1. The Stagger-grid: A Grid of 3D Stellar Atmosphere Models - I. Methods and General Properties
- Author
-
Magic, Z., Collet, R., Asplund, M., Trampedach, R., Hayek, W., Chiavassa, A., Stein, R. F., and Nordlund, Å.
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
We present the Stagger-grid, a comprehensive grid of time-dependent, 3D hydrodynamic model atmospheres for late-type stars with realistic treatment of radiative transfer, covering a wide range in stellar parameters. This grid of 3D models is intended for various applications like stellar spectroscopy, asteroseismology and the study of stellar convection. In this introductory paper, we describe the methods used for the computation of the grid and discuss the general properties of the 3D models as well as their temporal and spatial averages (<3D>). All our models were generated with the Stagger-code, using realistic input physics for the equation of state (EOS) and for continuous and line opacities. Our ~220 grid models range in Teff from 4000 to 7000K in steps of 500K, in log g from 1.5 to 5.0 in steps of 0.5 dex, and [Fe/H] from -4.0 to +0.5 in steps of 0.5 and 1.0 dex. We find a tight scaling relation between the vertical velocity and the surface entropy jump, which itself correlates with the constant entropy value of the adiabatic convection zone. The range in intensity contrast is enhanced at lower metallicity. The granule size correlates closely with the pressure scale height sampled at the depth of maximum velocity. We compare the <3D> models with widely applied 1D models, as well as with theoretical 1D hydrostatic models generated with the same EOS and opacity tables as the 3D models, in order to isolate the effects of using self-consistent and hydrodynamic modeling of convection, rather than the classical mixing length theory approach. For the first time, we are able to quantify systematically over a broad range of stellar parameters the uncertainties of 1D models arising from the simplified treatment of physics, in particular convective energy transport. In agreement with previous findings, we find that the differences can be significant, especially for metal-poor stars., Comment: Accepted for publication in A&A, 31 pages, 29 figures
- Published
- 2013
- Full Text
- View/download PDF