1. Sodium-Based Chitosan Polymer Embedded with Copper Selenide (CuSe) Flexible Film for High Electromagnetic Interference (EMI) Shielding Efficiency
- Author
-
Nurul Huda Osman, Nurul Najiha Mazu, Josephine Ying Chyi Liew, Muhammad Mahyiddin Ramli, Andrei Victor Sandu, Marcin Nabiałek, Mohammad Abdull Halim Mohd Abdull Majid, and Hazeem Ikhwan Mazlan
- Subjects
electromagnetic interference ,EMI shielding ,conducting polymer ,impedance spectroscopy ,Chemistry ,QD1-999 - Abstract
Efficient shielding materials are extremely important to minimize the effect of electromagnetic interference. Currently, various composite materials are being investigated with different shielding efficiencies reported. In this paper, a flexible and free-standing sodium-based chitosan (CH/Na) polymer with copper selenide (CuSe) filler was prepared for electromagnetic shielding. The CH/Na/CuSe polymer matrix was prepared via the direct casting technique at different wt% of CuSe, varying from 2 to 20 wt%. The polymer matrix was then characterised by using Fourier transform infrared (FTIR) spectroscopy to confirm the interaction between the CH/Na and CuSe. The XRD results revealed that the CH/Na/CuSe polymer was successfully formed. Improvement in the electrical conductivity was confirmed by an impedance spectroscopy measurement. The highest electrical conduction recorded was at 3.69 × 10−5 S/cm for CH/Na/CuSe polymer matrix with 20 wt% CuSe. An increase in total electromagnetic interference (EMI) shielding efficiency (SET) of up to 20 dB (99% EM power shield) was achieved, and it can be increased up to 34 dB (99.9% EM power shield) with the thickness of the polymer increased.
- Published
- 2021
- Full Text
- View/download PDF