92 results on '"Hausrath, E."'
Search Results
2. Soil diversity at Jezero crater and Comparison to Gale crater, Mars
- Author
-
Cousin, A., Meslin, P.-Y., Forni, O., Beyssac, O., Clavé, E., Hausrath, E., Beck, P., Dehouck, E., Schröder, S., Fouchet, T., Bedford, C., Johnson, J., Pilleri, P., Lasue, J., Gasnault, O., Martin, N., Chide, B., Udry, A., Sullivan, R., Vaughan, A., Poblacion, I., Arana, G., Madariaga, J.M., Clegg, S., Maurice, S., and Wiens, R.C.
- Published
- 2025
- Full Text
- View/download PDF
3. Phosphates on Mars and Their Importance as Igneous, Aqueous, and Astrobiological Indicators
- Author
-
Hausrath, E. M., primary, Adcock, C. T., additional, Berger, J. A., additional, Cycil, L. M., additional, Kizovski, T. V., additional, McCubbin, F. M., additional, Schmidt, M. E., additional, Tu, V. M., additional, VanBommel, S. J., additional, Treiman, A. H., additional, and Clark, B. C., additional
- Published
- 2024
- Full Text
- View/download PDF
4. Astrobiological Potential of Rocks Acquired by the Perseverance Rover at a Sedimentary Fan Front in Jezero Crater, Mars.
- Author
-
Bosak, T., Shuster, D. L., Scheller, E. L., Siljeström, S., Zawaski, M. J., Mandon, L., Simon, J. I., Weiss, B. P., Stack, K. M., Mansbach, E. N., Treiman, A. H., Benison, K. C., Brown, A. J., Czaja, A. D., Farley, K. A., Hausrath, E. M., Hickman‐Lewis, K., Herd, C. D. K., Johnson, J. R., and Mayhew, L. E.
- Published
- 2024
- Full Text
- View/download PDF
5. Mineralogical Investigation of Mg‐Sulfate at the Canaima Drill Site, Gale Crater, Mars
- Author
-
Chipera, S. J., primary, Vaniman, D. T., additional, Rampe, E. B., additional, Bristow, T. F., additional, Martínez, G., additional, Tu, V. M., additional, Peretyazhko, T. S., additional, Yen, A. S., additional, Gellert, R., additional, Berger, J. A., additional, Rapin, W., additional, Morris, R. V., additional, Ming, D. W., additional, Thompson, L. M., additional, Simpson, S., additional, Achilles, C. N., additional, Tutolo, B., additional, Downs, R. T., additional, Fraeman, A. A., additional, Fischer, E., additional, Blake, D. F., additional, Treiman, A. H., additional, Morrison, S. M., additional, Thorpe, M. T., additional, Gupta, S., additional, Dietrich, W. E., additional, Downs, G., additional, Castle, N., additional, Craig, P. I., additional, Marais, D. J. Des, additional, Hazen, R. M., additional, Vasavada, A. R., additional, Hausrath, E., additional, Sarrazin, P., additional, and Grotzinger, J. P., additional
- Published
- 2023
- Full Text
- View/download PDF
6. Saponite Dissolution Experiments and Implications for Mars
- Author
-
Luu, N. C, Hausrath, E. M, Sanchez, A. M, Gainey, S, Rampe, E, Peretyazhko, T, Tschauner, O, Adcock, C, and Picard, A
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Phyllosilicates detected throughout the Noachian terrains of Mars provide ample evidence of water-rock interactions in its geologic past, and characterizing their formation would elucidate past environmental conditions on the martian surface. Previous work suggests that ferric smectite may have been deposited in the Noachian as ferroan (Fe2+) smectite and then subsequently oxidized after formation. This is further supported by the detection of trioctahedral saponite at the base of the stratigraphic section in Gale crater by CheMin and the gradual transition to dioctahedral ferric smectite up section. A better understanding of the dissolution behavior of saponites would therefore help us better interpret past water-rock interactions at Gale crater. However, smectite structures and compositions are variable and complex, and very few saponite dissolution rates exist in the literature. To further understand past water-rock interactions at Gale crater, we are reporting our results to date from dissolution experiments of Fe- and Mg- saponites under a range of conditions.
- Published
- 2020
7. Phyllosilicate Transitions in Ferromagnesian Soils: Short-Range Order Materials and Smectites Dominate Secondary Phases
- Author
-
Feldman, A. D, Hausrath, E. M, Tschauner, O, Rampe, E. B, Peretyazhko, T. S, and Azua, B
- Subjects
Space Sciences (General) - Abstract
Analyses of X-ray diffraction (XRD) patterns taken by the CheMin instrument on the Curiosity Rover in Gale crater have documented the presence of clay minerals interpreted as smectites and a suite of amorphous to short-range order materials termed X-ray amorphous materials. These X-ray amorphous materials are commonly ironrich and aluminum poor and likely some of them are weathering products rather than primary glasses due to the presence of volatiles. Outstanding questions remain regarding the chemical composition and mineral structure of these X-ray amorphous materials and the smectites present at Gale crater and what they indicate about environmental conditions during their formation. To gain a better understanding of the mineral transitions that occur within ferromagnesian parent materials, we have investigated the development of secondary clay minerals and shortrange order materials in two soil chronosequences with varying climates developing on ultramafic bedrock. Field Sites: We investigated soil weathering within two field locations, the Klamath Mountains of Northern California, and the Tablelands of Newfoundland, Canada. Both sites possess age dated or correlated recently deglaciated soils and undated but substantially older soils. In the Klamath mountains the Trinity Ultramafic Body was deglaciated roughly 15,000 years bp while in the Tablelands a moraine was dated to about 17,600 years bp. The Klamath Mountains feature a seasonally wet and dry climate while the Tablelands are wet year-round with saturated soil conditions observed during sampling and standing water observed within 3 of 4 soil pit sampling locations.
- Published
- 2020
8. Resources from Water-Rock Interactions for Future Human Exploration of Mars
- Author
-
Adcock, C. T, Hausrath, E. M, Rampe, E. B, Panduro-Allanson, R. D, and Steinberg, S. M
- Subjects
Space Sciences (General) - Abstract
One of the most exciting endeavors in modern space exploration is extended human exploration of the Moon and Mars. We have entered a new phase in the human venture where we seek to expand our "...presence deeper into space and to the Moon for sustainable long-term exploration and utilization". With this endeavor come new challenges. Among them is the requirement for In Situ Resource Utilization (ISRU) methods to supplement or replace materials transported from Earth. The energy required to leave Earth's gravity well is immense, as is well illustrated by the nearly 3000 metric ton Saturn V required to deliver a payload of less than 50 metric tons to the Moon during the Apollo era. Much of this mass is propellant. Launch vehicles from Earth into space are generally 85 to 95% propellant (oxidizer + fuel) by mass. Potential ascent vehicles from Mars would also need to be approximately 80% propellant by mass to return to Earth. ISRU of fuel reactants could exchange delivered fuel mass directly for payload mass on the order of several metric tons. Devices like MOXIE are being designed to address the oxidizer component. However, 40% of the propellant mass in an ascent vehicle is the fuel reactant, and ISRU of this component has not been addressed for Mars or the Moon. Toward addressing this need, we have begun to develop and optimize methods to generate and recover fuel components, including H2, from Lunar and Martian relevant materials as potential in situ resources for future extended human missions. Hydrogen is an ideal resource to target. Not only can H2 be used directly as part of a propellant, it can also be used as a component in other fuels, such as methane. It is useful agriculturally for fixing nitrogen and can be oxidized to produce heat and water.
- Published
- 2020
9. Samples Collected From the Floor of Jezero Crater With the Mars 2020 Perseverance Rover
- Author
-
Simon, J. I., primary, Hickman‐Lewis, K., additional, Cohen, B. A., additional, Mayhew, L. E., additional, Shuster, D. L., additional, Debaille, V., additional, Hausrath, E. M., additional, Weiss, B. P., additional, Bosak, T., additional, Zorzano, M.‐P., additional, Amundsen, H. E. F., additional, Beegle, L. W., additional, Bell, J. F., additional, Benison, K. C., additional, Berger, E. L., additional, Beyssac, O., additional, Brown, A. J., additional, Calef, F., additional, Casademont, T. M., additional, Clark, B., additional, Clavé, E., additional, Crumpler, L., additional, Czaja, A. D., additional, Fairén, A. G., additional, Farley, K. A., additional, Flannery, D. T., additional, Fornaro, T., additional, Forni, O., additional, Gómez, F., additional, Goreva, Y., additional, Gorin, A., additional, Hand, K. P., additional, Hamran, S.‐E., additional, Henneke, J., additional, Herd, C. D. K., additional, Horgan, B. H. N., additional, Johnson, J. R., additional, Joseph, J., additional, Kronyak, R. E., additional, Madariaga, J. M., additional, Maki, J. N., additional, Mandon, L., additional, McCubbin, F. M., additional, McLennan, S. M., additional, Moeller, R. C., additional, Newman, C. E., additional, Núñez, J. I., additional, Pascuzzo, A. C., additional, Pedersen, D. A., additional, Poggiali, G., additional, Pinet, P., additional, Quantin‐Nataf, C., additional, Rice, M., additional, Rice, J. W., additional, Royer, C., additional, Schmidt, M., additional, Sephton, M., additional, Sharma, S., additional, Siljeström, S., additional, Stack, K. M., additional, Steele, A., additional, Sun, V. Z., additional, Udry, A., additional, VanBommel, S., additional, Wadhwa, M., additional, Wiens, R. C., additional, Williams, A. J., additional, and Williford, K. H., additional
- Published
- 2023
- Full Text
- View/download PDF
10. Samples Collected from the Floor of Jezero Crater with the Mars 2020 Perseverance Rover
- Author
-
Simon, J. I., Hickman-Lewis, K., Cohen, B. A., Mayhew, L.E., Shuster, D.L., Debaille, V., Hausrath, E. M., Weiss, B.P., Bosak, T., Zorzano, M.-P., Amundsen, H. E. F., Beegle, L.W., Bell III, J.F., Benison, K. C., Berger, E. L., Beyssac, O., Brown, A.J., Calef, F., Casademont, T. M., Clark, B., Clavé, E., Crumpler, L., Czaja, A. D., Fairén, A. G., Farley, K. A., Flannery, D. T., Fornaro, T., Forni, O., Gómez, F., Goreva, Y., Gorin, A., Hand, K. P., Hamran, S.-E., Henneke, J., Herd, C. D. K., Horgan, B. H. N., Johnson, J. R., Joseph, J., Kronyak, R. E., Madariaga, J. M., Maki, J. N., Mandon, L., McCubbin, F. M., McLennan, S. M., Moeller, R. C., Newman, C. E., Núñez, J. I., Pascuzzo, A. C., Pedersen, D. A., Poggiali, G., Pinet, P., Quantin-Nataf, C., Rice, M., Rice Jr., J. W., Royer, C., Schmidt, M., Sephton, M., Sharma, S., Siljeström, S., Stack, K. M., Steele, A., Sun, V. Z., Udry, A., VanBommel, S., Wadhwa, M., Wiens, R. C., Williams, A. J., Williford, K. H., Simon, J. I., Hickman-Lewis, K., Cohen, B. A., Mayhew, L.E., Shuster, D.L., Debaille, V., Hausrath, E. M., Weiss, B.P., Bosak, T., Zorzano, M.-P., Amundsen, H. E. F., Beegle, L.W., Bell III, J.F., Benison, K. C., Berger, E. L., Beyssac, O., Brown, A.J., Calef, F., Casademont, T. M., Clark, B., Clavé, E., Crumpler, L., Czaja, A. D., Fairén, A. G., Farley, K. A., Flannery, D. T., Fornaro, T., Forni, O., Gómez, F., Goreva, Y., Gorin, A., Hand, K. P., Hamran, S.-E., Henneke, J., Herd, C. D. K., Horgan, B. H. N., Johnson, J. R., Joseph, J., Kronyak, R. E., Madariaga, J. M., Maki, J. N., Mandon, L., McCubbin, F. M., McLennan, S. M., Moeller, R. C., Newman, C. E., Núñez, J. I., Pascuzzo, A. C., Pedersen, D. A., Poggiali, G., Pinet, P., Quantin-Nataf, C., Rice, M., Rice Jr., J. W., Royer, C., Schmidt, M., Sephton, M., Sharma, S., Siljeström, S., Stack, K. M., Steele, A., Sun, V. Z., Udry, A., VanBommel, S., Wadhwa, M., Wiens, R. C., Williams, A. J., and Williford, K. H.
- Abstract
The first samples collected by the Mars 2020 mission represent units exposed on the Jezero Crater floor, from the potentially oldest Séítah formation outcrops to the potentially youngest rocks of the heavily cratered Máaz formation. Surface investigations reveal landscape-to-microscopic textural, mineralogical, and geochemical evidence for igneous lithologies, some possibly emplaced as lava flows. The samples contain major rock-forming minerals such as pyroxene, olivine, and feldspar, accessory minerals including oxides and phosphates, and evidence for various degrees of aqueous activity in the form of water-soluble salt, carbonate, sulfate, iron oxide, and iron silicate minerals. Following sample return, the compositions and ages of these variably altered igneous rocks are expected to reveal the geophysical and geochemical nature of the planet’s interior at the time of emplacement, characterize martian magmatism, and place timing constraints on geologic processes, both in Jezero Crater and more widely on Mars. Petrographic observations and geochemical analyses, coupled with geochronology of secondary minerals, can also reveal the timing of aqueous activity as well as constrain the chemical and physical conditions of the environments in which these minerals precipitated, and the nature and composition of organic compounds preserved in association with these phases. Returned samples from these units will help constrain the crater chronology of Mars and the global evolution of the planet’s interior, for understanding the processes that formed Jezero Crater floor units, and for constraining the style and duration of aqueous activity in Jezero Crater, past habitability, and cycling of organic elements in Jezero Crater.
- Published
- 2023
11. Supercam first shots: dust composition and variability
- Author
-
Lasue, J., Meslin, P.Y., Cousin, A., Forni, O., Anderson, R., Beck, P., Beyssac, O., Brown, A., Clegg, S.M., Dehouck, E., Frydenvang, J., Gasda, P., Gasnault, O., Hausrath, E., Pilleri, P., Rapin, W., Wiens, R.C., Team, The Supercam, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), United States Geological Survey (USGS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Bioinformatique et BioPhysique [IMPMC] (IMPMC_BIBIP), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Theoretical Division [LANL], Los Alamos National Laboratory (LANL), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Department of Computer Science [Purdue], Purdue University [West Lafayette], and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience
- Published
- 2023
12. Saponite Dissolution Experiments and Implications for Mars
- Author
-
Luu, N. C, Hausrath, E. M, Sanchez, A. M, Gainey, S, Rampe, E, Peretyazhko, T, Schauner, O, Lanzirotti, A, Adcock, C, and Leftwich, K
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Recent work suggests that the mineralogical sequence of the Murray formation at Gale crater may have resulted from diagenetic alteration after sedimentation, or deposition in a stratified lake with oxic surface and anoxic bottom waters. Fe-containing clay minerals are common both at Gale crater, and throughout the Noachian-aged terrains on Mars. These clay minerals are primarily ferric (Fe3+), and previous work suggests that these ferric clay minerals may result from alteration of ferrous (Fe2+) smectites that were oxidized after deposition. The detection of trioctahedral smectites at Gale crater by CheMin suggests Fe2+ smectite was also deposited during the early Hesperian. However, due to their sensitivity to oxygen, Fe2+ smectites are difficult to analyze on Earth and very few saponite dissolution rates exist in the literature. To the best of our knowledge, no experiments have measured the dissolution rates of ferrous saponites under oxidizing and reducing conditions. In order to better understand the characteristics of water-rock interaction at Gale crater, particularly the oxidation state, we report our results to date on ongoing syntheses of ferrous and magnesium saponites and dissolution experiments of natural saponite under ambient conditions. Future experiments will include the dissolution of synthetic ferric, ferrous, and magnesium saponites under oxidizing and anoxic conditions at a range of pH values.
- Published
- 2019
13. X-ray Amorphous and Poorly Crystalline Fe-Containing Phases in Terrestrial Field Environments and Implications for Materials Detected on Mars
- Author
-
Feldman, A. D, Hausrath, E. M, Tschauner, O, Burnley, P, Lanzirotti, A, Rampe, Elizabeth B, Peretyazhko, Tanya, Calvin, W, Azua, B, and Adcock, C. T
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Recent analyses of X-ray diffraction (XRD) data from the CheMin instrument using the FULLPAT program have documented the presence of X-ray amorphous materials at multiple sites within Gale Crater, Mars. These materials are believed to be to be iron-rich based on chemical data, and at least some of them are believed to be weathering products based on volatile contents. However, the characteristics of these proposed Fe-rich weathering products remain poorly understood. To better understand these X-ray amorphous materials on Mars, we are 1) examining weathering products formed on Fe-rich parent material in terrestrial soils across a range of climatic conditions, and 2) performing burial experiments of Fe- and Mg- rich olivine in these soils. We describe each of these approaches below.
- Published
- 2019
14. Interpreting Aqueous Alteration in the Murray Formation Using Reactive Transport Modeling
- Author
-
Hausrath, E. M, Ming, D. W, Rampe, E. B, and Peretyazhko, T
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Abundant evidence for liquid water exists at Gale crater, Mars. However, the characteristics of past water remain an area of active research. The first exposures of the Murray formation in Gale crater, Mars (Fig. 1) were studied with four samples analyzed using CheMin: Buckskin, Telegraph Peak, Mojave, and Confidence Hills. Analyses indicate differences in mineralogy and chemistry between the samples which have been attributed to changes in pH and oxidation state of depositional and diagenetic environments. Recent work also suggests that hydrothermal fluids may have been present based on the presence of Se, Zn, Pb, and other elements.
- Published
- 2019
15. An Examination of Soil Crusts on the Floor of Jezero Crater, Mars.
- Author
-
Hausrath, E. M., Adcock, C. T., Bechtold, A., Beck, P., Benison, K., Brown, A., Cardarelli, E. L., Carman, N. A., Chide, B., Christian, J., Clark, B. C., Cloutis, E., Cousin, A., Forni, O., Gabriel, T. S. J., Gasnault, O., Golombek, M., Gómez, F., Hecht, M. H., and Henley, T. L. J.
- Subjects
SOIL crusting ,MARS (Planet) ,LASER-induced breakdown spectroscopy ,HUMIDITY ,SOIL cement ,IMPACT craters ,DIAMOND wheels - Abstract
Martian soils are critically important for understanding the history of Mars, past potentially habitable environments, returned samples, and future human exploration. This study examines soil crusts on the floor of Jezero crater encountered during initial phases of the Mars 2020 mission. Soil surface crusts have been observed on Mars at other locations, starting with the two Viking Lander missions. Rover observations show that soil crusts are also common across the floor of Jezero crater, revealed in 45 of 101 locations where rover wheels disturbed the soil surface, two out of seven helicopter flights that crossed the wheel tracks, and four of eight abrasion/drilling sites. Most soils measured by the SuperCam laser‐induced breakdown spectroscopy (LIBS) instrument show high hydrogen content at the surface, and fine‐grained soils also show a visible/near infrared (VISIR) 1.9 μm H2O absorption feature. The Planetary Instrument for X‐ray Lithochemistry (PIXL) and SuperCam observations suggest the presence of salts at the surface of rocks and soils. The correlation of S and Cl contents with H contents in SuperCam LIBS measurements suggests that the salts present are likely hydrated. On the "Naltsos" target, magnesium and sulfur are correlated in PIXL measurements, and Mg is tightly correlated with H at the SuperCam points, suggesting hydrated Mg‐sulfates. Mars Environmental Dynamics Analyzer (MEDA) observations indicate possible frost events and potential changes in the hydration of Mg‐sulfate salts. Jezero crater soil crusts may therefore form by salts that are hydrated by changes in relative humidity and frost events, cementing the soil surface together. Plain Language Summary: Martian soils are important for understanding the history of Mars as well as future sample return and human exploration. Soil crusts in Jezero crater, which are also broadly found across Mars, can be observed when they are disturbed, such as by rover wheels or coring/abrasion activities. Jezero crater soil crusts are examined using images from the Perseverance and Ingenuity cameras, as well as using data from the SuperCam, PIXL, Mastcam‐Z, and MEDA instruments. Soil crusts are common in Jezero crater and show characteristics including hydration at the surface and the presence of salts that might contain water. MEDA instrument measurements indicate that changes in the hydration state of salts may result during conditions measured at Jezero crater. Jezero crater soil crusts may therefore form by salts that are present on the surface that can add or lose water during changes in relative atmospheric humidity and frost events. These changes in the amount of water present in the salts may result in soil surfaces that are cemented together, forming the crusts observed at Jezero crater. A better understanding of Mars soil crusts will help in the understanding of samples returned to Earth from Mars, as well as future human exploration. Key Points: Soil crusts are prevalent across the Jezero crater floorSoil surfaces are largely hydratedSoil crusts likely contain salts and may form during changes in atmospheric relative humidity at the surface [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
16. Seeking Signs of Life on Mars: the Importance of Sedimentary Suites as Part of a Mars Sample Return Campaign
- Author
-
Mangold, N, McLennan, S. M, Czaja, A. D, Ori, G. G, Tosca, N. J, Altieri, F, Amelin, Y, Ammannito, E, Anand, M, Beaty, D. W, Benning, L. G, Bishop, J. L, Borg, L. E, Boucher, D, Brucato, J. R, Busemann, H, Campbell, K. A, Carrier, B. L, Debaille, V, Des Marais, D. J, Dixon, M, Ehlmann, B. L, Farmer, J. D, Fernandez-Remolar, D. C, Fogarty, J, Glavin, D. P, Goreva, Y. S, Grady, M. M, Hallis, L. J, Harrington, A. D, Hausrath, E. M, Herd, C. D. K, Horgan, B, Humayun, M, Kleine, T, Kleinhenz, J, Mackelprang, R, Mayhew, L. E, McCubbin, F. M, McCoy, J. T, McSween, H. Y, Moser, D. E, Moynier, F, Mustard, J. F, Niles, P. B, Raulin, F, Rettberg, P, Rucker, M. A, Schmitz, N, Sefton-Nash, E, Sephton, M. A, Shaheen, R, Shuster, D. L, Siljeström, S, Smith, C. L, Spry, J. A, Steele, A, Swindle, T. D, ten Kate, I. L, Usui, T, Van Kranendonk, M. J, Wadhwa, M, Weiss, B. P, Werner, S. C, Westall, F, Wheeler, R. M, Zipfel, J, and Zorzano, M. P
- Subjects
Space Sciences (General) - Abstract
Seeking the signs of life on Mars is often considered the "first among equal" objectives for any potential Mars Sample Return (MSR) campaign. Among the geological settings considered to have the greatest potential for recording evidence of ancient life or its pre-biotic chemistry on Mars are lacustrine (and marine, if ever present) sedimentary depositional environments. This potential, and the possibility of returning samples that could meaningfully address this objective, have been greatly enhanced by investigations of an ancient redox stratified lake system in Gale crater by the Curiosity rover.
- Published
- 2018
17. Seeking Signs of Life on Mars: A Strategy for Selecting and Analyzing Returned Samples from Hydrothermal Deposits
- Author
-
Campbell, K. A, Farmer, J. D, Van Kranendonk, M. J, Fernandez-Remolar, D. C, Czaja, A. D, Altieri, F, Amelin, Y, Ammannito, E, Anand, M, Beaty, D. W, Benning, L. G, Bishop, J. L, Borg, L. E, Boucher, D, Brucato, J. R, Busemann, J. R, Carrier, B. L, Debaille, V, Des Marais, D. J, Dixon, M, Ehlmann, B. L, Fogarty, James T, Glavin, D. P, Goreva, Y. S, Grady, M. M, Hallis, L. J, Harrington, A. D, Hausrath, E. M, Herd, C. D. K, Horgan, B, Humayun, M, Kleine, T, Kleinhenz, J, Mangold, N, Mackelprang, R, Mayhew, L. E, McCubbin, F. M, Mccoy, Teresa R, McLennan, S. M, McSween, H. Y, Moser, D. E, Moynier, F, Mustard, J. F, Niles, P. B, Ori, G. G, Raulin, F, Rettberg, P, Rucker, Michelle A, Schmitz, N, Sefton-Nash, E, Sephton, M. A, Shaheen, R, Shuster, D. L, Siljestrom, S, Smith, C. L, Spry, J. A, Steele, A, Swindle, T. D, ten Kate, I. L, Tosca, N. J, Usui, T, Wadhwa, M, Weiss, B. P, Werner, S. C, Westall, F, Wheeler, R. M, Zipfel, J, and Zorzano, M. P
- Subjects
Space Sciences (General) - Abstract
Highly promising locales for biosignature prospecting on Mars are ancient hydrothermal deposits, formed by the interaction of surface water with heat from volcanism or impacts. On Earth, they occur throughout the geological record (to at least approx. 3.5 Ga), preserving robust mineralogical, textural and compositional evidence of thermophilic microbial activity. Hydrothermal systems were likely present early in Mars' history, including at two of the three finalist candidate landing sites for M2020, Columbia Hills and NE Syrtis Major. Hydrothermal environments on Earth's surface are varied, constituting subaerial hot spring aprons, mounds and fumaroles; shallow to deep-sea hydrothermal vents (black and white smokers); and vent mounds and hot-spring discharges in lacustrine and fluvial settings. Biological information can be preserved by rapid, spring-sourced mineral precipitation, but also could be altered or destroyed by postdepositional events. Thus, field observations need to be followed by detailed laboratory analysis to verify potential biosignatures. See Attachment
- Published
- 2018
18. Dissolution Rates of Allophane, FE-Containing Allophane, and Hisingerite and Implications for Gale Crater, Mars
- Author
-
Ralston, S. J, Hausrath, E. M, Tschauner, O, Rampe, E. B, and Christoffersen, R
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Investigations with the CheMin Xray Diffractometer (XRD) onboard the Curiosity rover in Gale Crater demonstrate that all rock and soil samples measured to date contain approximately 15-70 weight percentage X-ray amorphous materials. The diffuse scattering hump from the X-ray amorphous materials in CheMin XRD patterns can be fit with a combination of allophane, ferrihydrite, and rhyolitic and basaltic glass. Because of the iron-rich nature of Mars' surface, Fe-rich poorly-crystalline phases, such as hisingerite, may be present in addition to allophane.
- Published
- 2018
19. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars
- Author
-
Farley, K. A., primary, Stack, K. M., additional, Shuster, D. L., additional, Horgan, B. H. N., additional, Hurowitz, J. A., additional, Tarnas, J. D., additional, Simon, J. I., additional, Sun, V. Z., additional, Scheller, E. L., additional, Moore, K. R., additional, McLennan, S. M., additional, Vasconcelos, P. M., additional, Wiens, R. C., additional, Treiman, A. H., additional, Mayhew, L. E., additional, Beyssac, O., additional, Kizovski, T. V., additional, Tosca, N. J., additional, Williford, K. H., additional, Crumpler, L. S., additional, Beegle, L. W., additional, Bell, J. F., additional, Ehlmann, B. L., additional, Liu, Y., additional, Maki, J. N., additional, Schmidt, M. E., additional, Allwood, A. C., additional, Amundsen, H. E. F., additional, Bhartia, R., additional, Bosak, T., additional, Brown, A. J., additional, Clark, B. C., additional, Cousin, A., additional, Forni, O., additional, Gabriel, T. S. J., additional, Goreva, Y., additional, Gupta, S., additional, Hamran, S.-E., additional, Herd, C. D. K., additional, Hickman-Lewis, K., additional, Johnson, J. R., additional, Kah, L. C., additional, Kelemen, P. B., additional, Kinch, K. B., additional, Mandon, L., additional, Mangold, N., additional, Quantin-Nataf, C., additional, Rice, M. S., additional, Russell, P. S., additional, Sharma, S., additional, Siljeström, S., additional, Steele, A., additional, Sullivan, R., additional, Wadhwa, M., additional, Weiss, B. P., additional, Williams, A. J., additional, Wogsland, B. V., additional, Willis, P. A., additional, Acosta-Maeda, T. A., additional, Beck, P., additional, Benzerara, K., additional, Bernard, S., additional, Burton, A. S., additional, Cardarelli, E. L., additional, Chide, B., additional, Clavé, E., additional, Cloutis, E. A., additional, Cohen, B. A., additional, Czaja, A. D., additional, Debaille, V., additional, Dehouck, E., additional, Fairén, A. G., additional, Flannery, D. T., additional, Fleron, S. Z., additional, Fouchet, T., additional, Frydenvang, J., additional, Garczynski, B. J., additional, Gibbons, E. F., additional, Hausrath, E. M., additional, Hayes, A. G., additional, Henneke, J., additional, Jørgensen, J. L., additional, Kelly, E. M., additional, Lasue, J., additional, Le Mouélic, S., additional, Madariaga, J. M., additional, Maurice, S., additional, Merusi, M., additional, Meslin, P.-Y., additional, Milkovich, S. M., additional, Million, C. C., additional, Moeller, R. C., additional, Núñez, J. I., additional, Ollila, A. M., additional, Paar, G., additional, Paige, D. A., additional, Pedersen, D. A. K., additional, Pilleri, P., additional, Pilorget, C., additional, Pinet, P. C., additional, Rice, J. W., additional, Royer, C., additional, Sautter, V., additional, Schulte, M., additional, Sephton, M. A., additional, Sharma, S. K., additional, Sholes, S. F., additional, Spanovich, N., additional, St. Clair, M., additional, Tate, C. D., additional, Uckert, K., additional, VanBommel, S. J., additional, Yanchilina, A. G., additional, and Zorzano, M.-P., additional
- Published
- 2022
- Full Text
- View/download PDF
20. Strategies for Investigating Early Mars Using Returned Samples
- Author
-
Carrier, B. L, Beaty, D. W, McSween, H. Y, Czaja, A. D, Goreva, Y. S, Hausrath, E. M, Herd, C. D. K, Humayun, M, McCubbin, F. M, McLennan, S. M, Pratt, L. M, Sephton, M. A, Steele, A, and Weiss, B. P
- Subjects
Lunar And Planetary Science And Exploration - Abstract
The 2011 Visions & Voyages Planeary Science Decadal Survey identified making significant progress toward the return of samples from Mars as the highest priority goal for flagship missions in next decade. Numerous scientific objectives have been identified that could be advanced through the potential return and analysis of martian rock, regolith, and atmospheric samples. The analysis of returned martian samples would be particularly valuable in in-creasing our understanding of Early Mars. There are many outstanding gaps in our knowledge about Early Mars in areas such as potential astrobiology, geochronology, planetary evolution (including the age, context, and processes of accretion, differentiation, magmatic, and magnetic history), the history of water at the martian surface, and the origin and evolution of the martian atmosphere. Here we will discuss scientific objectives that could be significantly advanced by Mars sample return.
- Published
- 2017
21. Using Reactive Transport Modeling to Understand Formation of the Stimson Sedimentary Unit and Altered Fracture Zones at Gale Crater, Mars
- Author
-
Hausrath, E. M, Ming, D. W, Peretyazhko, T, and Rampe, E. B
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Water flowing through sediments at Gale Crater, Mars created environments that were likely habitable, and sampled basin-wide hydrological systems. However, many questions remain about these environments and the fluids that generated them. Measurements taken by the Mars Science Laboratory Curiosity of multiple fracture zones can help constrain the environments that formed them because they can be compared to nearby associated parent material (Figure 1). For example, measurements of altered fracture zones from the target Greenhorn in the Stimson sandstone can be compared to parent material measured in the nearby Big Sky target, allowing constraints to be placed on the alteration conditions that formed the Greenhorn target from the Big Sky target. Similarly, CheMin measurements of the powdered < 150 micron fraction from the drillhole at Big Sky and sample from the Rocknest eolian deposit indicate that the mineralogies are strikingly similar. The main differences are the presence of olivine in the Rocknest eolian deposit, which is absent in the Big Sky target, and the presence of far more abundant Fe oxides in the Big Sky target. Quantifying the changes between the Big Sky target and the Rocknest eolian deposit can therefore help us understand the diagenetic changes that occurred forming the Stimson sedimentary unit. In order to interpret these aqueous changes, we performed reactive transport modeling of 1) the formation of the Big Sky target from a Rocknest eolian deposit-like parent material, and 2) the formation of the Greenhorn target from the Big Sky target. This work allows us to test the relationships between the targets and the characteristics of the aqueous conditions that formed the Greenhorn target from the Big Sky target, and the Big Sky target from a Rocknest eolian deposit-like parent material.
- Published
- 2017
22. Contamination Knowledge Strategy for the Mars 2020 Sample-Collecting Rover
- Author
-
Farley, K. A, Williford, K, Beaty, D W, McSween, H. Y, Czaja, A. D, Goreva, Y. S, Hausrath, E, Herd, C. D. K, Humayun, M, McCubbin, F. M, McLennan, S. M, Pratt, L. M, Sephton, M. A, Steele, A, Weiss, B. P, and Hays, L. E
- Subjects
Lunar And Planetary Science And Exploration - Abstract
The Mars 2020 rover will collect carefully selected samples of rock and regolith as it explores a potentially habitable ancient environment on Mars. Using the drill, rock cores and regolith will be collected directly into ultraclean sample tubes that are hermetically sealed and, later, deposited on the surface of Mars for potential return to Earth by a subsequent mission. Thorough characterization of any contamination of the samples at the time of their analysis will be essential for achieving the objectives of Mars returned sample science (RSS). We refer to this characterization as contamination knowledge (CK), which is distinct from contamination control (CC). CC is the set of activities that limits the input of contaminating species into a sample, and is specified by requirement thresholds. CK consists of identifying and characterizing both potential and realized contamination to better inform scientific investigations of the returned samples. Based on lessons learned by other sample return missions with contamination-sensitive scientific objectives, CC needs to be "owned" by engineering, but CK needs to be "owned" by science. Contamination present at the time of sample analysis will reflect the sum of contributions from all contamination vectors up to that point in time. For this reason, understanding the integrated history of contamination may be crucial for deciphering potentially confusing contaminant-sensitive observations. Thus, CK collected during the Mars sample return (MSR) campaign must cover the time period from the initiation of hardware construction through analysis of returned samples in labs on Earth. Because of the disciplinary breadth of the scientific objectives of MSR, CK must include a broad spectrum of contaminants covering inorganic (i.e., major, minor, and trace elements), organic, and biological molecules and materials.
- Published
- 2017
23. Fe-Containing Allophane and Hisingerite Dissolution and Implications for Gale Crater, Mars
- Author
-
Ralston, S. J, Hausrath, E. M, Tschauner, O, Rampe, E. B, Clark-Hogancamp, J. V, and Christoffersen, R
- Subjects
Space Sciences (General) - Abstract
The mass-normalized dissolution rates measured in this study demonstrate that hisingerite and Fe-substituted allophane dissolve rapidly, much faster than crystalline phyllosilicates such as nontronite and kaolinite that have similar compositions. In addition, hisingerite dissolves more rapidly than allophane. Future work will focus on measuring dissolution rates at other pH values, so that dissolution rate laws for allophane and hisingerite can be derived. Results will be used to interpret data from Gale Crater. These initial experiments suggest that, if the liquid water present in Gale Crater was highly acidic, it was likely present for only a short time, allowing some amorphous soil-material similar to allophane to persist. Further experiments will enable us to constrain the timescales over which liquid water was present in Gale Crater and provide insight into its pH. This information is essential to assessing the potential habitability of ancient Mars.
- Published
- 2017
24. Comparison of dust between Gale and Jezero
- Author
-
Lasue, J., Meslin, P. Y., Cousin, A., Forni, O., Anderson, R., Beck, P., Clegg, S. M., Dehouck, E., Frydenvang, J., Gasda, P., Olivier Gasnault, Hausrath, E., Le Mouélic, S., Maurice, S., Pilleri, P., William Rapin, Wiens, R. C., Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), US Geological Survey [Flagstaff], United States Geological Survey [Reston] (USGS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Los Alamos National Laboratory (LANL), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), University of Copenhagen = Københavns Universitet (UCPH), University of Nevada [Las Vegas] (WGU Nevada), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Lunar and Planetary Institute, and Gasnault, Olivier
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience
- Published
- 2022
25. Soil diversity at mars: comparison of dataset from gale and jezero craters
- Author
-
Cousin, A, Meslin, P, Hausrath, E, Cardarelli, E, Lasue, J, Forni, O, Beyssac, O, Kah, L, Mandon, L, Gasnault, Olivier, Dehouck, E, Poulet, F, Quantin-Nataf, C, Pilleri, P, Gasda, P, Schröder, S, Wiens, R, Maurice, S, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), University of Nevada [Las Vegas] (WGU Nevada), NASA, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), The University of Tennessee [Knoxville], Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Los Alamos National Laboratory (LANL), Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience
- Published
- 2022
26. HYDROGEN IN ROCKS FROM JEZERO CRATER INVESTIGATED WITH SUPERCAM LIBS
- Author
-
Pierre Beck, Forni, O., Y Meslin, P., Benzerara, K., Beyssac, O., Lasue, J., Quantin-Nataf, C., Poulet, F., Royer, C., Mandon, L., William Rapin, Clavé, E., Cousin, A., Schröder, S., Le Mouélic, S., Olivier Gasnault, Ollila, A. M., Hausrath, E., Maurice, S., Wiens, R. C., Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Centre National d’Étude Spatiale, and Lunar and Planetary Institute
- Subjects
LIBS ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience
- Published
- 2022
27. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars
- Author
-
Farley, K A, Stack, K M, Shuster, D L, Horgan, B H N, Hurowitz, J A, Tarnas, J D, Simon, J I, Sun, V Z, Scheller, E L, Moore, K R, McLennan, S M, Vasconcelos, P M, Wiens, R C, Treiman, A H, Mayhew, L E, Beyssac, O, Kizovski, T V, Tosca, N J, Williford, K H, Crumpler, L S, Beegle, L W, Bell, J F, Ehlmann, B L, Liu, Y, Maki, J N, Schmidt, M E, Allwood, A C, Amundsen, H E F, Bhartia, R, Bosak, T, Brown, A J, Clark, B C, Cousin, A, Forni, O, Gabriel, T S J, Goreva, Y, Gupta, S, Hamran, S-E, Herd, C D K, Hickman-Lewis, K, Johnson, J R, Kah, L C, Kelemen, P B, Kinch, K B, Mandon, L, Mangold, N, Quantin-Nataf, C, Rice, M S, Russell, P S, Sharma, S K, Siljeström, S, Steele, A, Sullivan, R, Wadhwa, M, Weiss, B P, Williams, A J, Wogsland, B V, Willis, P A, Acosta-Maeda, T A, Beck, P, Benzerara, K, Bernard, S, Burton, A S, Cardarelli, E L, Chide, B, Clavé, E, Cloutis, E A, Cohen, B A, Czaja, A D, Debaille, V, Dehouck, E, Fairén, A G, Flannery, D T, Fleron, S Z, Fouchet, T, Frydenvang, J, Garczynski, B J, Gibbons, E F, Hausrath, E M, Hayes, A G, Henneke, J, Jørgensen, J L, Kelly, E M, Lasue, J, Le Mouélic, S, Madariaga, J M, Maurice, S, Merusi, M, Meslin, P-Y, Milkovich, S M, Million, C C, Moeller, R C, Núñez, J I, Ollila, A M, Paar, G, Paige, D A, Pedersen, D A K, Pilleri, P, Pilorget, C, Pinet, P C, Rice, J W, Royer, C, Sautter, V, Schulte, M, Sephton, M A, Sholes, S F, Spanovich, N, St Clair, M, Tate, C D, Uckert, K, VanBommel, S J, Yanchilina, A G, Zorzano, M-P, Farley, K A, Stack, K M, Shuster, D L, Horgan, B H N, Hurowitz, J A, Tarnas, J D, Simon, J I, Sun, V Z, Scheller, E L, Moore, K R, McLennan, S M, Vasconcelos, P M, Wiens, R C, Treiman, A H, Mayhew, L E, Beyssac, O, Kizovski, T V, Tosca, N J, Williford, K H, Crumpler, L S, Beegle, L W, Bell, J F, Ehlmann, B L, Liu, Y, Maki, J N, Schmidt, M E, Allwood, A C, Amundsen, H E F, Bhartia, R, Bosak, T, Brown, A J, Clark, B C, Cousin, A, Forni, O, Gabriel, T S J, Goreva, Y, Gupta, S, Hamran, S-E, Herd, C D K, Hickman-Lewis, K, Johnson, J R, Kah, L C, Kelemen, P B, Kinch, K B, Mandon, L, Mangold, N, Quantin-Nataf, C, Rice, M S, Russell, P S, Sharma, S K, Siljeström, S, Steele, A, Sullivan, R, Wadhwa, M, Weiss, B P, Williams, A J, Wogsland, B V, Willis, P A, Acosta-Maeda, T A, Beck, P, Benzerara, K, Bernard, S, Burton, A S, Cardarelli, E L, Chide, B, Clavé, E, Cloutis, E A, Cohen, B A, Czaja, A D, Debaille, V, Dehouck, E, Fairén, A G, Flannery, D T, Fleron, S Z, Fouchet, T, Frydenvang, J, Garczynski, B J, Gibbons, E F, Hausrath, E M, Hayes, A G, Henneke, J, Jørgensen, J L, Kelly, E M, Lasue, J, Le Mouélic, S, Madariaga, J M, Maurice, S, Merusi, M, Meslin, P-Y, Milkovich, S M, Million, C C, Moeller, R C, Núñez, J I, Ollila, A M, Paar, G, Paige, D A, Pedersen, D A K, Pilleri, P, Pilorget, C, Pinet, P C, Rice, J W, Royer, C, Sautter, V, Schulte, M, Sephton, M A, Sholes, S F, Spanovich, N, St Clair, M, Tate, C D, Uckert, K, VanBommel, S J, Yanchilina, A G, and Zorzano, M-P
- Abstract
The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater’s sedimentary delta, finding the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Séítah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Fe-Mg carbonates along grain boundaries indicate reactions with CO2-rich water, under water-poor conditions. Overlying Séítah is a unit informally named Máaz, which we interpret as lava flows or the chemical complement to Séítah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks were stored aboard Perseverance for potential return to Earth.
- Published
- 2022
28. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars
- Author
-
Farley, K. A., Stack, K. M., Shuster, D. L., Horgan, B. H. N., Hurowitz, J. A., Tarnas, J. D., Simon, J. I., Sun, V. Z., Scheller, E. L., Moore, K. R., McLennan, S. M., Vasconcelos, P. M., Wiens, R. C., Treiman, A. H., Mayhew, L. E., Beyssac, O., Kizovski, T. V., Tosca, N. J., Williford, K. H., Crumpler, L. S., Beegle, L. W., Bell, J. F., Ehlmann, B. L., Liu, Y., Maki, J. N., Schmidt, M. E., Allwood, A. C., Amundsen, H. E. F., Bhartia, R., Bosak, T., Brown, A. J., Clark, B. C., Cousin, A., Forni, O., Gabriel, T. S. J., Goreva, Y., Gupta, S., Hamran, S.-E., Herd, C. D. K., Hickman-Lewis, K., Johnson, J. R., Kah, L. C., Kelemen, P. B., Kinch, K. B., Mandon, L., Mangold, N., Quantin-Nataf, C., Rice, M. S., Russell, P. S., Sharma, S., Siljeström, S., Steele, A., Sullivan, R., Wadhwa, M., Weiss, B. P., Williams, A. J., Wogsland, B. V., Willis, P. A., Acosta-Maeda, T. A., Beck, P., Benzerara, K., Bernard, S., Burton, A. S., Cardarelli, E. L., Chide, B., Clavé, E., Cloutis, E. A., Cohen, B. A., Czaja, A. D., Debaille, V., Dehouck, E., Fairén, A. G., Flannery, D. T., Fleron, S. Z., Fouchet, T., Frydenvang, J., Garczynski, B. J., Gibbons, E. F., Hausrath, E. M., Hayes, A. G., Henneke, J., Jørgensen, J. L., Kelly, E. M., Lasue, J., Le Mouélic, S., Madariaga, J. M., Maurice, S., Merusi, M., Meslin, P.-Y., Milkovich, S. M., Million, C. C., Moeller, R. C., Nuñez, J. I., Ollila, A. M., Paar, G., Paige, D. A., Pedersen, D. A. K., Pilleri, P., Pilorget, C., Pinet, P. C., Rice, J. W., Royer, C., Sautter, V., Schulte, M., Sephton, M. A., Sharma, S. K., Sholes, S. F., Spanovich, N., Clair, M. St., Tate, C. D., Uckert, K., VanBommel, S. J., Yanchilina, A. G., Zorzano, M.-P., Farley, K. A., Stack, K. M., Shuster, D. L., Horgan, B. H. N., Hurowitz, J. A., Tarnas, J. D., Simon, J. I., Sun, V. Z., Scheller, E. L., Moore, K. R., McLennan, S. M., Vasconcelos, P. M., Wiens, R. C., Treiman, A. H., Mayhew, L. E., Beyssac, O., Kizovski, T. V., Tosca, N. J., Williford, K. H., Crumpler, L. S., Beegle, L. W., Bell, J. F., Ehlmann, B. L., Liu, Y., Maki, J. N., Schmidt, M. E., Allwood, A. C., Amundsen, H. E. F., Bhartia, R., Bosak, T., Brown, A. J., Clark, B. C., Cousin, A., Forni, O., Gabriel, T. S. J., Goreva, Y., Gupta, S., Hamran, S.-E., Herd, C. D. K., Hickman-Lewis, K., Johnson, J. R., Kah, L. C., Kelemen, P. B., Kinch, K. B., Mandon, L., Mangold, N., Quantin-Nataf, C., Rice, M. S., Russell, P. S., Sharma, S., Siljeström, S., Steele, A., Sullivan, R., Wadhwa, M., Weiss, B. P., Williams, A. J., Wogsland, B. V., Willis, P. A., Acosta-Maeda, T. A., Beck, P., Benzerara, K., Bernard, S., Burton, A. S., Cardarelli, E. L., Chide, B., Clavé, E., Cloutis, E. A., Cohen, B. A., Czaja, A. D., Debaille, V., Dehouck, E., Fairén, A. G., Flannery, D. T., Fleron, S. Z., Fouchet, T., Frydenvang, J., Garczynski, B. J., Gibbons, E. F., Hausrath, E. M., Hayes, A. G., Henneke, J., Jørgensen, J. L., Kelly, E. M., Lasue, J., Le Mouélic, S., Madariaga, J. M., Maurice, S., Merusi, M., Meslin, P.-Y., Milkovich, S. M., Million, C. C., Moeller, R. C., Nuñez, J. I., Ollila, A. M., Paar, G., Paige, D. A., Pedersen, D. A. K., Pilleri, P., Pilorget, C., Pinet, P. C., Rice, J. W., Royer, C., Sautter, V., Schulte, M., Sephton, M. A., Sharma, S. K., Sholes, S. F., Spanovich, N., Clair, M. St., Tate, C. D., Uckert, K., VanBommel, S. J., Yanchilina, A. G., and Zorzano, M.-P.
- Abstract
The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater's sedimentary delta, finding that the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Seitah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Magnesium-iron carbonates along grain boundaries indicate reactions with carbon dioxide-rich water under water-poor conditions. Overlying Seitah is a unit informally named Maaz, which we interpret as lava flows or the chemical complement to Seitah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks have been stored aboard Perseverance for potential return to Earth.
- Published
- 2022
29. Fate of selenium in a small urban watershed
- Author
-
Devitt, D. A., Wright, L. E., Shanahan, S. A., and Hausrath, E.
- Published
- 2014
- Full Text
- View/download PDF
30. Recommended Maximum Temperature For Mars Returned Samples
- Author
-
Beaty, D. W, McSween, H. Y, Czaja, A. D, Goreva, Y. S, Hausrath, E, Herd, C. D. K, Humayun, M, McCubbin, F. M, McLennan, S. M, and Hays, L. E
- Subjects
Lunar And Planetary Science And Exploration - Abstract
The Returned Sample Science Board (RSSB) was established in 2015 by NASA to provide expertise from the planetary sample community to the Mars 2020 Project. The RSSB's first task was to address the effect of heating during acquisition and storage of samples on scientific investigations that could be expected to be conducted if the samples are returned to Earth. Sample heating may cause changes that could ad-versely affect scientific investigations. Previous studies of temperature requirements for returned mar-tian samples fall within a wide range (-73 to 50 degrees Centigrade) and, for mission concepts that have a life detection component, the recommended threshold was less than or equal to -20 degrees Centigrade. The RSSB was asked by the Mars 2020 project to determine whether or not a temperature requirement was needed within the range of 30 to 70 degrees Centigrade. There are eight expected temperature regimes to which the samples could be exposed, from the moment that they are drilled until they are placed into a temperature-controlled environment on Earth. Two of those - heating during sample acquisition (drilling) and heating while cached on the Martian surface - potentially subject samples to the highest temperatures. The RSSB focused on the upper temperature limit that Mars samples should be allowed to reach. We considered 11 scientific investigations where thermal excursions may have an adverse effect on the science outcome. Those are: (T-1) organic geochemistry, (T-2) stable isotope geochemistry, (T-3) prevention of mineral hydration/dehydration and phase transformation, (T-4) retention of water, (T-5) characterization of amorphous materials, (T-6) putative Martian organisms, (T-7) oxidation/reduction reactions, (T-8) (sup 4) He thermochronometry, (T-9) radiometric dating using fission, cosmic-ray or solar-flare tracks, (T-10) analyses of trapped gasses, and (T-11) magnetic studies.
- Published
- 2016
31. Dissolution of Olivine, Siderite, and Basalt at 80 Deg C in 0.1 M H2SO4 in a Flow Through Process: Insights into Acidic Weathering on Mars
- Author
-
Golden, D. C, Ming, D. W, Hausrath, E. M, Morris, R. V, Niles, P. B, Achilles, C. N, Ross, D. K, Cooper, B. L, Gonzalex, C. P, and Mertzman, S. A
- Subjects
Geophysics - Abstract
The occurrence of jarosite, other sulfates (e.g., Mg-and Ca-sulfates), and hematite along with silicic-lastic materials in outcrops of sedimentary materials at Meridiani Planum (MP) and detection of silica rich deposits in Gusev crater, Mars, are strong indicators of local acidic aqueous processes [1,2,3,4,5]. The formation of sediments at Meridiani Planum may have involved the evaporation of fluids derived from acid weathering of Martian basalts and subsequent diagenesis [6,7]. Also, our previous work on acid weathering of basaltic materials in a closed hydro-thermal system was focused on the mineralogy of the acid weathering products including the formation of jarosite and gray hematite spherules [8,9,10]. The object of this re-search is to extend our earlier qualitative work on acidic weathering of rocks to determine acidic dissolution rates of Mars analog basaltic materials at 80 C using a flow-thru reactor. We also characterized residual phases, including poorly crystalline or amorphous phases and precipitates, that remained after the treatments of olivine, siderite, and basalt which represent likely MP source rocks. This study is a stepping stone for a future simulation of the formation of MP rocks under a range of T and P.
- Published
- 2012
32. The potential science and engineering value of samples delivered to Earth by Mars sample return
- Author
-
Beaty, D. W., Grady, Monica, McSween, H. Y., Sefton-Nash, E., Carrier, B. L., Altieri, F., Amelin, Y., Ammannito, E., Anand, M., Benning, L. G., Bishop, J. L., Borg, L. E., Boucher, D., Brucato, J. R., Busemann, H., Campbell, K. A., Czaja, A. D., Debaille, V., Des Marais, D. J., Dixon, M., Ehlmann, B. L., Farmer, J. D., Fernandez-Remolar, D. C., Filiberto, J., Fogarty, J., Glavin, D. P., Goreva, Y. S., Hallis, L. J., Harrington, A. D., M. Hausrath, E., Herd, C. D. K., Horgan, B., Humanyun, M., Kleine, T., Kleinhenz, J., Mackelprang, R., Mangold, N., Mayhew, L. E., McCoy, J. T., McCubbin, F. M., McLennan, S. M., Moser, D. E., Moynier, F., Mustard, J. F., Niles, P. B., Ori, G. G., Raulin, F., Rettberg, P., Rucker, M. A., Schmitz, N., Schwenzer, S. P., Sephton, M. A., Shaheen, R., Sharp, Z. D., Schuster, D. L., Siljestrom, S., Smith, C. L., Spry, J. A., Steele, A., Swindle, T. D., ten Kate, I. L., Tosca, N. J., Usui, T., Van Kranendonk, M. J., Wadhwa, M., Weiss, B. P., Werner, S. C., Westall, F., Wheeler, R. M., Zipfel, J., Zorzano, M. P., Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), The Open University [Milton Keynes] (OU), School of Earth Sciences [Bristol], University of Bristol [Bristol], Istituto di Astrofisica e Planetologia Spaziali - INAF (IAPS), Istituto Nazionale di Astrofisica (INAF), Australian National University (ANU), Istituto di Fisica dello Spazio Interplanetario (IFSI), Consiglio Nazionale delle Ricerche (CNR), Planetary and Space Sciences [Milton Keynes] (PSS), School of Physical Sciences [Milton Keynes], Faculty of Science, Technology, Engineering and Mathematics [Milton Keynes], The Open University [Milton Keynes] (OU)-The Open University [Milton Keynes] (OU)-Faculty of Science, Technology, Engineering and Mathematics [Milton Keynes], The Open University [Milton Keynes] (OU)-The Open University [Milton Keynes] (OU), Génotoxicologie et cycle cellulaire (GCC), Institut Curie [Paris]-Centre National de la Recherche Scientifique (CNRS), INAF - Osservatorio Astrofisico di Arcetri (OAA), Planetary and Space Sciences Research Institute [Milton Keynes] (PSSRI), Centre for Earth, Planetary, Space and Astronomical Research [Milton Keynes] (CEPSAR), Université libre de Bruxelles (ULB), NASA Ames Research Center (ARC), Laboratoire d'étude de la pollution atmospherique, Institut National de la Recherche Agronomique (INRA), California Institute of Technology (CALTECH), ASU School of Earth and Space Exploration (SESE), Arizona State University [Tempe] (ASU), NASA Goddard Space Flight Center (GSFC), University of Glasgow, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Stony Brook University [SUNY] (SBU), State University of New York (SUNY), McDonnell Center for Space Sciences, Washington University in St Louis, Department of Geological Sciences [Providence], Brown University, Astromaterials Research and Exploration Science (ARES), NASA Johnson Space Center (JSC), NASA-NASA, International Research School of Planetary Sciences [Pescara] (IRSPS), Università degli studi 'G. d'Annunzio' Chieti-Pescara [Chieti-Pescara] (Ud'A), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), DLR Institute of Aerospace Medicine, Deutsches Zentrum für Luft- und Raumfahrt [Köln] (DLR), Max Planck Institute for Nuclear Physics (MPIK), Max-Planck-Gesellschaft, SP Technical Research Institute of Sweden, Geophysical Laboratory [Carnegie Institution], Carnegie Institution for Science [Washington], Geological Survey of Western Australia, 100 Plain Street, East Perth, WA 6004, Australia, Department of Geology, The Field Museum, Massachusetts Institute of Technology (MIT), Centre de géochimie de la surface (CGS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), Centre de biophysique moléculaire (CBM), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), Conception, Ingénierie et Développement de l'Aliment et du Médicament (CIDAM), Université d'Auvergne - Clermont-Ferrand I (UdA), Université Libre de Bruxelles [Bruxelles] (ULB), Division of Geological and Planetary Sciences [Pasadena], Department of Earth, Ocean and Atmospheric Science [Tallahassee] (EOAS), Florida State University [Tallahassee] (FSU), Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), RISE Research Institutes of Sweden, Centre National de la Recherche Scientifique (CNRS)-Université Louis Pasteur - Strasbourg I-Institut national des sciences de l'Univers (INSU - CNRS), Department of Earth, Ocean and Atmospheric Science [Tallahassee] (FSU | EOAS), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Washington University in Saint Louis (WUSTL), Carnegie Institution for Science, Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), International Mars Exploration Working Group, Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), California Institute of Technology (CALTECH)-NASA, Agence Spatiale Européenne = European Space Agency (ESA), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Laboratoire de Physico-Chimie de l'Atmosphère (LPCA), and Université du Littoral Côte d'Opale (ULCO)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Value (ethics) ,Engineering ,GeneralLiterature_INTRODUCTORYANDSURVEY ,Science and engineering ,Mars ,sample return ,010502 geochemistry & geophysics ,Exploration of Mars ,01 natural sciences ,Strahlenbiologie ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,0103 physical sciences ,Géographie physique ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,010303 astronomy & astrophysics ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Martian ,Mars sample return ,business.industry ,Environmental resource management ,Mars Exploration Program ,Sciences de l'espace ,Geophysics ,IMOST ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,[SDU.OTHER]Sciences of the Universe [physics]/Other ,business - Abstract
Executive summary provided in lieu of abstract., SCOPUS: no.j, info:eu-repo/semantics/published
- Published
- 2019
- Full Text
- View/download PDF
33. The potential science and engineering value of samples delivered to Earth by Mars sample return: International MSR Objectives and Samples Team (iMOST)
- Author
-
Beaty, D. W., Grady, M. M., McSween, H. Y., Sefton-Nash, E., Carrier, B. L., Altieri, F., Amelin, Y., Ammannito, E., Anand, M., Benning, L. G., Bishop, J. L., Borg, L. E., Boucher, D., Brucato, J. R., Busemann, H., Campbell, K. A., Czaja, A. D., Debaille, V., Des Marais, D. J., Dixon, M., Ehlmann, B. L., Farmer, J. D., Fernandez-Remolar, D. C., Filiberto, J., Fogarty, J., Glavin, D. P., Goreva, Y. S., Hallis, L. J., Harrington, A. D., Hausrath, E. M., Herd, C. D.K., Horgan, B., Humayun, M., Kleine, T., Kleinhenz, J., Mackelprang, R., Mangold, N., Mayhew, L. E., McCoy, J. T., McCubbin, F. M., McLennan, S. M., Moser, D. E., Moynier, F., Mustard, J. F., Niles, P. B., Ori, G. G., Raulin, F., Rettberg, P., Schmitz, N., ten Kate, I. L., and Petrology
- Subjects
Geophysics ,Space and Planetary Science - Abstract
Return of samples from the surface of Mars has been a goal of the international Mars science community for many years. Affirmation by NASA and ESA of the importance of Mars exploration led the agencies to establish the international MSR Objectives and Samples Team (iMOST). The purpose of the team is to re-evaluate and update the sample-related science and engineering objectives of a Mars Sample Return (MSR) campaign. The iMOST team has also undertaken to define the measurements and the types of samples that can best address the objectives. Seven objectives have been defined for MSR, traceable through two decades of previously published international priorities. The first two objectives are further divided into sub-objectives. Within the main part of the report, the importance to science and/or engineering of each objective is described, critical measurements that would address the objectives are specified, and the kinds of samples that would be most likely to carry key information are identified. These seven objectives provide a framework for demonstrating how the first set of returned Martian samples would impact future Martian science and exploration. They also have implications for how analogous investigations might be conducted for samples returned by future missions from other solar system bodies, especially those that may harbor biologically relevant or sensitive material, such as Ocean Worlds (Europa, Enceladus, Titan) and others. Summary of Objectives and Sub-Objectives for MSR Identified by iMOST: Objective 1 Interpret the primary geologic processes and history that formed the Martian geologic record, with an emphasis on the role of water. Intent To investigate the geologic environment(s) represented at the Mars 2020 landing site, provide definitive geologic context for collected samples, and detail any characteristics that might relate to past biologic processesThis objective is divided into five sub-objectives that would apply at different landing sites. 1.1 Characterize the essential stratigraphic, sedimentologic, and facies variations of a sequence of Martian sedimentary rocks. Intent To understand the preserved Martian sedimentary record. Samples A suite of sedimentary rocks that span the range of variation. Importance Basic inputs into the history of water, climate change, and the possibility of life 1.2 Understand an ancient Martian hydrothermal system through study of its mineralization products and morphological expression. Intent To evaluate at least one potentially life-bearing “habitable” environment Samples A suite of rocks formed and/or altered by hydrothermal fluids. Importance Identification of a potentially habitable geochemical environment with high preservation potential. 1.3 Understand the rocks and minerals representative of a deep subsurface groundwater environment. Intent To evaluate definitively the role of water in the subsurface. Samples Suites of rocks/veins representing water/rock interaction in the subsurface. Importance May constitute the longest-lived habitable environments and a key to the hydrologic cycle. 1.4 Understand water/rock/atmosphere interactions at the Martian surface and how they have changed with time. Intent To constrain time-variable factors necessary to preserve records of microbial life. Samples Regolith, paleosols, and evaporites. Importance Subaerial near-surface processes could support and preserve microbial life. 1.5 Determine the petrogenesis of Martian igneous rocks in time and space. Intent To provide definitive characterization of igneous rocks on Mars. Samples Diverse suites of ancient igneous rocks. Importance Thermochemical record of the planet and nature of the interior. Objective 2 Assess and interpret the potential biological history of Mars, including assaying returned samples for the evidence of life. Intent To investigate the nature and extent of Martian habitability, the conditions and processes that supported or challenged life, how different environments might have influenced the preservation of biosignatures and created nonbiological “mimics,” and to look for biosignatures of past or present life.This objective has three sub-objectives: 2.1 Assess and characterize carbon, including possible organic and pre-biotic chemistry. Samples All samples collected as part of Objective 1. Importance Any biologic molecular scaffolding on Mars would likely be carbon-based. 2.2 Assay for the presence of biosignatures of past life at sites that hosted habitable environments and could have preserved any biosignatures. Samples All samples collected as part of Objective 1. Importance Provides the means of discovering ancient life. 2.3 Assess the possibility that any life forms detected are alive, or were recently alive. Samples All samples collected as part of Objective 1. Importance Planetary protection, and arguably the most important scientific discovery possible. Objective 3 Quantitatively determine the evolutionary timeline of Mars. Intent To provide a radioisotope-based time scale for major events, including magmatic, tectonic, fluvial, and impact events, and the formation of major sedimentary deposits and geomorphological features. Samples Ancient igneous rocks that bound critical stratigraphic intervals or correlate with crater-dated surfaces. Importance Quantification of Martian geologic history. Objective 4 Constrain the inventory of Martian volatiles as a function of geologic time and determine the ways in which these volatiles have interacted with Mars as a geologic system. Intent To recognize and quantify the major roles that volatiles (in the atmosphere and in the hydrosphere) play in Martian geologic and possibly biologic evolution. Samples Current atmospheric gas, ancient atmospheric gas trapped in older rocks, and minerals that equilibrated with the ancient atmosphere. Importance Key to understanding climate and environmental evolution. Objective 5 Reconstruct the processes that have affected the origin and modification of the interior, including the crust, mantle, core and the evolution of the Martian dynamo. Intent To quantify processes that have shaped the planet's crust and underlying structure, including planetary differentiation, core segregation and state of the magnetic dynamo, and cratering. Samples Igneous, potentially magnetized rocks (both igneous and sedimentary) and impact-generated samples. Importance Elucidate fundamental processes for comparative planetology. Objective 6 Understand and quantify the potential Martian environmental hazards to future human exploration and the terrestrial biosphere. Intent To define and mitigate an array of health risks related to the Martian environment associated with the potential future human exploration of Mars. Samples Fine-grained dust and regolith samples. Importance Key input to planetary protection planning and astronaut health. Objective 7 Evaluate the type and distribution of in-situ resources to support potential future Mars exploration. Intent To quantify the potential for obtaining Martian resources, including use of Martian materials as a source of water for human consumption, fuel production, building fabrication, and agriculture. Samples Regolith. Importance Production of simulants that will facilitate long-term human presence on Mars. Summary of iMOST Findings: Several specific findings were identified during the iMOST study. While they are not explicit recommendations, we suggest that they should serve as guidelines for future decision making regarding planning of potential future MSR missions. The samples to be collected by the Mars 2020 (M-2020) rover will be of sufficient size and quality to address and solve a wide variety of scientific questions. Samples, by definition, are a statistical representation of a larger entity. Our ability to interpret the source geologic units and processes by studying sample sub sets is highly dependent on the quality of the sample context. In the case of the M-2020 samples, the context is expected to be excellent, and at multiple scales. (A) Regional and planetary context will be established by the on-going work of the multi-agency fleet of Mars orbiters. (B) Local context will be established at field area- to outcrop- to hand sample- to hand lens scale using the instruments carried by M-2020. A significant fraction of the value of the MSR sample collection would come from its organization into sample suites, which are small groupings of samples designed to represent key aspects of geologic or geochemical variation. If the Mars 2020 rover acquires a scientifically well-chosen set of samples, with sufficient geological diversity, and if those samples were returned to Earth, then major progress can be expected on all seven of the objectives proposed in this study, regardless of the final choice of landing site. The specifics of which parts of Objective 1 could be achieved would be different at each of the final three candidate landing sites, but some combination of critically important progress could be made at any of them. An aspect of the search for evidence of life is that we do not know in advance how evidence for Martian life would be preserved in the geologic record. In order for the returned samples to be most useful for both understanding geologic processes (Objective 1) and the search for life (Objective 2), the sample collection should contain BOTH typical and unusual samples from the rock units explored. This consideration should be incorporated into sample selection and the design of the suites. The retrieval missions of a MSR campaign should (1) minimize stray magnetic fields to which the samples would be exposed and carry a magnetic witness plate to record exposure, (2) collect and return atmospheric gas sample(s), and (3) collect additional dust and/or regolith sample mass if possible.
- Published
- 2019
34. Column Experiments to Interpret Weathering in Columbia Hills
- Author
-
Hausrath, E. M, Morris, R.V, Ming, D.W, Golden, D.C, Galindo, C, and Sutter, B
- Subjects
Geosciences (General) - Abstract
Phosphate mobility has been postulated as an indicator of early aqueous activity on Mars. In addition, rock surfaces analyzed by the Mars Exploration Rover Spirit are consistent with the loss of a phosphate- containing mineral To interpret phosphate alteration behavior on Mars, we performed column dissolution experiments leaching the primary phases Durango fluorapatite, San Carlos olivine, and basalt glass (Stapafjell Volcano, courtesy of S. Gislason, University of Iceland) [3,4]) with acidic solutions. These phases were chosen to represent quickly dissolving phases likely present in Columbia Hills. Column dissolution experiments are closer to natural dissolution conditions than batch experiments, although they can be difficult to interpret. Acidic solutions were used because the leached layers on the surfaces of these rocks have been interpreted as resulting from acid solutions [5].
- Published
- 2009
35. Mars Sample Return: The Value of Depth Profiles
- Author
-
Hausrath, E. M, Navarre-Sitchler, A. K, Moore, J, Sak, P. B, Brantley, S. L, Golden, D. C, Sutter, B, Schroeder, C, Socki, R, Morris, R. V, and Ming, D. W
- Subjects
Geophysics - Abstract
Sample return from Mars offers the promise of data from Martian materials that have previously only been available from meteorites. Return of carefully selected samples may yield more information about the history of water and possible habitability through Martian history. Here we propose that samples collected from Mars should include depth profiles of material across the interface between weathered material on the surface of Mars into unweathered parent rock material. Such profiles have the potential to yield chemical kinetic data that can be used to estimate the duration of water and information about potential habitats on Mars.
- Published
- 2008
36. Acid Vapor Weathering of Apatite and Implications for Mars
- Author
-
Hausrath, E. M, Golden, D. C, Morris, R. V, and Ming, D. W
- Subjects
Geophysics - Abstract
Phosphorus is an essential nutrient for terrestrial life, and therefore may be important in characterizing habitability on Mars. In addition, phosphate mobility on Mars has been postulated as an indicator of early aqueous activity [1]. Rock surfaces analyzed by the Spirit Mars Exploration Rover indicate elemental concentrations consistent with the loss of a phosphate-containing mineral [2], and the highly altered Paso Robles deposit contains ~5% P2O5, modeled as 8-10 % phosphate [3]. Depending on the pH of the solution, phosphate can exist as one of four charge states, which can affect its solubility, reactivity and mobility. Phosphate may therefore prove a useful and interesting tracer of alteration conditions on Mars. Acid vapor weathering has been previously studied as a potentially important process on Mars [4-6], and Paso Robles may have been formed by reaction of volcanic vapors with phosphate-bearing rock [3, 7]. Here we present preliminary results of acid vapor reactions in a Parr vessel [6] using fluorapatite, olivine and glass as single phases and in a mixture.
- Published
- 2008
37. The Potential Science and Engineering Value of Samples Delivered to Earth by Mars Sample Return - Final Report (white paper)
- Author
-
International MSR Objectives and Samples Team, iMOST, Beaty, D. W., Grady, M. M., McSween, H. Y., Sefton-Nash, E., Carrier, B. L., Altieri, F., Amelin, Y., Ammannito, E., Anand, M., Benning, L. G., Bishop, J. L., Borg, L. E., Boucher, D., Brucato, J. R., Busemann, H., Campbell, K. A., Czaja, A. D., Debaille, V., Des Marais, D. J., Dixon, M., Ehlmann, B. L., Farmer, J. D., Fernandez-Remolar, D. C., Filiberto, J., Fogarty, J., Glavin, D. P., Goreva, Y. S., Hallis, L. J., Harrington, A. D., Hausrath, E. M., Herd, C. D. K., Horgan, B., Humayun, M., Kleine, T., Kleinhenz, J., Mackelprang, R., Mangold, N., Mayhew, L. E., McCoy, J. T., McCubbin, F. M., McLennan, S. M., Moser, D. E., Moynier, F., Mustard, J. F., Niles, P. B., Ori, G. G., Raulin, F., Rettberg, Petra, Rucker, M. A., Schmitz, N., Schwenzer, S. P., Sephton, M. A., Shaheen, R., Sharp, Z. D., Shuster, D. L., Siljeström, S., Smith, C. L., Spry, J. A., Steele, A., Swindle, T. D., ten Kate, I. L., Tosca, N. J., Usui, T., Van Kranendonk, M. J., Wadhwa, M., Weiss, B. P., Werner, S. C., Westall, F., Wheeler, R. M., Zipfel, J., Zorzano, M. P., co-chair: Beaty, D. W., co-chair: Grady, M. M., co-chair: McSween, H. Y., co-chair: Sefton-Nash, E., documentarian: Carrier, B.L., and plus 66 co-authors, .
- Subjects
Strahlenbiologie ,Mars sample return ,iMOST - Abstract
Executive Summary: Return of samples from the surface of Mars has been a goal of the international Mars science community for many years. Affirmation by NASA and ESA of the importance of Mars exploration led the agencies to establish the international MSR Objectives and Samples Team (iMOST). The purpose of the team is to re-evaluate and update the sample-related science and engineering objectives of a Mars Sample Return (MSR) campaign. The iMOST team has also undertaken to define the measurements and the types of samples that can best address the objectives. Seven objectives have been defined for MSR, traceable through two decades of previously published international priorities. The first two objectives are further divided into sub-objectives. Within the main part of the report, the importance to science and/or engineering of each objective is described, critical measurements that would address the objectives are specified, and the kinds of samples that would be most likely to carry key information are identified. These seven objectives provide a framework for demonstrating how the first set of returned martian samples would impact future martian science and exploration. They also have implications for how analogous investigations might be conducted for samples returned by future missions from other solar system bodies, especially those that may harbor biologically relevant or sensitive material, such as Ocean Worlds (Europa, Enceladus, Titan) and others.
- Published
- 2018
38. The potential science and engineering value of samples delivered to Earth by Mars sample return: International MSR Objectives and Samples Team (iMOST)
- Author
-
Petrology, Beaty, D. W., Grady, M. M., McSween, H. Y., Sefton-Nash, E., Carrier, B. L., Altieri, F., Amelin, Y., Ammannito, E., Anand, M., Benning, L. G., Bishop, J. L., Borg, L. E., Boucher, D., Brucato, J. R., Busemann, H., Campbell, K. A., Czaja, A. D., Debaille, V., Des Marais, D. J., Dixon, M., Ehlmann, B. L., Farmer, J. D., Fernandez-Remolar, D. C., Filiberto, J., Fogarty, J., Glavin, D. P., Goreva, Y. S., Hallis, L. J., Harrington, A. D., Hausrath, E. M., Herd, C. D.K., Horgan, B., Humayun, M., Kleine, T., Kleinhenz, J., Mackelprang, R., Mangold, N., Mayhew, L. E., McCoy, J. T., McCubbin, F. M., McLennan, S. M., Moser, D. E., Moynier, F., Mustard, J. F., Niles, P. B., Ori, G. G., Raulin, F., Rettberg, P., Schmitz, N., ten Kate, I. L., Petrology, Beaty, D. W., Grady, M. M., McSween, H. Y., Sefton-Nash, E., Carrier, B. L., Altieri, F., Amelin, Y., Ammannito, E., Anand, M., Benning, L. G., Bishop, J. L., Borg, L. E., Boucher, D., Brucato, J. R., Busemann, H., Campbell, K. A., Czaja, A. D., Debaille, V., Des Marais, D. J., Dixon, M., Ehlmann, B. L., Farmer, J. D., Fernandez-Remolar, D. C., Filiberto, J., Fogarty, J., Glavin, D. P., Goreva, Y. S., Hallis, L. J., Harrington, A. D., Hausrath, E. M., Herd, C. D.K., Horgan, B., Humayun, M., Kleine, T., Kleinhenz, J., Mackelprang, R., Mangold, N., Mayhew, L. E., McCoy, J. T., McCubbin, F. M., McLennan, S. M., Moser, D. E., Moynier, F., Mustard, J. F., Niles, P. B., Ori, G. G., Raulin, F., Rettberg, P., Schmitz, N., and ten Kate, I. L.
- Published
- 2019
39. The potential science and engineering value of samples delivered to Earth by Mars sample return
- Author
-
Beaty, David D.W., Grady, Monica, McSween, H. Y., Sefton-Nash, E., Carrier, B., Altieri, F., Ammannito, E., Amelin, Yuri, Anand, Mahesh, Benning, Liane G, Bishop, J. L., Borg, L. E., Boucher, D., Brucato, John Robert, Buseman, H., Campbell, K., Czaja, A. D., Debaille, Vinciane, Des Marais, D. J., Dixon, M., Ehlmann, B. L., Farmer, J. D., Fernandez-Remolar, D. C., Filiberto, J., Fogarty, J., Glavin, D. P., Goreva, Y. S., Hallis, L. J., Harrington, Andrea A. D., Hausrath, E. M., Herd, C. D. K., Horgan, B., Humayun, M., Kleine, Thorsten, Kleinhenz, J., Mangold, Nicolas, Mayhew, L. E., McCoy, Tim, McCubbin, Francis M., McLennan, Scott M., Moser, Desmond, Moynier, Frédéric, Mustard, John Fraser, Niles, P. B., Ori, G. G., Raulin, F., Rettberg, Petra, Rucker, M. A., Schmitz, Nicole, Schwenzer, Susanne P., Septhon, M. A., Shaheen, R., Sharp, Z. D., Shuster, D. L., Siljeström, S., Smith, Caroline L., Spry, J. A., Steele, Andrew, Swindle, T. D., Ten Kate, Inge Loes, Tosca, N. J., Usui, Tomohiro, Van Kranendonk, M. J., Wadhwa, Meenakshi, Weiss, Benjamin P., Werner, Stephanie C., Westall, Frances, Wheeler, R. M., Zipfel, Jutta, Zorzano, M. P., Beaty, David D.W., Grady, Monica, McSween, H. Y., Sefton-Nash, E., Carrier, B., Altieri, F., Ammannito, E., Amelin, Yuri, Anand, Mahesh, Benning, Liane G, Bishop, J. L., Borg, L. E., Boucher, D., Brucato, John Robert, Buseman, H., Campbell, K., Czaja, A. D., Debaille, Vinciane, Des Marais, D. J., Dixon, M., Ehlmann, B. L., Farmer, J. D., Fernandez-Remolar, D. C., Filiberto, J., Fogarty, J., Glavin, D. P., Goreva, Y. S., Hallis, L. J., Harrington, Andrea A. D., Hausrath, E. M., Herd, C. D. K., Horgan, B., Humayun, M., Kleine, Thorsten, Kleinhenz, J., Mangold, Nicolas, Mayhew, L. E., McCoy, Tim, McCubbin, Francis M., McLennan, Scott M., Moser, Desmond, Moynier, Frédéric, Mustard, John Fraser, Niles, P. B., Ori, G. G., Raulin, F., Rettberg, Petra, Rucker, M. A., Schmitz, Nicole, Schwenzer, Susanne P., Septhon, M. A., Shaheen, R., Sharp, Z. D., Shuster, D. L., Siljeström, S., Smith, Caroline L., Spry, J. A., Steele, Andrew, Swindle, T. D., Ten Kate, Inge Loes, Tosca, N. J., Usui, Tomohiro, Van Kranendonk, M. J., Wadhwa, Meenakshi, Weiss, Benjamin P., Werner, Stephanie C., Westall, Frances, Wheeler, R. M., Zipfel, Jutta, and Zorzano, M. P.
- Abstract
Executive summary provided in lieu of abstract., SCOPUS: no.j, info:eu-repo/semantics/published
- Published
- 2019
40. Bioavailability of Mineral-Bound Iron to a Snow Algal-Bacterial Coculture and Implications for Albedo-Altering Snow Algal Blooms
- Author
-
Harrold, Z. R., primary, Hausrath, E. M., additional, Garcia, A. H., additional, Murray, A. E., additional, Tschauner, O., additional, Raymond, J. A., additional, and Huang, S., additional
- Published
- 2018
- Full Text
- View/download PDF
41. Versuche mit Spurenelementdüngung zu Treibgurken
- Author
-
Reinhold, J. and Hausrath, E.
- Published
- 1940
42. Über die Ursachen für Mißerfolge des Dämpfens schwerer Böden
- Author
-
Reinhold, J., Noll, J., and Hausrath, E.
- Published
- 1941
43. Elemental release rates from dissolving basalt and granite with and without organic ligands
- Author
-
Hausrath, E. M., Neaman, A., and Brantley, S. L.
- Subjects
Weathering -- Environmental aspects ,Organic acids -- Chemical properties ,Organic acids -- Research ,Basalt -- Chemical properties ,Basalt -- Structure ,Basalt -- Composition ,Granite -- Structure ,Granite -- Composition ,Granite -- Chemical properties ,Trace analysis ,Earth sciences - Published
- 2009
44. Shock-transformation of whitlockite to merrillite and the implications for meteoritic phosphate
- Author
-
Adcock, C. T., primary, Tschauner, O., additional, Hausrath, E. M., additional, Udry, A., additional, Luo, S. N., additional, Cai, Y., additional, Ren, M., additional, Lanzirotti, A., additional, Newville, M., additional, Kunz, M., additional, and Lin, C., additional
- Published
- 2017
- Full Text
- View/download PDF
45. Synthesis and characterization of the Mars-relevant phosphate minerals Fe- and Mg-whitlockite and merrillite and a possible mechanism that maintains charge balance during whitlockite to merrillite transformation
- Author
-
Adcock, C. T., primary, Hausrath, E. M., additional, Forster, P. M., additional, Tschauner, O., additional, and Sefein, K. J., additional
- Published
- 2014
- Full Text
- View/download PDF
46. Dissolution rates of amorphous Al- and Fe-phosphates and their relevance to phosphate mobility on Mars
- Author
-
Tu, V. M., primary, Hausrath, E. M., additional, Tschauner, O., additional, Iota, V., additional, and Egeland, G. W., additional
- Published
- 2014
- Full Text
- View/download PDF
47. Readily available phosphate from minerals in early aqueous environments on Mars
- Author
-
Adcock, C. T., primary, Hausrath, E. M., additional, and Forster, P. M., additional
- Published
- 2013
- Full Text
- View/download PDF
48. Using the chemical composition of carbonate rocks on Mars as a record of secondary interaction with liquid water
- Author
-
Hausrath, E. M., primary and Olsen, A. A., additional
- Published
- 2013
- Full Text
- View/download PDF
49. Acid sulfate alteration of fluorapatite, basaltic glass and olivine by hydrothermal vapors and fluids: Implications for fumarolic activity and secondary phosphate phases in sulfate‐rich Paso Robles soil at Gusev Crater, Mars
- Author
-
Hausrath, E. M., primary, Golden, D. C., additional, Morris, R. V., additional, Agresti, D. G., additional, and Ming, D. W., additional
- Published
- 2013
- Full Text
- View/download PDF
50. Basalt and olivine dissolution under cold, salty, and acidic conditions: What can we learn about recent aqueous weathering on Mars?
- Author
-
Hausrath, E. M., primary and Brantley, S. L., additional
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.