission of Wheat streak mosaic virus by the wheat curl mite.
- Author
-
Tatineni S and Hein GL
- Subjects
- Animal Structures virology, Animals, Arthropod Proteins metabolism, Protein Binding, United States, Viral Proteins metabolism, Host-Parasite Interactions, Mites virology, Plant Diseases virology, Potyviridae physiology, Triticum virology, Virus Attachment
- Abstract
Wheat streak mosaic virus (WSMV, genus Tritimovirus; family Potyviridae) is the most economically important virus of wheat in the Great Plains region of the USA. WSMV is transmitted by the eriophyid wheat curl mite (WCM), Aceria tosichella Keifer. In contrast to Hemipteran-borne plant viruses, the mode and mechanism of eriophyid mite transmission of viruses have remained poorly understood, mostly due to difficulty of working with these ∼200 μm long microscopic creatures. Among eriophyid-transmitted plant viruses, relatively extensive work has been performed on population genetics of WCMs, WSMV determinants involved in WCM transmission, and localization of WSMV virions and inclusion bodies in WCMs. The main focus of this review is to appraise readers on WCM, WSMV encoded proteins required for WCM transmission and further details and questions on the mode of WSMV transmission by WCMs, and potential advances in management strategies for WCMs and WSMV with increased understanding of transmission., (Published by Elsevier B.V.)
- Published
- 2018
- Full Text
- View/download PDF
13. The Interface Between Wheat and the Wheat Curl Mite, Aceria tosichella , the Primary Vector of Globally Important Viral Diseases.
- Author
-
Skoracka A, Rector BG, and Hein GL
- Abstract
Wheat production and sustainability are steadily threatened by pests and pathogens in both wealthy and developing countries. This review is focused on the wheat curl mite (WCM), Aceria tosichella , and its relationship with wheat. WCM is a major pest of wheat and other cereals and a vector of at least four damaging plant viruses ( Wheat streak mosaic virus , High plains wheat mosaic virus , Brome streak mosaic virus , and Triticum mosaic virus ). The WCM-virus pathosystem causes considerable yield losses worldwide and its severity increases significantly when mixed-virus infections occur. Chemical control strategies are largely ineffective because WCM occupies secluded niches on the plant, e.g., leaf sheaths or curled leaves in the whorl. The challenge of effectively managing this pest-virus complex is exacerbated by the existence of divergent WCM lineages that differ in host-colonization and virus-transmission abilities. We highlight research progress in mite ecology and virus epidemiology that affect management and development of cereal cultivars with WCM- and virus-resistance genes. We also address the challenge of avoiding both agronomically deleterious side effects and selection for field populations of WCM that can overcome these resistance genes. This report integrates the current state of knowledge of WCM-virus-plant interactions and addresses knowledge gaps regarding the mechanisms driving WCM infestation, viral epidemics, and plant responses. We discuss the potential application of molecular methods (e.g., transcriptomics, epigenetics, and whole-genome sequencing) to understand the chemical and cellular interface between the wheat plant and WCM-virus complexes.
- Published
- 2018
- Full Text
- View/download PDF
14. Octapartite negative-sense RNA genome of High Plains wheat mosaic virus encodes two suppressors of RNA silencing.
- Author
-
Gupta AK, Hein GL, Graybosch RA, and Tatineni S
- Subjects
- Gene Expression Regulation, Viral physiology, Mosaic Viruses pathogenicity, Plant Diseases virology, Nicotiana virology, Viral Proteins genetics, Genome, Viral, Mosaic Viruses genetics, RNA Interference physiology, RNA, Viral genetics, Triticum virology, Viral Proteins metabolism
- Abstract
High Plains wheat mosaic virus (HPWMoV, genus Emaravirus; family Fimoviridae), transmitted by the wheat curl mite (Aceria tosichella Keifer), harbors a monocistronic octapartite single-stranded negative-sense RNA genome. In this study, putative proteins encoded by HPWMoV genomic RNAs 2-8 were screened for potential RNA silencing suppression activity by using a green fluorescent protein-based reporter agroinfiltration assay. We found that proteins encoded by RNAs 7 (P7) and 8 (P8) suppressed silencing induced by single- or double-stranded RNAs and efficiently suppressed the transitive pathway of RNA silencing. Additionally, a Wheat streak mosaic virus (WSMV, genus Tritimovirus; family Potyviridae) mutant lacking the suppressor of RNA silencing (ΔP1) but having either P7 or P8 from HPWMoV restored cell-to-cell and long-distance movement in wheat, thus indicating that P7 or P8 rescued silencing suppressor-deficient WSMV. Furthermore, HPWMoV P7 and P8 substantially enhanced the pathogenicity of Potato virus X in Nicotiana benthamiana. Collectively, these data demonstrate that the octapartite genome of HPWMoV encodes two suppressors of RNA silencing., (Published by Elsevier Inc.)
- Published
- 2018
- Full Text
- View/download PDF
15. Impact of Timing and Method of Virus Inoculation on the Severity of Wheat Streak Mosaic Disease.
- Author
-
Wosula EN, McMechan AJ, Knoell E, Tatineni S, Wegulo SN, and Hein GL
- Subjects
- Chlorophyll metabolism, Nebraska, Plant Diseases virology, Seasons, Time Factors, Triticum virology, Disease Susceptibility, Plant Diseases immunology, Potyviridae physiology, Triticum immunology
- Abstract
Wheat streak mosaic virus (WSMV), transmitted by the wheat curl mite Aceria tosichella, frequently causes significant yield loss in winter wheat throughout the Great Plains of the United States. A field study was conducted in the 2013-14 and 2014-15 growing seasons to compare the impact of timing of WSMV inoculation (early fall, late fall, or early spring) and method of inoculation (mite or mechanical) on susceptibility of winter wheat cultivars Mace (resistant) and Overland (susceptible). Relative chlorophyll content, WSMV incidence, and yield components were determined. The greatest WSMV infection occurred for Overland, with the early fall inoculations resulting in the highest WSMV infection rate (up to 97%) and the greatest yield reductions relative to the control (up to 94%). In contrast, inoculation of Mace resulted in low WSMV incidence (1 to 28.3%). The findings from this study indicate that both method of inoculation and wheat cultivar influenced severity of wheat streak mosaic; however, timing of inoculation also had a dramatic influence on disease. In addition, mite inoculation provided much more consistent infection rates and is considered a more realistic method of inoculation to measure disease impact on wheat cultivars.
- Published
- 2018
- Full Text
- View/download PDF
16. Wheat streak mosaic virus coat protein is a determinant for vector transmission by the wheat curl mite.
- Author
-
Tatineni S, McMechan AJ, and Hein GL
- Subjects
- Amino Acid Motifs, Animals, Arachnid Vectors physiology, Capsid Proteins chemistry, Capsid Proteins genetics, Mites physiology, Mutation, Potyviridae chemistry, Potyviridae genetics, Arachnid Vectors virology, Capsid Proteins metabolism, Mites virology, Plant Diseases virology, Potyviridae metabolism, Triticum virology
- Abstract
Wheat streak mosaic virus (WSMV; genus Tritimovirus; family Potyviridae), is transmitted by the wheat curl mite (Aceria tosichella Keifer). The requirement of coat protein (CP) for WSMV transmission by the wheat curl mite was examined using a series of viable deletion and point mutations. Mite transmission of WSMV was completely abolished with deletions comprising CP amino acids 58-100. In contrast, the amino-proximal (amino acids 6-27 and 36-57) and carboxy-terminal (14 amino acids) regions of CP were expendable for mite transmission. Mutation of aspartic acid residues at amino acid positions 289 or 326 (D289A or D326A) at the carboxy-proximal region of CP significantly reduced mite transmission. Remarkably, every wheat plant infected by mutants D289A or D326A through mite transmission but not with in vitro transcripts contained a second-site mutation of R131C and N275H, respectively. Collectively, these data demonstrate for the first time that CP is a determinant for an eriophyid-transmitted plant virus., (Published by Elsevier Inc.)
- Published
- 2018
- Full Text
- View/download PDF
17. Population Dynamics of the Wheat Curl Mite (Acari: Eriophyidae) During the Heading Stages of Winter Wheat.
- Author
-
McMechan AJ and Hein GL
- Subjects
- Animals, Nebraska, Population Dynamics, Mites physiology, Triticum growth & development
- Abstract
The wheat curl mite (Aceria tosichella Keifer) is the only known vector of three viruses in wheat-Wheat streak mosaic virus, Wheat mosaic virus, and Triticum mosaic virus. The economic impact of this disease complex is linked to the presence of suitable hosts prior to winter wheat maturing in early summer and the movement of wheat curl mite from wheat to oversummering hosts prior to wheat harvest. Previous research has documented the prevalence and density of mite populations on maturing wheat heads; however, these studies were limited to a few late stages of wheat. A study was conducted to evaluate mite population densities across all stages of head development to determine when wheat curl mites are most abundant and the relative increase in abundance over time. In addition, a study was conducted to evaluate the impact of rainfall on mite populations during wheat heading. A final study was conducted to determine the potential for direct infestation of seedlings germinating from wheat curl mite-infested wheat heads. Results showed a rapid buildup in mite populations from low densities in early heading and peaking at the hard dough stage, with nearly all wheat heads having some mite presence. In addition, high mite populations resulted in direct infestation of germinated seedlings from the early through hard dough stages. Rainfall applications had no observable impact on mite population densities in wheat heads. These results demonstrate the increased potential for mites to infest hosts prior to winter wheat maturing and illustrate the increased risk for these hosts to serve as oversummering hosts., (© The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2017
- Full Text
- View/download PDF
18. Response of Pemphigus betae (Hemiptera: Aphididae) and Beneficial Epigeal Arthropod Communities to Sugarbeet Plant Density and Seed-Applied Insecticide in Western Nebraska.
- Author
-
Pretorius RJ, Hein GL, Blankenship EE, Purrington FF, and Bradshaw JD
- Subjects
- Agriculture, Animals, Arthropods physiology, Nebraska, Population Density, Seeds, Aphids, Beta vulgaris growth & development, Insect Control, Insecticides, Soil
- Abstract
This study investigated the impact of a neonicotinoid seed-applied insecticide (Poncho Beta) and two plant densities (86,487 and 61,776 plants per hectare) on the sugarbeet root aphid (Pemphigus betae Doane), beneficial epigeal arthropods, and selected crop yield parameters in sugarbeet (Beta vulgaris L. var. vulgaris). Ground beetles and centipedes were the most commonly collected taxa during 2012 and 2013, respectively. Centipede, spider, and rove beetle activity densities were not affected by the seed-applied insecticide, whereas plant density had a marginal effect on centipede activity density during 2012. Ground beetle species richness, diversity, and evenness were also not impacted by the seed treatments. However, during 2013, ground beetle activity density was significantly higher in plots planted with untreated sugarbeet seeds due to the abundance of Bembidion quadrimaculatum oppositum Say. Sugarbeet root aphid populations were significantly higher in the untreated plots during both years. In 2012, sugarbeet tonnage and sugar yield were higher under the low plant density treatment, while higher sugar content was recorded from the seed-applied insecticide plots (2013). Seed-applied neonicotinoids and plant density had little impact on beneficial epigeal arthropod activity density. Seed treatment did result in decreased root aphid populations; however, these reductions were not sufficient to be considered as an adequate control. This limited aphid control likely contributed to inconsistent effects on yield parameters., (© The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.)
- Published
- 2017
- Full Text
- View/download PDF
19. Effect of Temperature on Wheat Streak Mosaic Disease Development in Winter Wheat.
- Author
-
Wosula EN, Tatineni S, Wegulo SN, and Hein GL
- Abstract
Temperature is one of the key factors that influence viral disease development in plants. In this study, temperature effect on Wheat streak mosaic virus (WSMV) replication and in planta movement was determined using a green fluorescent protein (GFP)-tagged virus in two winter wheat cultivars. Virus-inoculated plants were first incubated at 10, 15, 20, and 25°C for 21 days, followed by 27°C for 14 days; and, in a second experiment, virus-inoculated plants were initially incubated at 27°C for 3 days, followed by 10, 15, 20, and 25°C for 21 days. In the first experiment, WSMV-GFP in susceptible 'Tomahawk' wheat at 10°C was restricted at the point of inoculation whereas, at 15°C, the virus moved systemically, accompanied with mild symptoms, and, at 20 and 25°C, WSMV elicited severe WSMV symptoms. In resistant 'Mace' wheat (PI 651043), WSMV-GFP was restricted at the point of inoculation at 10 and 15°C but, at 20 and 25°C, the virus infected systemically with no visual symptoms. Some plants that were not systemically infected at low temperatures expressed WSMV-GFP in regrowth shoots when later held at 27°C. In the second experiment, Tomahawk plants (100%) expressed systemic WSMV-GFP after 21 days at all four temperature levels; however, systemic WSMV expression in Mace was delayed at the lower temperatures. These results indicate that temperature played an important role in WSMV replication, movement, and symptom development in resistant and susceptible wheat cultivars. This study also demonstrates that suboptimal temperatures impair WSMV movement but the virus rapidly begins to replicate and spread in planta under optimal temperatures.
- Published
- 2017
- Full Text
- View/download PDF
20. Temperature-Dependent Wsm1 and Wsm2 Gene-Specific Blockage of Viral Long-Distance Transport Provides Resistance to Wheat streak mosaic virus and Triticum mosaic virus in Wheat.
- Author
-
Tatineni S, Wosula EN, Bartels M, Hein GL, and Graybosch RA
- Subjects
- Biological Transport, Genes, Reporter, Plant Diseases virology, Plant Leaves genetics, Plant Leaves immunology, Plant Leaves virology, Plant Proteins genetics, Temperature, Triticum immunology, Triticum virology, Plant Diseases immunology, Plant Proteins metabolism, Potyviridae physiology, Triticum genetics
- Abstract
Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are economically important viral pathogens of wheat. Wheat cvs. Mace, carrying the Wsm1 gene, is resistant to WSMV and TriMV, and Snowmass, with Wsm2, is resistant to WSMV. Viral resistance in both cultivars is temperature sensitive and is effective at 18°C or below but not at higher temperatures. The underlying mechanisms of viral resistance of Wsm1 and Wsm2, nonallelic single dominant genes, are not known. In this study, we found that fluorescent protein-tagged WSMV and TriMV elicited foci that were approximately similar in number and size at 18 and 24°C, on inoculated leaves of resistant and susceptible wheat cultivars. These data suggest that resistant wheat cultivars at 18°C facilitated efficient cell-to-cell movement. Additionally, WSMV and TriMV efficiently replicated in inoculated leaves of resistant wheat cultivars at 18°C but failed to establish systemic infection, suggesting that Wsm1- and Wsm2-mediated resistance debilitated viral long-distance transport. Furthermore, we found that neither virus was able to enter the leaf sheaths of inoculated leaves or crowns of resistant wheat cultivars at 18°C but both were able to do so at 24°C. Thus, wheat cvs. Mace and Snowmass provide resistance at the long-distance movement stage by specifically blocking virus entry into the vasculature. Taken together, these data suggest that both Wsm1 and Wsm2 genes similarly confer virus resistance by temperature-dependent impairment of viral long-distance movement.
- Published
- 2016
- Full Text
- View/download PDF
21. Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance.
- Author
-
Ali N, Heslop-Harrison JP, Ahmad H, Graybosch RA, Hein GL, and Schwarzacher T
- Subjects
- Chromosome Mapping, DNA, Plant genetics, Mosaic Viruses, Phenotype, Plant Breeding, Plant Diseases virology, Poaceae genetics, Secale genetics, Translocation, Genetic, Triticum virology, Chromosomes, Plant genetics, Disease Resistance genetics, Hybridization, Genetic, Plant Diseases genetics, Recombination, Genetic, Triticum genetics
- Abstract
Pyramiding of alien-derived Wheat streak mosaic virus (WSMV) resistance and resistance enhancing genes in wheat is a cost-effective and environmentally safe strategy for disease control. PCR-based markers and cytogenetic analysis with genomic in situ hybridisation were applied to identify alien chromatin in four genetically diverse populations of wheat (Triticum aestivum) lines incorporating chromosome segments from Thinopyrum intermedium and Secale cereale (rye). Out of 20 experimental lines, 10 carried Th. intermedium chromatin as T4DL*4Ai#2S translocations, while, unexpectedly, 7 lines were positive for alien chromatin (Th. intermedium or rye) on chromosome 1B. The newly described rye 1RS chromatin, transmitted from early in the pedigree, was associated with enhanced WSMV resistance. Under field conditions, the 1RS chromatin alone showed some resistance, while together with the Th. intermedium 4Ai#2S offered superior resistance to that demonstrated by the known resistant cultivar Mace. Most alien wheat lines carry whole chromosome arms, and it is notable that these lines showed intra-arm recombination within the 1BS arm. The translocation breakpoints between 1BS and alien chromatin fell in three categories: (i) at or near to the centromere, (ii) intercalary between markers UL-Thin5 and Xgwm1130 and (iii) towards the telomere between Xgwm0911 and Xbarc194. Labelled genomic Th. intermedium DNA hybridised to the rye 1RS chromatin under high stringency conditions, indicating the presence of shared tandem repeats among the cereals. The novel small alien fragments may explain the difficulty in developing well-adapted lines carrying Wsm1 despite improved tolerance to the virus. The results will facilitate directed chromosome engineering producing agronomically desirable WSMV-resistant germplasm.
- Published
- 2016
- Full Text
- View/download PDF
22. Planting Date and Variety Selection for Management of Viruses Transmitted by the Wheat Curl Mite (Acari: Eriophyidae).
- Author
-
McMechan AJ and Hein GL
- Subjects
- Animals, Nebraska, Seasons, Triticum embryology, Triticum genetics, Acari physiology, Acari virology, Plant Diseases virology, Triticum physiology, Triticum virology
- Abstract
Wheat is an important food grain worldwide, and it is the primary dryland crop in the western Great Plains. A complex of three viruses (Wheat streak mosaic, Wheat mosaic, and Triticum mosaic viruses) is a common cause of loss in winter wheat production in the Great Plains. All these viruses are transmitted by the wheat curl mite (Aceria tosichella Keifer). Once these viruses are established, there are no curative actions; therefore, prevention is the key to successful management. A study was designed to evaluate preventative management tactics (planting date, resistant varieties) for reducing the impact from this virus complex. The main plot treatments were three planting dates, and split-plot treatments were three wheat varieties. Varieties were planted at three different times during the fall to simulate early, recommended, and late planting dates. The varieties evaluated in this study were Mace (virus resistant), Millennium (mild tolerance), and Tomahawk (susceptible). Measurements of virus symptomology and yield were used to determine virus impact. Results consistently showed that the resistant Mace yielded more than Millennium or Tomahawk under virus pressure. In some years, delayed planting improved the yields for all varieties, regardless of their background; however, under the most severe virus pressure the combination of both management strategies was not sufficient to provide practical control of this complex. These results illustrate the importance of using a combination of management tactics for this complex, but also reinforce the importance for producers to use additional management strategies (e.g., control preharvest volunteer wheat) to manage this complex., (© The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2016
- Full Text
- View/download PDF
23. Differential Transmission of Two Isolates of Wheat streak mosaic virus by Five Wheat Curl Mite Populations.
- Author
-
Wosula EN, McMechan AJ, Oliveira-Hofman C, Wegulo SN, and Hein GL
- Abstract
Wheat streak mosaic virus (WSMV), type member of the genus Tritimovirus in the family Potyviridae, is an economically important virus causing annual average yield losses of approximately 2 to 3% in winter wheat across the Great Plains. The wheat curl mite (WCM), Aceria tosichella, transmits WSMV along with two other viruses found throughout the Great Plains of the United States. Two common genotypes of WSMV (Sidney 81 and Type) in the United States share 97.6% nucleotide sequence identity but their transmission relationships with the WCM are unknown. The objective of this study was to determine transmission of these two isolates of WSMV by five WCM populations ('Nebraska', 'Montana', 'South Dakota', 'Type 1', and 'Type 2'). Nonviruliferous mites from each population were reared on wheat source plants mechanically inoculated with either Sidney 81 or Type WSMV isolates. For each source plant, individual mites were transferred to 10 separate test plants and virus transmission was determined by a double-antibody sandwich enzyme-linked immunosorbent assay. Source plants were replicated nine times for each treatment (90 individual mite transfers). Results indicate that three mite populations transmitted Sidney 81 at higher rates compared with Type. Two mite populations (Nebraska and Type 2) transmitted Sidney 81 and Type at higher rates compared with the other three populations. Results from this study demonstrate that interactions between virus isolates and mite populations influence the epidemiology of WSMV.
- Published
- 2016
- Full Text
- View/download PDF
24. In Vitro Transcripts of Wild-Type and Fluorescent Protein-Tagged Triticum mosaic virus (Family Potyviridae) are Biologically Active in Wheat.
- Author
-
Tatineni S, McMechan AJ, Bartels M, Hein GL, and Graybosch RA
- Subjects
- Animals, Arthropod Vectors, Frameshift Mutation, Green Fluorescent Proteins, Luminescent Proteins, Mites, Plant Diseases, Potyviridae genetics, Sequence Analysis, RNA, Red Fluorescent Protein, Host-Pathogen Interactions, Potyviridae pathogenicity, Triticum virology
- Abstract
Triticum mosaic virus (TriMV) (genus Poacevirus, family Potyviridae) is a recently described eriophyid mite-transmitted wheat virus. In vitro RNA transcripts generated from full-length cDNA clones of TriMV proved infectious on wheat. Wheat seedlings inoculated with in vitro transcripts elicited mosaic and mottling symptoms similar to the wild-type virus, and the progeny virus was efficiently transmitted by wheat curl mites, indicating that the cloned virus retained pathogenicity, movement, and wheat curl mite transmission characteristics. A series of TriMV-based expression vectors was constructed by engineering a green fluorescent protein (GFP) or red fluorescent protein (RFP) open reading frame with homologous NIa-Pro cleavage peptides between the P1 and HC-Pro cistrons. We found that GFP-tagged TriMV with seven or nine amino acid cleavage peptides efficiently processed GFP from HC-Pro. TriMV-GFP vectors were stable in wheat for more than 120 days and for six serial passages at 14-day intervals by mechanical inoculation and were transmitted by wheat curl mites similarly to the wild-type virus. Fluorescent protein-tagged TriMV was observed in wheat leaves, stems, and crowns. The availability of fluorescent protein-tagged TriMV will facilitate the examination of virus movement and distribution in cereal hosts and the mechanisms of cross protection and synergistic interactions between TriMV and Wheat streak mosaic virus.
- Published
- 2015
- Full Text
- View/download PDF
25. The Effect of Temperature, Relative Humidity, and Virus Infection Status on off-host Survival of the Wheat Curl Mite (Acari: Eriophyidae).
- Author
-
Wosula EN, McMechan AJ, and Hein GL
- Subjects
- Animals, Genotype, Humidity, Longevity, Mites genetics, Seasons, Temperature, Triticum growth & development, Mites physiology, Mites virology, Plant Diseases virology, Potyviridae physiology, Triticum virology
- Abstract
The wheat curl mite, Aceria tosichella Keifer, is an eriophyid pest of wheat, although its primary economic impact on wheat is due to the transmission of Wheat streak mosaic (WSMV), Wheat mosaic (also known as High Plains virus), and Triticum mosaic (TriMV) viruses. These viruses cause significant annual losses in winter wheat production throughout the western Great Plains. Temperature and humidity are factors that often influence arthropod survival, especially during dispersal from their hosts, yet the impact of these two factors on off-host survival has not been documented for wheat curl mite. Pathogen-infected host plants often influence the biology and behavior of vectors, yet it is not known if virus-infected wheat affects off-host survival of wheat curl mite. The objectives of this study were to 1) determine if temperature, relative humidity, and mite genotype impact off-host survival of wheat curl mite and 2) determine the effect of WSMV- and TriMV-infected host plants on off-host survival of wheat curl mite. Temperature and relative humidity significantly affected off-host survival of wheat curl mite. Length of survival decreased with increasing temperature (106.2 h at 10°C and 17.0 h at 30°C) and decreasing relative humidity (78.1 h at 95 and 21.3 h at 2%). Mites from TriMV-infected host plants had ∼20% reduction in survival at 20°C compared with those from WSMV-infected plants. The duration of off-host survival of wheat curl mite is influenced by environmental conditions. Management strategies that target a break in host presence will greatly reduce mite densities and virus spread and need to account for these limits., (© The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2015
- Full Text
- View/download PDF
26. Impact of Wheat streak mosaic virus and Triticum mosaic virus Coinfection of Wheat on Transmission Rates by Wheat Curl Mites.
- Author
-
Oliveira-Hofman C, Wegulo SN, Tatineni S, and Hein GL
- Abstract
Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are transmitted by the wheat curl mite (WCM, Aceria tosichella), and coinfections of wheat by these viruses are common in the field. Previous work has shown that mite genotypes vary in their ability to transmit TriMV. However, the degree to which coinfection of wheat modifies WCM vector competence has not been studied. The objective was to determine whether mite genotypes differed in virus transmission ability when feeding on wheat coinfected by WSMV and TriMV. First, WCM genotype type 2 was used to determine virus transmission rates from mock-, WSMV-, TriMV-, and coinfected wheat plants. Transmission rates were determined by using single-mite transfers from replicated source plants. Coinfection reduced WSMV transmission by type 2 WCM from 50 to 35.6%; however, coinfection increased TriMV transmission from 43.3 to 56.8%. Mite survival on single-mite transfer test plants indicates that the reduction in WSMV transmission may result from poor mite survival when TriMV is present. In a second study, two separate colonies of WCM genotype type 1 were tested to assess the impact of coinfection on transmission. Type 1 mites did not transmit TriMV from coinfected plants but the two colonies varied in transmission rates for WSMV (20.9 to 36.5%). Even though these changes in mite transmission rates are moderate, they help explain the high relative incidence of TriMV-positive plants that are coinfected with WSMV in field observations. These findings begin to demonstrate the complicated interactions found in this mite-virus complex.
- Published
- 2015
- Full Text
- View/download PDF
27. Reply to "New Zealand Stresses that It Is High Plains Virus Free, and the Virus Struggles with an Identity Crisis".
- Author
-
Tatineni S, McMechan AJ, Wosula EN, Wegulo SN, Graybosch RA, French R, and Hein GL
- Subjects
- Animals, Genetic Heterogeneity, Mites virology, Nucleocapsid Proteins chemistry, Plant Viruses genetics, RNA, Viral genetics
- Published
- 2015
- Full Text
- View/download PDF
28. Correction for Tatineni et al., An Eriophyid Mite-Transmitted Plant Virus Contains Eight Genomic RNA Segments with Unusual Heterogeneity in the Nucleocapsid Protein.
- Author
-
Tatineni S, McMechan AJ, Wosula EN, Wegulo SN, Graybosch RA, French R, and Hein GL
- Published
- 2015
- Full Text
- View/download PDF
29. An eriophyid mite-transmitted plant virus contains eight genomic RNA segments with unusual heterogeneity in the nucleocapsid protein.
- Author
-
Tatineni S, McMechan AJ, Wosula EN, Wegulo SN, Graybosch RA, French R, and Hein GL
- Subjects
- Animals, Blotting, Northern, Electrophoresis, Polyacrylamide Gel, Genetic Heterogeneity, Mites virology, Nucleocapsid Proteins chemistry, Plant Viruses genetics, RNA, Viral genetics
- Abstract
Eriophyid mite-transmitted, multipartite, negative-sense RNA plant viruses with membrane-bound spherical virions are classified in the genus Emaravirus. We report here that the eriophyid mite-transmitted Wheat mosaic virus (WMoV), an Emaravirus, contains eight genomic RNA segments, the most in a known negative-sense RNA plant virus. Remarkably, two RNA 3 consensus sequences, encoding the nucleocapsid protein, were found with 12.5% sequence divergence, while no heterogeneity was observed in the consensus sequences of additional genomic RNA segments. The RNA-dependent RNA polymerase, glycoprotein precursor, nucleocapsid, and P4 proteins of WMoV exhibited limited sequence homology with the orthologous proteins of other emaraviruses, while proteins encoded by additional genomic RNA segments displayed no significant homology with proteins reported in GenBank, suggesting that the genus Emaravirus evolved further with a divergent octapartite genome. Phylogenetic analyses revealed that WMoV formed an evolutionary link between members of the Emaravirus genus and the family Bunyaviridae. Furthermore, genomic-length virus- and virus-complementary (vc)-sense strands of all WMoV genomic RNAs accumulated asymmetrically in infected wheat, with 10- to 20-fold more virus-sense genomic RNAs than vc-sense RNAs. These data further confirm the octapartite negative-sense polarity of the WMoV genome. In WMoV-infected wheat, subgenomic-length mRNAs of vc sense were detected for genomic RNAs 3, 4, 7, and 8 but not for other RNA species, suggesting that the open reading frames present in the complementary sense of genomic RNAs are expressed through subgenomic- or near-genomic-length vc-sense mRNAs. Importance: Wheat mosaic virus (WMoV), an Emaravirus, is the causal agent of High Plains disease of wheat and maize. In this study, we demonstrated that the genome of WMoV comprises eight negative-sense RNA segments with an unusual sequence polymorphism in an RNA encoding the nucleocapsid protein but not in the additional genomic RNA segments. WMoV proteins displayed weak or no homology with reported emaraviruses, suggesting that the genus Emaravirus further evolved with a divergent octapartite genome. The current study also examined the profile of WMoV RNA accumulation in wheat and provided evidence for the synthesis of subgenomic-length mRNAs of virus complementary sense. This is the first report to demonstrate that emaraviruses produce subgenomic-length mRNAs that are most likely utilized for genome expression. Importantly, this study facilitates the examination of gene functions and virus diversity and the development of effective diagnostic methods and management strategies for an economically important but poorly understood virus., (Copyright © 2014, American Society for Microbiology. All Rights Reserved.)
- Published
- 2014
- Full Text
- View/download PDF
30. Effects of Planting Date and Barley Variety on Russian Wheat Aphid (Hemiptera: Aphididae) Populations in Colorado, Kansas, and Nebraska.
- Author
-
Sotelo PA, Hein GL, Peairs FB, and Smith CM
- Subjects
- Animals, Colorado, Herbivory, Kansas, Nebraska, Population Dynamics, Seasons, Aphids physiology, Hordeum genetics, Hordeum growth & development, Insect Control methods
- Abstract
The Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae), is an important pest in the western Great Plains of the United States, where it causes hundreds of millions of dollars of losses to barley and wheat production through reduced yields. Experiments to evaluate the effect of early planting and resistance in barley (Hordeum vulgare L.) on D. noxia were conducted at Fort Collins, CO; Tribune, KS; and Sidney, NE, in 2007, 2008, and 2009. Treatments included two planting dates and four cultivars, the D. noxia-resistant barley cultivars 'Stoneham' (Otis*4/STARS 9577B) and 'Sidney' (Otis*4/STARS 9301B), the susceptible cultivar 'Otis', and Otis treated with thiamethoxam. In tiller samples collected from May through early July, consistently lower D. noxia populations were found in plots planted ≍30 d earlier than normal at Fort Collins in all three years, and at Tribune in 2007. With one location-year exception, lower D. noxia populations occurred on plants of resistant varieties or the susceptible variety Otis treated with thiamethoxam than on untreated Otis plants. There were no significant differences in D. noxia populations produced on plants of either resistant variety and susceptible Otis plants treated with thiamethoxam. Interactions between resistant varieties and early planting resulted in reduced D. noxia populations at Fort Collins in 2007 and 2009, and at Tribune and Sidney in 2007. Planting D. noxia-resistant barley varieties, planting varieties earlier than normal, and the synergistic effect of resistant variety and early planting can significantly reduce D. noxia infestations on barley in the western High Plains., (© 2014 Entomological Society of America.)
- Published
- 2014
- Full Text
- View/download PDF
31. Factors related to histamine concentrations for positive control in prick-puncture skin testing.
- Author
-
Hein GL
- Subjects
- Humans, Histamine administration & dosage, Skin Tests standards
- Published
- 2014
- Full Text
- View/download PDF
32. Differential Transmission of Triticum mosaic virus by Wheat Curl Mite Populations Collected in the Great Plains.
- Author
-
McMechan AJ, Tatineni S, French R, and Hein GL
- Abstract
Wheat is an important food grain worldwide and the primary dryland crop in the western Great Plains. A complex of three wheat curl mite (WCM)-transmitted viruses (Wheat streak mosaic virus, High plains virus, and Triticum mosaic virus [TriMV]) is a cause of serious loss in winter wheat production in the Great Plains. TriMV was first reported in Kansas in 2006 and later found in most other Great Plains states. Currently, three populations of WCM have been identified by genetic characterization and differential responses to mite resistance genes in wheat. In this study, we examined TriMV transmission by these three WCM populations: 'Nebraska' (NE), 'Montana' (MT), and 'South Dakota' (SD). Mite transmission using single-mite transfers revealed that the NE WCM population transmitted TriMV at 41%, while the MT and SD WCM populations failed to transmit TriMV. In multi-mite transfers, the NE WCM population transmitted TriMV at 100% level compared with 2.5% transmission by MT and SD WCM populations. Interestingly, NE mites transferred during the quiescent stages following the first and second instar transmitted TriMV at a 39 to 40% rate, suggesting that immature mites were able to acquire the virus and maintain it through molting. In addition, mite survival for single-mite transfers was significantly lower for NE mites when transferred from TriMV-inoculated source plants (60%) compared with mock-inoculated source plants (84%). This demonstrates potentially negative effects on WCM survival from TriMV. TriMV transmission differences demonstrated in this study underscore the importance of identification of mite genotypes for future studies with TriMV.
- Published
- 2014
- Full Text
- View/download PDF
33. Quantification of Yield Loss Caused by Triticum mosaic virus and Wheat streak mosaic virus in Winter Wheat Under Field Conditions.
- Author
-
Byamukama E, Wegulo SN, Tatineni S, Hein GL, Graybosch RA, Baenziger PS, and French R
- Abstract
Triticum mosaic virus (TriMV) and Wheat streak mosaic virus (WSMV) infect winter wheat (Triticum aestivum) in the Great Plains region of the United States. The two viruses are transmitted by wheat curl mites (Aceria tosichella), which also transmit High Plains virus. In a field study conducted in 2011 and 2012, winter wheat cultivars Millennium (WSMV-susceptible) and Mace (WSMV-resistant) were mechanically inoculated with TriMV, WSMV, TriMV+WSMV, or sterile water at the two-leaf growth stage. Chlorophyll meter (soil plant analysis development [SPAD]) readings, area under the SPAD progress curve (AUSPC), grain yield (=yield), yield components (spikes/m
2 , kernels/spike, 1,000-kernel weight), and aerial dry matter were determined. In Millennium, all measured variables were significantly reduced by single or double virus inoculation, with the greatest reductions occurring in the double-inoculated treatment. Among the yield components, the greatest reductions occurred in spikes/m2 . In Mace, only AUSPC was significantly reduced by the TriMV+WSMV treatment in 2012. There was a significant (P ≤ 0.05), negative linear relationship between SPAD readings and day of year in all inoculation treatments in Millennium and in the TriMV+WSMV treatment in Mace. There were significant (P ≤ 0.05), positive linear relationships between yield and SPAD readings and between yield and aerial dry matter in Millennium but not in Mace. The results from this study indicate that under field conditions, (i) Mace, a WSMV-resistant cultivar, is also resistant to TriMV, and (ii) double inoculation of winter wheat by TriMV and WSMV exacerbates symptom expression and yield loss in a susceptible cultivar.- Published
- 2014
- Full Text
- View/download PDF
34. Western bean cutworm survival and the development of economic injury levels and economic thresholds in field corn.
- Author
-
Paula-Moraes S, Hunt TE, Wright RJ, Hein GL, and Blankenship EE
- Subjects
- Animals, Ecosystem, Feeding Behavior, Herbivory, Larva growth & development, Larva physiology, Moths growth & development, Nebraska, Ovum growth & development, Ovum physiology, Agriculture economics, Insect Control methods, Moths physiology, Zea mays growth & development
- Abstract
Western bean cutworm, Striacosta albicosta (Smith) (Lepidoptera: Noctuidae), is a native pest of dry beans (Phaseolus vulgaris L.) and corn (Zea mays L.). Historically, the western bean cutworm was distributed in the western United States, but since 1999 eastward expansion has been observed. In corn, economic impact is caused by larval ear feeding. Information on western bean cutworm biology, ecology, and economic impact is relatively limited, and the development of economic injury levels (EILs) and economic thresholds (ETs) is required for more effective management. Studies during 2008-2011, across three ecoregions of Nebraska, sought to characterize western bean cutworm survival and development of EILs and ETs. Calculations of EILs and ETs incorporated the dynamics of corn price, management cost, and pest survival. The results from the current study demonstrated low larval survival of this species (1.51-12.82%). The mean yield loss from one western bean cutworm larva per plant was 945.52 kg/ha (15.08 bu/acre), based on 74,100 plants per ha. Economic thresholds are expressed as a percentage of plants with at least one egg mass. This study is the first study that explicitly incorporates variable management costs and crop values into western bean cutworm EIL calculations, and larval survival into ET calculations.
- Published
- 2013
- Full Text
- View/download PDF
35. Wheat curl mite, Aceria tosichella, and transmitted viruses: an expanding pest complex affecting cereal crops.
- Author
-
Navia D, de Mendonça RS, Skoracka A, Szydło W, Knihinicki D, Hein GL, da Silva Pereira PR, Truol G, and Lau D
- Subjects
- Animal Distribution, Animals, Arachnid Vectors classification, Arachnid Vectors physiology, Mites classification, Mites physiology, Pest Control, Plant Diseases virology, Plant Immunity, Arachnid Vectors virology, Edible Grain virology, Mites virology, Potyviridae physiology
- Abstract
The wheat curl mite (WCM), Aceria tosichella, and the plant viruses it transmits represent an invasive mite-virus complex that has affected cereal crops worldwide. The main damage caused by WCM comes from its ability to transmit and spread multiple damaging viruses to cereal crops, with Wheat streak mosaic virus (WSMV) and Wheat mosaic virus (WMoV) being the most important. Although WCM and transmitted viruses have been of concern to cereal growers and researchers for at least six decades, they continue to represent a challenge. In older affected areas, for example in North America, this mite-virus complex still has significant economic impact. In Australia and South America, where this problem has only emerged in the last decade, it represents a new threat to winter cereal production. The difficulties encountered in making progress towards managing WCM and its transmitted viruses stem from the complexity of the pathosystem. The most effective methods for minimizing losses from WCM transmitted viruses in cereal crops have previously focused on cultural and plant resistance methods. This paper brings together information on biological and ecological aspects of WCM, including its taxonomic status, occurrence, host plant range, damage symptoms and economic impact. Information about the main viruses transmitted by WCM is also included and the epidemiological relationships involved in this vectored complex of viruses are also addressed. Management strategies that have been directed at this mite-virus complex are presented, including plant resistance, its history, difficulties and advances. Current research perspectives to address this invasive mite-virus complex and minimize cereal crop losses worldwide are also discussed.
- Published
- 2013
- Full Text
- View/download PDF
36. Occurrence and Distribution of Triticum mosaic virus in the Central Great Plains.
- Author
-
Byamukama E, Seifers DL, Hein GL, De Wolf E, Tisserat NA, Langham MAC, Osborne LE, Timmerman A, and Wegulo SN
- Abstract
Wheat curl mite (WCM)-transmitted viruses-namely, Wheat streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), and the High Plains virus (HPV)-are three of the wheat-infecting viruses in the central Great Plains of the United States. TriMV is newly discovered and its prevalence and incidence are largely unknown. Field surveys were carried out in Colorado, Kansas, Nebraska, and South Dakota in spring and fall 2010 and 2011 to determine TriMV prevalence and incidence and the frequency of TriMV co-infection with WSMV or HPV in winter wheat. WSMV was the most prevalent and was detected in 83% of 185 season-counties (= s-counties), 73% of 420 season-fields (= s-fields), and 35% of 12,973 samples. TriMV was detected in 32, 6, and 6% of s-counties, s-fields, and samples, respectively. HPV was detected in 34, 15, and 4% of s-counties, s-fields, and samples, respectively. TriMV was detected in all four states. In all, 91% of TriMV-positive samples were co-infected with WSMV, whereas WSMV and HPV were mainly detected as single infections. The results from this study indicate that TriMV occurs in winter wheat predominantly as a double infection with WSMV, which will complicate breeding for resistance to WCM-transmitted viruses.
- Published
- 2013
- Full Text
- View/download PDF
37. On-plant movement and feeding of western bean cutworm (Lepidoptera: Noctuidae) early instars on corn.
- Author
-
Paula-Moraes SV, Hunt TE, Wright RJ, Hein GL, and Blankenship EE
- Subjects
- Animal Distribution, Animals, Larva physiology, Moths growth & development, Zea mays growth & development, Herbivory, Moths physiology, Zea mays physiology
- Abstract
Western bean cutworm, Striacosta albicosta (Smith), has undergone a recent eastward expansion from the western U.S. Corn Belt to Pennsylvania and parts of Canada. Little is known about its ecology and behavior, particularly during the early instars, on corn (Zea mays L.). There is a narrow treatment window for larvae, and early detection of the pest in the field is essential. An understanding of western bean cutworm larval feeding and early-instar dispersal is essential to understand larval survival and establishment in corn. Studies were conducted in 2009 through 2011 in Nebraska to determine the feeding and dispersal of early-instar western bean cutworm on corn. The treatment design was a factorial with three corn stages (pretassel, tassel, and posttassel) and five corn plant zones (tassel, above ear, primary ear, secondary ear, and below ear) in a randomized complete block design. The effects of different corn tissues on larval survival and development were investigated in laboratory studies in a randomized complete block design during 2009 and 2011. Treatments were different corn tissues (leaf alone, leaf with developing tassel, pollen, pollen plus silk, and silk alone). Results demonstrated that neonate larvae move to the upper part of the plant, independent of corn stage. Larval growth was optimal when fed on tassel tissue. Overall results indicated a selective benefit for movement of the early instar to upper part of the plant.
- Published
- 2012
- Full Text
- View/download PDF
38. Genetic characterization of North American populations of the wheat curl mite and dry bulb mite.
- Author
-
Hein GL, French R, Siriwetwiwat B, and Amrine JW
- Subjects
- Acari classification, Acari cytology, Animals, Arthropod Proteins genetics, DNA, Ribosomal Spacer genetics, Electron Transport Complex IV genetics, Female, Molecular Sequence Data, Phylogeny, Polymerase Chain Reaction, Sequence Analysis, DNA, Species Specificity, United States, Acari genetics, Cell Nucleus genetics, DNA, Mitochondrial genetics, DNA, Ribosomal genetics
- Abstract
The wheat curl mite, Aceria tosichella Keifer, transmits at least three harmful viruses, wheat streak mosaic virus (WSMV), high plains virus (HPV), and Triticum mosaic virus (TriMV) to wheat (Triticum aestivum L.) throughout the Great Plains. This virus complex is considered to be the most serious disease of winter wheat in the western Great Plains. One component of managing this disease has been developing mite resistance in wheat; however, identification of mite biotypes has complicated deployment and stability of resistance. This biotypic variability in mites and differential virus transmission by different mite populations underscores the need to better understand mite identity. However, A. tosichella has a history of serious taxonomic confusion, especially as it relates to A. tulipae Keifer, the dry bulb mite. Molecular techniques were used to genetically characterize multiple A. tosichella populations and compare them to populations of A. tulipae. DNA from these populations was polymerase chain reaction amplified and the ribosomal ITS2 region sequenced and compared. These results indicated limited variability between these two species, but two distinct types within A. tosichella were found that corresponded to previous work with Australian mite populations. Further work using sequencing of several mitochondrial DNA genes also demonstrated two distinct types of A. tosichella populations. Furthermore, the separation between these two A. tosichella types is comparable to their separation with A. tulipae, suggesting that species scale differences exist between these two types ofA. tosichella. These genetic differences correspond to important biological differences between the types (e.g., biotypic and virus transmission differences). In light of these differences, it is important that future studies on biological response differences account for these mite differences.
- Published
- 2012
- Full Text
- View/download PDF
39. Effects of Single and Double Infections of Winter Wheat by Triticum mosaic virus and Wheat streak mosaic virus on Yield Determinants.
- Author
-
Byamukama E, Tatineni S, Hein GL, Graybosch RA, Baenziger PS, French R, and Wegulo SN
- Abstract
Triticum mosaic virus (TriMV) is a recently discovered virus infecting wheat (Triticum aestivum) in the Great Plains region of the United States. It is transmitted by wheat curl mites (Aceria tosichella) which also transmit Wheat streak mosaic virus (WSMV) and Wheat mosaic virus. In a greenhouse study, winter wheat 'Millennium' (WSMV susceptible) and 'Mace' (WSMV resistant) were mechanically inoculated with TriMV, WSMV, TriMV+WSMV, or sterile water at the two-leaf growth stage. At 28 days after inoculation, final chlorophyll meter (soil plant analysis development [SPAD]) readings, area under the SPAD progress curve (AUSPC), the number of tillers per plant, shoot and root weight, and total nitrogen and carbon content were determined. In Millennium, all measured variables were significantly reduced by single or double virus infections, with the greatest reductions occurring in the double-infection treatment. In Mace, only final SPAD readings, AUSPC, and total nitrogen were significantly reduced by single or double virus infections. There was a significant (P ≤ 0.05), positive linear relationship between SPAD readings and shoot weight in Millennium but not in Mace. The relationship between total nitrogen and shoot weight was positive, linear, and significant in both cultivars. The results from this study indicate that Mace, a WSMV-resistant cultivar, is also resistant to TriMV, and double infection of winter wheat by TriMV and WSMV exacerbates symptom expression and loss of biomass in susceptible cultivars.
- Published
- 2012
- Full Text
- View/download PDF
40. Cost-effective binomial sequential sampling of western bean cutworm, Striacosta albicosta (Lepidoptera: Noctuidae), egg masses in corn.
- Author
-
Paula-Moraes S, Burkness EC, Hunt TE, Wright RJ, Hein GL, and Hutchison WD
- Subjects
- Animals, Binomial Distribution, Colorado, Insect Control economics, Nebraska, Ovum growth & development, Population Density, Sample Size, Sampling Studies, Insect Control methods, Moths growth & development, Zea mays
- Abstract
Striacosta albicosta (Smith) (Lepidoptera: Noctuidae), is a native pest of dry beans (Phaseolus vulgaris L.) and corn (Zea mays L.). As a result of larval feeding damage on corn ears, S. albicosta has a narrow treatment window; thus, early detection of the pest in the field is essential, and egg mass sampling has become a popular monitoring tool. Three action thresholds for field and sweet corn currently are used by crop consultants, including 4% of plants infested with egg masses on sweet corn in the silking-tasseling stage, 8% of plants infested with egg masses on field corn with approximately 95% tasseled, and 20% of plants infested with egg masses on field corn during mid-milk-stage corn. The current monitoring recommendation is to sample 20 plants at each of five locations per field (100 plants total). In an effort to develop a more cost-effective sampling plan for S. albicosta egg masses, several alternative binomial sampling plans were developed using Wald's sequential probability ratio test, and validated using Resampling for Validation of Sampling Plans (RVSP) software. The benefit-cost ratio also was calculated and used to determine the final selection of sampling plans. Based on final sampling plans selected for each action threshold, the average sample number required to reach a treat or no-treat decision ranged from 38 to 41 plants per field. This represents a significant savings in sampling cost over the current recommendation of 100 plants.
- Published
- 2011
- Full Text
- View/download PDF
41. Efficient and stable expression of GFP through Wheat streak mosaic virus-based vectors in cereal hosts using a range of cleavage sites: formation of dense fluorescent aggregates for sensitive virus tracking.
- Author
-
Tatineni S, McMechan AJ, Hein GL, and French R
- Subjects
- Genetic Variation, Genetic Vectors, Green Fluorescent Proteins genetics, Poaceae genetics, Potyviridae genetics, Triticum, Gene Expression Regulation, Viral physiology, Gene Transfer Techniques, Green Fluorescent Proteins metabolism, Poaceae metabolism, Poaceae virology, Potyviridae metabolism
- Abstract
A series of Wheat streak mosaic virus (WSMV)-based expression vectors were developed by engineering a cycle 3 GFP (GFP) cistron between P1 and HC-Pro cistrons with several catalytic/cleavage peptides at the C-terminus of GFP. WSMV-GFP vectors with the Foot-and-mouth disease virus 1D/2A or 2A catalytic peptides cleaved GFP from HC-Pro but expressed GFP inefficiently. WSMV-GFP vectors with homologous NIa-Pro heptapeptide cleavage sites did not release GFP from HC-Pro, but efficiently expressed GFP as dense fluorescent aggregates. However, insertion of one or two spacer amino acids on either side of NIb/CP heptapeptide cleavage site or deletion in HC-Pro cistron improved processing by NIa-Pro. WSMV-GFP vectors were remarkably stable in wheat for seven serial passages and for 120 days postinoculation. Mite transmission efficiencies of WSMV-GFP vectors correlated with the amount of free GFP produced. WSMV-GFP vectors infected the same range of cereal hosts as wild-type virus, and GFP fluorescence was detected in most wheat tissues., (Published by Elsevier Inc.)
- Published
- 2011
- Full Text
- View/download PDF
42. Wheat cultivar-specific disease synergism and alteration of virus accumulation during co-infection with Wheat streak mosaic virus and Triticum mosaic virus.
- Author
-
Tatineni S, Graybosch RA, Hein GL, Wegulo SN, and French R
- Subjects
- Plant Leaves virology, RNA, Viral genetics, RNA, Viral isolation & purification, Reverse Transcriptase Polymerase Chain Reaction methods, Virus Diseases, Plant Diseases virology, Plant Viruses physiology, Triticum genetics, Triticum virology
- Abstract
Triticum mosaic virus (TriMV), the type member of the newly proposed Poacevirus genus, and Wheat streak mosaic virus (WSMV), the type member of Tritimovirus genus of the family Potyviridae, infect wheat naturally in the Great Plains and are transmitted by wheat curl mites. In this study, we examined the ability of these viruses to infect selected cereal hosts, and found several differential hosts between TriMV and WSMV. Additionally, we examined the interaction between WSMV and TriMV in three wheat cultivars at two temperature regimens (19 and 20 to 26 degrees C), and quantified the virus concentration in single and double infections by real-time reverse-transcription polymerase chain reaction. Double infections in wheat cvs. Arapahoe and Tomahawk at both temperature regimens induced disease synergism with severe leaf deformation, bleaching, and stunting, with a 2.2- to 7.4-fold increase in accumulation of both viruses over single infections at 14 days postinoculation (dpi). However, at 28 dpi, in double infections at 20 to 26 degrees C, TriMV concentration was increased by 1.4- to 1.8-fold in Arapahoe and Tomahawk but WSMV concentration was decreased to 0.5-fold. WSMV or TriMV replicated poorly in Mace at 19 degrees C with no synergistic interaction whereas both viruses accumulated at moderate levels at 20 to 26 degrees C and induced mild to moderate disease synergism in doubly infected Mace compared with Arapahoe and Tomahawk. Co-infections in Mace at 20 to 26 degrees C caused increased TriMV accumulation at 14 and 28 dpi by 2.6- and 1.4-fold and WSMV accumulated at 0.5- and 1.6-fold over single infections, respectively. Our data suggest that WSMV and TriMV induced cultivar-specific disease synergism in Arapahoe, Tomahawk, and Mace, and these findings could have several implications for management of wheat viruses in the Great Plains.
- Published
- 2010
- Full Text
- View/download PDF
43. Genetic variability of the european corn borer, Ostrinia nubilalis, suggests gene flow between populations in the Midwestern United States.
- Author
-
Krumm JT, Hunt TE, Skoda SR, Hein GL, Lee DJ, Clark PL, and Foster JE
- Subjects
- Agriculture, Amplified Fragment Length Polymorphism Analysis, Animals, Genetics, Population, Midwestern United States, Principal Component Analysis, Gene Flow, Genetic Variation, Moths genetics
- Abstract
The European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), is a widely distributed and serious economic pest to corn production in the U.S. Genetic variability of O. nubilalis was studied in 18 sub-populations in the upper Midwestern United States using amplified fragment length polymorphism. The relatively low GST values indicate that more variation exists within populations than between populations. High gene flow (Nm) values were indicated across the entire O. nubilalis population; the lowest degree of gene flow was in the northern samples (Nm = 1.96) and the highest degree of gene flow was in the southern samples (Nm = 2.77). The differences observed in the respective regions (north vs. south) may be explained by the voltinism patterns (univoltine vs. multivoltine, respectively) of O. nubilalis: southern multivoltine populations have opportunities for multiple matings for the duration of the year, further mix alleles. AMOVA results also indicated that most of the genetic variation was within sub-populations ( approximately 81% of total variation); less variation ( approximately 13%) was detected among populations within each of the three regions as designated for this study. However, the most striking and unexpected result was the low percentage of variation between all groups ( approximately 6%), further supporting implications of a high degree of gene flow. These results provide support for current requirements of refugia corn planting in Bt-corn management. These results also indicate that if resistance to Bt were to evolve in O. nubilalis, quick action would be necessary to deter the rapid spread of the gene for resistance.
- Published
- 2008
- Full Text
- View/download PDF
44. Substitution of conserved cysteine residues in wheat streak mosaic virus HC-Pro abolishes virus transmission by the wheat curl mite.
- Author
-
Young BA, Hein GL, French R, and Stenger DC
- Subjects
- Alanine chemistry, Amino Acid Sequence, Amino Acid Substitution, Animals, Cysteine chemistry, Cysteine Endopeptidases chemistry, Cysteine Endopeptidases genetics, Sequence Alignment, Viral Proteins chemistry, Viral Proteins genetics, Arachnid Vectors virology, Cysteine Endopeptidases metabolism, Mites virology, Potyviridae physiology, Triticum virology, Viral Proteins metabolism
- Abstract
Substitutions in the amino-proximal region of wheat streak mosaic virus (WSMV) HC-Pro were evaluated for effects on transmission by the wheat curl mite (Aceria tosichella Keifer). Alanine substitution at cysteine residues 16, 46 and 49 abolished vector transmission. Although alanine substitution at Cys(20) had no effect, substitution with arginine reduced vector transmission efficiency. Random substitutions at other positions (Lys(7) to Asn, Asn(19) to Ile, and Arg(45) to Lys) did not affect vector transmission. These results suggest that a zinc-finger-like motif (His(13)-X2-Cys(16)-X29-Cys(46)-X2-Cys(49)) in WSMV HC-Pro is essential for vector transmission.
- Published
- 2007
- Full Text
- View/download PDF
45. A critical examination of the evidence relating high fructose corn syrup and weight gain.
- Author
-
Forshee RA, Storey ML, Allison DB, Glinsmann WH, Hein GL, Lineback DR, Miller SA, Nicklas TA, Weaver GA, and White JS
- Subjects
- Beverages adverse effects, Body Mass Index, Dietary Sucrose administration & dosage, Dietary Sucrose adverse effects, Evidence-Based Medicine, Fructose administration & dosage, Humans, Longitudinal Studies, Obesity epidemiology, Randomized Controlled Trials as Topic, Sweetening Agents administration & dosage, United States epidemiology, Fructose adverse effects, Obesity chemically induced, Sweetening Agents adverse effects, Weight Gain drug effects
- Abstract
The use of high fructose corn syrup (HFCS) has increased over the past several decades in the United States while overweight and obesity rates have risen dramatically. Some scientists hypothesize that HFCS consumption has uniquely contributed to the increasing mean body mass index (BMI) of the U.S. population. The Center for Food, Nutrition, and Agriculture Policy convened an expert panel to discuss the published scientific literature examining the relationship between consumption of HFCS or "soft drinks" (proxy for HFCS) and weight gain. The authors conducted original analysis to address certain gaps in the literature. Evidence from ecological studies linking HFCS consumption with rising BMI rates is unreliable. Evidence from epidemiologic studies and randomized controlled trials is inconclusive. Studies analyzing the differences between HFCS and sucrose consumption and their contributions to weight gain do not exist. HFCS and sucrose have similar monosaccharide compositions and sweetness values. The fructose:glucose (F:G) ratio in the U.S. food supply has not appreciably changed since the introduction of HFCS in the 1960s. It is unclear why HFCS would affect satiety or absorption and metabolism of fructose any differently than would sucrose. Based on the currently available evidence, the expert panel concluded that HFCS does not appear to contribute to overweight and obesity any differently than do other energy sources. Research recommendations were made to improve our understanding of the association of HFCS and weight gain.
- Published
- 2007
- Full Text
- View/download PDF
46. Nested deletion analysis of Wheat streak mosaic virus HC-Pro: Mapping of domains affecting polyprotein processing and eriophyid mite transmission.
- Author
-
Stenger DC, Hein GL, and French R
- Subjects
- Amino Acid Sequence, Animals, Base Sequence, Genome, Viral, Restriction Mapping, Cysteine Endopeptidases genetics, Gene Deletion, Mites virology, Plant Diseases virology, Potyvirus genetics, Triticum virology, Viral Proteins genetics
- Abstract
A series of in-frame and nested deletion mutations which progressively removed 5'-proximal sequences of the Wheat streak mosaic virus (WSMV) HC-Pro coding region (1152 nucleotides) was constructed and evaluated for pathogenicity to wheat. WSMV HC-Pro mutants with 5'-proximal deletions of 12 to 720 nucleotides systemically infected wheat. Boundary sequences flanking the deletions were stable and unaltered by passage through plants for all deletion mutants except HCD12 (lacking HC-Pro codons 3-6) that exhibited strong bias for G to A substitution at nucleotide 1190 in HC-Pro codon 2 (aspartic acid to asparagine). HC-Pro mutants with 5'-proximal deletions of up to 720 nucleotides retained autoproteolytic activity in vitro. In contrast, 5'-proximal deletion of 852 nucleotides of the HC-Pro coding region (HCD852) abolished both infectivity and in vitro proteolytic activity, confirming that the proteolytic domain of WSMV HC-Pro resides within the carboxy-terminal third of the protein and includes the cysteine proteinase motif (GYCY) conserved among four genera of the family Potyviridae. Inoculation of wheat with HC-Pro deletion mutants also bearing the GUS reporter gene revealed that HCD852 was unable to establish primary infection foci in inoculated leaves, indicating that processing of the P3 amino-terminus was essential. Deletion of as few as 24 nucleotides of HC-Pro (codons 3-10) eliminated transmission by the eriophyid mite vector Aceria tosichella Keifer. Collectively, these results demonstrated similar organization of proteinase and vector transmission functional domains among divergent HC-Pro homologues encoded by potyviruses and tritimoviruses.
- Published
- 2006
- Full Text
- View/download PDF
47. Plant virus HC-Pro is a determinant of eriophyid mite transmission.
- Author
-
Stenger DC, Hein GL, Gildow FE, Horken KM, and French R
- Subjects
- Animals, Cysteine Endopeptidases genetics, Genes, Potyviridae genetics, Viral Proteins genetics, Virus Assembly, Arachnid Vectors virology, Cysteine Endopeptidases physiology, Mites virology, Potyviridae physiology, Triticum virology, Viral Proteins physiology
- Abstract
The eriophyid mite transmitted Wheat streak mosaic virus (WSMV; genus Tritimovirus, family Potyviridae) shares a common genome organization with aphid transmitted species of the genus Potyvirus. Although both tritimoviruses and potyviruses encode helper component-proteinase (HC-Pro) homologues (required for nonpersistent aphid transmission of potyviruses), sequence conservation is low (amino acid identity, approximately 16%), and a role for HC-Pro in semipersistent transmission of WSMV by the wheat curl mite (Aceria tosichella [Keifer]) has not been investigated. Wheat curl mite transmissibility was abolished by replacement of WSMV HC-Pro with homologues of an aphid transmitted potyvirus (Turnip mosaic virus), a rymovirus (Agropyron mosaic virus) vectored by a different eriophyid mite, or a closely related tritimovirus (Oat necrotic mottle virus; ONMV) with no known vector. In contrast, both WSMV-Sidney 81 and a chimeric WSMV genome bearing HC-Pro of a divergent strain (WSMV-El Batán 3; 86% amino acid sequence identity) were efficiently transmitted by A. tosichella. Replacing portions of WSMV-Sidney 81 HC-Pro with the corresponding regions from ONMV showed that determinants of wheat curl mite transmission map to the 5'-proximal half of HC-Pro. WSMV genomes bearing HC-Pro of heterologous species retained the ability to form virions, indicating that loss of vector transmissibility was not a result of failure to encapsidate. Although titer in systemically infected leaves was reduced for all chimeric genomes relative to WSMV-Sidney 81, titer was not correlated with loss of vector transmissibility. Collectively, these results demonstrate for the first time that HC-Pro is required for virus transmission by a vector other than aphids.
- Published
- 2005
- Full Text
- View/download PDF
48. Economic injury levels and sequential sampling plans for Mexican bean beetle (Coleoptera: Coccinellidae) on dry beans.
- Author
-
Barrigossi JA, Hein GL, and Higley LG
- Subjects
- Animals, Food Preservation, Larva, Linear Models, Coleoptera, Crops, Agricultural economics, Phaseolus, Seeds
- Abstract
Field studies were conducted during the growing seasons of 1995 and 1996, in Scotts-bluff, Nebraska, to determine yield-loss relationships for Mexican bean beetle (Epilachna varivestis Mulsant) on dry bean (Phaseolus vulgaris L.). Results of those experiments were combined with data from other studies previously conducted to develop economic injury levels (EILs), economic thresholds (ETs), and a sequential sampling program for Mexican bean beetle. Yield loss was regressed against larvae/row-m, and the slope of the linear regression (113 kg/ha per larvae/row-m) was used as the DI (yield loss/insect density) variable in EIL calculations. The EILs calculated in larvae/row-m were converted to egg masses/row-m and adjusted to reflect average survivorship to the adult stage. An example EIL for esfenvalerate at 0.509 (formulation) liter/ha (0.0453 gal/a) and crop value of 0.44 dollars/kg (20 dollars/100 lbs) was 17.78 larvae/row-m. The corresponding ET is 1.04 egg masses/row-m, which reflects an average of 54.6 eggs/egg mass and 33% survival rate from egg to injurious stages. Sequential sampling plans were calculated based on a negative binomial distribution using parameter k estimated from previous research. Because sampling is based on egg masses, growers can make management decisions and take management actions before significant injury occurs. Also, ETs can be adjusted to include the occurrence of natural mortality in the egg and early instars. Analyses demonstrated that relatively minor variation in ETs has substantial impact on sequential sampling plans, including parameters such as average sample number. An interactive spreadsheet was developed that allows users to input economic and other data specific to their situation to calculate Mexican bean beetle EILs, ETs, and sequential sampling plans.
- Published
- 2003
- Full Text
- View/download PDF
49. Influence of volunteer wheat plant condition on movement of the wheat curl mite, Aceria tosichella, in winter wheat.
- Author
-
Thomas JA and Hein GL
- Subjects
- Animals, Mite Infestations, Nebraska, Wind, Mites growth & development, Plant Diseases parasitology, Triticum parasitology
- Abstract
The wheat curl mite (WCM), Aceria tosichella Keifer, is the vector of wheat streak mosaic virus and high plains virus which cause significant crop loss in winter wheat throughout the western Great Plains. Volunteer wheat emerging before harvest, as a result of severe hail, is the primary source of mites and virus that infect fall-planted winter wheat. Wind-borne movement of the WCM is of key importance in the spread and infection of the virus complex. Significant movement of WCM from wheat has been thought to be closely tied to the senescence or deterioration of the host. Results from field and greenhouse studies indicated that movement from un-vernalized winter wheat was not closely associated with the deterioration of the wheat host. Greenhouse studies showed no correlation between WCM movement and plant condition, but there was a highly significant relationship between WCM movement and mite population on the host plant. Field studies did not demonstrate increased movement associated with deteriorating un-vernalized winter wheat. However, healthier hosts which were able to support a larger population of mites were associated with increased movement. The main influence on the level of mite movement relates to the size of the source population and not the condition of the host plant, but plant condition appears to be a factor in limiting the increase of the WCM population.
- Published
- 2003
- Full Text
- View/download PDF
50. An Integrated Approach to Cultivar Evaluation and Selection for Imporving Suger Beet Profitability: A Successful Case Study for the Central High Plains.
- Author
-
Harveson RM, Hein GL, Smith JA, Wilson RG, and Yonts CD
- Published
- 2002
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.