1. Deep Unsupervised Domain Adaptation for Time Series Classification: a Benchmark
- Author
-
Fawaz, Hassan Ismail, Del Grosso, Ganesh, Kerdoncuff, Tanguy, Boisbunon, Aurelie, and Saffar, Illyyne
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,Statistics - Machine Learning - Abstract
Unsupervised Domain Adaptation (UDA) aims to harness labeled source data to train models for unlabeled target data. Despite extensive research in domains like computer vision and natural language processing, UDA remains underexplored for time series data, which has widespread real-world applications ranging from medicine and manufacturing to earth observation and human activity recognition. Our paper addresses this gap by introducing a comprehensive benchmark for evaluating UDA techniques for time series classification, with a focus on deep learning methods. We provide seven new benchmark datasets covering various domain shifts and temporal dynamics, facilitating fair and standardized UDA method assessments with state of the art neural network backbones (e.g. Inception) for time series data. This benchmark offers insights into the strengths and limitations of the evaluated approaches while preserving the unsupervised nature of domain adaptation, making it directly applicable to practical problems. Our paper serves as a vital resource for researchers and practitioners, advancing domain adaptation solutions for time series data and fostering innovation in this critical field. The implementation code of this benchmark is available at https://github.com/EricssonResearch/UDA-4-TSC.
- Published
- 2023