1. Investigating the Origin of CMB Large-Scale Features Using LiteBIRD and CMB-S4
- Author
-
Petretti, Catherine, Braglia, Matteo, Chen, Xingang, Hazra, Dhiraj Kumar, and Paban, Sonia
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,General Relativity and Quantum Cosmology ,High Energy Physics - Phenomenology ,High Energy Physics - Theory - Abstract
Several missions following Planck are currently under development, which will provide high-precision measurements of the Cosmic Microwave Background (CMB) anisotropies. Specifically, measurements of the E modes will become nearly limited by cosmic variance, which, especially when considering the sharpness of the E-mode transfer functions, may allow for the ability to detect deviations from the concordance model in the CMB data. We investigate the capability of upcoming missions to scrutinize models that have been proposed to address large-scale anomalies observed in the temperature spectra from WMAP and Planck. To this purpose, we consider four benchmarks that modify the CMB angular power spectra at large scales: models producing suppression, a dip, and amplification in the primordial scalar power spectrum, as well as a beyond-Lambda CDM prescription of dark energy. Our analysis shows that large-scale measurements from LiteBIRD will be able to distinguish between various types of primordial and late-time models that predict modifications to the angular spectra at these scales. Moreover, if these deviations from the standard cosmological model are determined to be systematic and do not reflect the true universe model, future experiments could potentially dismiss these features as statistical fluctuations. We also show that additional measurements from CMB-S4 can impose more stringent constraints by probing correlated signals that these models predict at smaller scales (l>100). A byproduct of our analysis is that a recently proposed "Dark Dimension" scenario, featuring power amplification at large scales, is strongly bound by current data, pushing the deviation from the standard model to unobservable scales. Overall, our results demonstrate that future CMB measurements can provide valuable insights into large-scale anomalies that are present in the current CMB data., Comment: 32 pages, 9 figures
- Published
- 2024