4,374 results on '"Hartmann, J A"'
Search Results
2. Differentiating multi-MeV, multi-ion spectra with CR-39 solid-state nuclear track detectors.
- Author
-
Schollmeier, M, Bekx, J, Hartmann, J, Schork, E, Speicher, M, Brodersen, A, Fazzini, A, Fischer, P, Gaul, E, Gonzalez-Izquierdo, B, Günther, M, Härle, A, Hollinger, R, Kenney, K, Park, J, Rivas, D, Scutelnic, V, Shpilman, Z, Wang, S, Rocca, J, and Korn, G
- Abstract
The development of high intensity petawatt lasers has created new possibilities for ion acceleration and nuclear fusion using solid targets. In such laser-matter interaction, multiple ion species are accelerated with broad spectra up to hundreds of MeV. To measure ion yields and for species identification, CR-39 solid-state nuclear track detectors are frequently used. However, these detectors are limited in their applicability for multi-ion spectra differentiation as standard image recognition algorithms can lead to a misinterpretation of data, there is no unique relation between track diameter and particle energy, and there are overlapping pit diameter relationships for multiple particle species. In this report, we address these issues by first developing an algorithm to overcome user bias during image processing. Second, we use calibration of the detector response for protons, carbon and helium ions (alpha particles) from 0.1 to above 10 MeV and measurements of statistical energy loss fluctuations in a forward-fitting procedure utilizing multiple, differently filtered CR-39, altogether enabling high-sensitivity, multi-species particle spectroscopy. To validate this capability, we show that inferred CR-39 spectra match Thomson parabola ion spectrometer data from the same experiment. Filtered CR-39 spectrometers were used to detect, within a background of ~ 2 × 1011 sr-1 J-1 protons and carbons, (1.3 ± 0.7) × 108 sr-1 J-1 alpha particles from laser-driven proton-boron fusion reactions.
- Published
- 2023
3. A new FDSOI spin qubit platform with 40nm effective control pitch
- Author
-
Bédécarrats, T., Paz, B. Cardoso, Diaz, B. Martinez, Niebojewski, H., Bertrand1, B., Rambal, N., Comboroure, C., Sarrazin, A., Boulard, F., Guyez, E., Hartmann, J. -M., Morand, Y., Magalhaes-Lucas, A., Nowak, E., Catapano, E., Cassé, M., Urdampilleta, M., Niquet, Y. -M., Gaillard, F., De Franceschi, S., Meunier, T., and Vinet, M.
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
Operating Si quantum dot (QD) arrays requires homogeneous and ultra-dense structures with aggressive gate pitch. Such a density is necessary to separately control the QDs chemical potential (i.e. charge occupation of each QD) from the exchange interaction (i.e. tunnel barriers between each QD). We present here a novel Si quantum device integration that halves the effective gate pitch and provides full controllability in 1D FDSOI QD arrays. The major advantages of this architecture are explored through numerical simulations. Functionality of the fabricated structure is validated via 300K statistical electrical characterization, while tunnel-coupling control is demonstrated at cryogenic temperature.
- Published
- 2023
- Full Text
- View/download PDF
4. The new APD-Based Readout of the Crystal Barrel Calorimeter -- An Overview
- Author
-
Collaboration, CBELSA/TAPS, Honisch, C., Klassen, P., Müllers, J., Urban, M., Afzal, F., Bieling, J., Ciupka, S., Hartmann, J., Hoffmeister, P., Lang, M., Schaab, D., Schmidt, C., Steinacher, M., Walther, D., Beck, R., Brinkmann, K. -T., Crede, V., Dutz, H., Elsner, D., Erni, W., Fix, E., Frommberger, F., Grüner, M., Jude, T., Kalischewski, F., Keshelashvili, I., Krönert, P., Krusche, B., Mahlberg, P., Metag, V., Meyer, W., Müller, F., Nanova, M., Otto, B., Richter, L., Runkel, S., Salisbury, B., Schmieden, H., Schultes, J., Seifen, T., Stausberg, N., Taubert, F., Thiel, A., Thoma, U., Urff, G., Wendel, C., Wiedner, U., Wunderlich, Y., and Zaunick, H. -G.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
The Crystal Barrel is an electromagnetic calorimeter consisting of 1380 CsI(Tl) scintillators, and is currently installed at the CBELSA/TAPS experiment where it is used to detect decay products from photoproduction of mesons. The readout of the Crystal Barrel has been upgraded in order to integrate the detector into the first level of the trigger and to increase its sensitivity for neutral final states. The new readout uses avalanche photodiodes in the front-end and a dual back-end with branches optimized for energy and time measurement, respectively. An FPGA-based cluster finder processes the whole hit pattern within less than 100 ns. The important downside of APDs -- the temperature dependence of their gain -- is handled with a temperature stabilization and a compensating bias voltage supply. Additionally, a light pulser system allows the APDs' gains to be measured during beamtimes.
- Published
- 2022
5. Polarization observables in double neutral pion photoproduction
- Author
-
Collaboration, CBELSA/TAPS, Seifen, T., Hartmann, J., Afzal, F., Anisovich, A. V., Beck, R., Becker, M., Berlin, A., Bichow, M., Brinkmann, K. -Th., Crede, V., Dieterle, M., Dutz, H., Eberhardt, H., Elsner, D., Fornet-Ponse, K., Friedrich, St., Frommberger, F., Funke, Ch., Gottschall, M., Grüner, M., Görtz, St., Gutz, E., Hammann, Ch., Hannappel, J., Herick, J., Hillert, W., Hoffmeister, Ph., Honisch, Ch., Jahn, O., Jude, T., Käser, A., Kaiser, D., Kalinowsky, H., Kalischewski, F., Klassen, P., Keshelashvili, I., Klein, F., Klempt, E., Koop, K., Krusche, B., Lang, M., Mahlberg, Ph., Makonyi, K., Messi, F., Metag, V., Meyer, W., Müller, J., Müllers, J., Nanova, M., Nikonov, K., Nikonov, V. A., Novotny, R., Reeve, S., Roth, B., Reicherz, G., Rostomyan, T., Runkel, St., Sarantsev, A. V., Schmidt, Ch., Schmieden, H., Schmitz, R., Schultes, J., Sokhoyan, V., Stausberg, N., Thiel, A., Thoma, U., Urban, M., Urff, G., van Pee, H., Walther, D., Wendel, Ch., Wiedner, U., Wilson, A., Witthauer, L., and Wunderlich, Y.
- Subjects
Nuclear Experiment - Abstract
Measurements of target asymmetries and double-polarization observables for the reaction $\gamma p\to p\pi^0\pi^0$ are reported. The data were taken with the CBELSA/TAPS experiment at the ELSA facility (Bonn University) using the Bonn frozen-spin butanol (C$_4$H$_9$OH) target, which provided transversely polarized protons. Linearly polarized photons were produced via bremsstrahlung off a diamond crystal. The data cover the photon energy range from $E_{\gamma}$=650 MeV to $E_{\gamma}$=2600 MeV and nearly the complete angular range. The results have been included in the BnGa partial wave analysis. Experimental results and the fit agree very well. Observed systematic differences in the branching ratios for decays of $N^*$ and $\Delta^*$ resonances are attributed to the internal structure of these excited nucleon states. Resonances which can be assigned to SU(6)$\times$O(3) two-oscillator configurations show larger branching ratios to intermediate states with non-zero intrinsic orbital angular momenta than resonances assigned to one-oscillator configurations., Comment: 21 pages, 27 figures
- Published
- 2022
6. Evolution of the liquid/solid interface roughness in Si1-xGex layers processed by nanosecond laser annealing
- Author
-
Demoulin, R., Daubriac, R., Kerdilès, S., Dagault, L., Adami, O., Ricciarelli, D., Hartmann, J.-M., Chiodi, F., Mio, A.M., Opprecht, M., Scheid, E., Alba, P.Acosta, Débarre, D., Magna, A.La, and Cristiano, F.
- Published
- 2025
- Full Text
- View/download PDF
7. Wideband precision stabilization of the -18.6 kV retarding voltage for the KATRIN spectrometer
- Author
-
Rodenbeck, C., Wüstling, S., Enomoto, S., Hartmann, J., Rest, O., Thümmler, T., and Weinheimer, C.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The Karlsruhe Tritium Neutrino Experiment (KATRIN) measures the effective electron anti-neutrino mass with an unprecedented design sensitivity of 0.2 eV (90 % C.L.). In this experiment, the energy spectrum of beta electrons near the tritium decay endpoint is analyzed with a highly accurate spectrometer. To reach the KATRIN sensitivity target, the retarding voltage of this spectrometer must be stable to the ppm level and well known on various time scales ($\mu s$ up to months), for values around -18.6 kV. A custom-designed high-voltage regulation system mitigates the impact of interference sources in the absence of a closed electric shield around the large spectrometer vessel. In this article, we describe the regulation system and its integration into the KATRIN setup. Independent monitoring methods demonstrate a stability within 2 ppm, exceeding KATRIN's specifications., Comment: 28 pages, 17 figures, minor improvements
- Published
- 2022
- Full Text
- View/download PDF
8. KATRIN: Status and Prospects for the Neutrino Mass and Beyond
- Author
-
Aker, M., Balzer, M., Batzler, D., Beglarian, A., Behrens, J., Berlev, A., Besserer, U., Biassoni, M., Bieringer, B., Block, F., Bobien, S., Bombelli, L., Bormann, D., Bornschein, B., Bornschein, L., Böttcher, M., Brofferio, C., Bruch, C., Brunst, T., Caldwell, T. S., Carminati, M., Carney, R. M. D., Chilingaryan, S., Choi, W., Cremonesi, O., Debowski, K., Descher, M., Barrero, D. Díaz, Doe, P. J., Dragoun, O., Drexlin, G., Edzards, F., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Felden, A., Fink, D., Fiorini, C., Formaggio, J. A., Forstner, C., Fränkle, F. M., Franklin, G. B., Friedel, F., Fulst, A., Gauda, K., Gavin, A. S., Gil, W., Glück, F., Grande, A., Grössle, R., Gugiatti, M., Gumbsheimer, R., Hannen, V., Hartmann, J., Haußmann, N., Helbing, K., Hickford, S., Hiller, R., Hillesheimer, D., Hinz, D., Höhn, T., Houdy, T., Huber, A., Jansen, A., Karl, C., Kellerer, J., King, P., Kleifges, M., Klein, M., Köhler, C., Köllenberger, L., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Krause, H., Lasserre, T., La Cascio, L., Lebeda, O., Lechner, P., Lehnert, B., Le, T. L., Lokhov, A., Machatschek, M., Malcherek, E., Manfrin, D., Mark, M., Marsteller, A., Martin, E. L., Mazzola, E., Melzer, C., Mertens, S., Mostafa, J., Müller, K., Nava, A., Neumann, H., Niemes, S., Oelpmann, P., Onillon, A., Parno, D. S., Pavan, M., Pigliafreddo, A., Poon, A. W. P., Poyato, J. M. L., Pozzi, S., Priester, F., Puritscher, M., Radford, D. C., Ráliš, J., Ramachandran, S., Robertson, R. G. H., Rodejohann, W., Rodenbeck, C., Röllig, M., Röttele, C., Ryšavý, M., Sack, R., Saenz, A., Salomon, R. W. J., Schäfer, P., Schimpf, L., Schlösser, K., Schlösser, M., Schlüter, L., Schneidewind, S., Schrank, M., Schütz, A. K., Schwemmer, A., Sedlak, A., Šefčík, M., Sibille, V., Siegmann, D., Slezák, M., Spanier, F., Spreng, D., Steidl, M., Sturm, M., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trigilio, P., Urban, K., Valerius, K., Vénos, D., Hernández, A. P. Vizcaya, Voigt, P., Weinheimer, C., Weiss, E., Welte, S., Wendel, J., Wiesinger, C., Wilkerson, J. F., Wolf, J., Wunderl, L., Wüstling, S., Wydra, J., Xu, W., Zadoroghny, S., and Zeller, G.
- Subjects
Nuclear Experiment ,Astrophysics - Cosmology and Nongalactic Astrophysics ,High Energy Physics - Experiment ,Physics - Instrumentation and Detectors - Abstract
The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to measure a high-precision integral spectrum of the endpoint region of T2 beta decay, with the primary goal of probing the absolute mass scale of the neutrino. After a first tritium commissioning campaign in 2018, the experiment has been regularly running since 2019, and in its first two measurement campaigns has already achieved a sub-eV sensitivity. After 1000 days of data-taking, KATRIN's design sensitivity is 0.2 eV at the 90% confidence level. In this white paper we describe the current status of KATRIN; explore prospects for measuring the neutrino mass and other physics observables, including sterile neutrinos and other beyond-Standard-Model hypotheses; and discuss research-and-development projects that may further improve the KATRIN sensitivity., Comment: Contribution to Snowmass 2021. 70 pages excluding references; 35 figures. Author list updated June 2023
- Published
- 2022
- Full Text
- View/download PDF
9. KATRIN: status and prospects for the neutrino mass and beyond
- Author
-
Aker, M, Balzer, M, Batzler, D, Beglarian, A, Behrens, J, Berlev, A, Besserer, U, Biassoni, M, Bieringer, B, Block, F, Bobien, S, Bombelli, L, Bormann, D, Bornschein, B, Bornschein, L, Böttcher, M, Brofferio, C, Bruch, C, Brunst, T, Caldwell, TS, Carminati, M, Carney, RMD, Chilingaryan, S, Choi, W, Cremonesi, O, Debowski, K, Descher, M, Barrero, D Díaz, Doe, PJ, Dragoun, O, Drexlin, G, Edzards, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Felden, A, Fink, D, Fiorini, C, Formaggio, JA, Forstner, C, Fränkle, FM, Franklin, GB, Friedel, F, Fulst, A, Gauda, K, Gavin, AS, Gil, W, Glück, F, Grande, A, Grössle, R, Gugiatti, M, Gumbsheimer, R, Hannen, V, Hartmann, J, Haußmann, N, Helbing, K, Hickford, S, Hiller, R, Hillesheimer, D, Hinz, D, Höhn, T, Houdy, T, Huber, A, Jansen, A, Karl, C, Kellerer, J, King, P, Kleifges, M, Klein, M, Köhler, C, Köllenberger, L, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Krause, H, Lasserre, T, La Cascio, L, Lebeda, O, Lechner, P, Lehnert, B, Le, TL, Lokhov, A, Machatschek, M, Malcherek, E, Manfrin, D, Mark, M, Marsteller, A, Martin, EL, Mazzola, E, Melzer, C, Mertens, S, Mostafa, J, Müller, K, Nava, A, Neumann, H, Niemes, S, Oelpmann, P, and Onillon, A
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,neutrino ,neutrino mass ,sterile neutrino ,tritium beta decay ,krypton ,beyond standard model ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Nuclear & Particles Physics ,Nuclear and plasma physics ,Particle and high energy physics - Abstract
The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to measure a high-precision integral spectrum of the endpoint region of T2 β decay, with the primary goal of probing the absolute mass scale of the neutrino. After a first tritium commissioning campaign in 2018, the experiment has been regularly running since 2019, and in its first two measurement campaigns has already achieved a sub-eV sensitivity. After 1000 days of data-taking, KATRIN’s design sensitivity is 0.2 eV at the 90% confidence level. In this white paper we describe the current status of KATRIN; explore prospects for measuring the neutrino mass and other physics observables, including sterile neutrinos and other beyond-Standard-Model hypotheses; and discuss research-and-development projects that may further improve the KATRIN sensitivity.
- Published
- 2022
10. Light emission from ion-implanted SiGe quantum dots grown on Si substrates
- Author
-
Spindlberger, L., Aberl, J., Vukušić, L., Fromherz, T., Hartmann, J.-M., Fournel, F., Prucnal, S., Murphy-Armando, F., and Brehm, M.
- Published
- 2024
- Full Text
- View/download PDF
11. Observation of a structure in the M$_{p\eta}$ invariant mass distribution near 1700 MeV/$c^2$ in the $\mathbf{\gamma p \rightarrow p \pi^0 \eta} $ reaction
- Author
-
Metag, V., Nanova, M., Hartmann, J., Mahlberg, P., Afzal, F., Bartels, C., Bayadilov, D., Beck, R., Becker, M., Blanke, E., Brinkmann, K. -T., Ciupka, S., Crede, V., Dieterle, M., Dutz, H., Elsner, D., Frommberger, F., Gridnev, A., Gottschall, M., Grüner, M., Hammann, Ch., Hannappel, J., Hillert, W., Hoff, J., Hoffmeister, Ph., Honisch, Ch., Jude, T., Kalinowsky, H., Kalischewski, F., Keshelashvili, I., Ketzer, B., Klassen, P., Klein, F., Koop, K., Kroenert, P., Krusche, B., Lang, M., Lopatin, I., Messi, F., Meyer, W., Mitlasóczky, B., Müller, J., Müllers, J., Nikonov, V., Novinsky, V., Novotny, R., Piontek, D., Reicherz, G., Richter, L., Rostomyan, T., Runkel, S., Salisbury, B., Sarantsev, A., Schaab, D., Schmidt, Ch., Schmieden, H., Schultes, J., Seifen, T., Sokhoyan, V., Sowa, C., Spieker, K., Stausberg, N., Thiel, A., Thoma, U., Triffterer, T., Urban, M., Urff, G., van Pee, H., Wagner, M., Walther, D., Wendel, Ch., Werthmüller, D., Wiedner, U., Wilson, A., Winnebeck, A., Witthauer, L., and Wunderlich, Y.
- Subjects
Nuclear Experiment ,Nuclear Theory - Abstract
The reaction $\gamma p \rightarrow p \pi^0 \eta$ has been studied with the CBELSA/TAPS detector at the electron stretcher accelerator ELSA in Bonn for incident photon energies from threshold up to 3.1 GeV. This paper has been motivated by the recently claimed observation of a narrow structure in the M$_{N\eta}$ invariant mass distribution at a mass of 1678 MeV/$c^2$. The existence of this structure cannot be confirmed in the present work. Instead, for E$_{\gamma}$ = 1400 - 1500 MeV and the cut M$_{p\pi^0} \le 1190 $ MeV/$c^2$ a statistically significant structure in the M$_{p\eta}$ invariant mass distribution near 1700 MeV/$c^2$ is observed with a width of $\Gamma\approx 35$ MeV/$c^2$ while the mass resolution is $\sigma_{res}$ = 5 MeV/$c^2$. Increasing the incident photon energy from 1420 to 1540 MeV this structure shifts in mass from $\approx$ 1700MeV/c$^2$ to $\approx$ 1725 MeV/$c^2$; the width increases to about 50 MeV/$c^2$ and decreases thereafter. The cross section associated with this structure reaches a maximum of $\approx$ 100 nb around E$_{\gamma} \approx$ 1490 MeV (W $\approx $ 1920 MeV), which coincides with the $p a_0$ threshold. Three scenarios are discussed which might be the origin of this structure in the M$_{p\eta}$ invariant mass distribution. The most likely interpretation is that it is due to a triangular singularity in the $\gamma p \rightarrow p a_0 \rightarrow p \pi^0 \eta$ reaction, Comment: 16 pages, 18 figure
- Published
- 2021
- Full Text
- View/download PDF
12. The Design, Construction, and Commissioning of the KATRIN Experiment
- Author
-
Aker, M., Altenmüller, K., Amsbaugh, J. F., Arenz, M., Babutzka, M., Bast, J., Bauer, S., Bechtler, H., Beck, M., Beglarian, A., Behrens, J., Bender, B., Berendes, R., Berlev, A., Besserer, U., Bettin, C., Bieringer, B., Blaum, K., Block, F., Bobien, S., Bohn, J., Bokeloh, K., Bolz, H., Bornschein, B., Bornschein, L., Böttcher, M., Bouquet, H., Boyd, N. M., Brunst, T., Burritt, T. H., Caldwell, T. S., Chaoui, Z., Chilingaryan, S., Choi, W., Corona, T. J., Cox, G. A., Debowski, K., Deffert, M., Descher, M., Barrero, D. Díaz, Doe, P. J., Dragoun, O., Drexlin, G., Dunmore, J. A., Dyba, S., Edzards, F., Eichelhardt, F., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Erhard, M., Eversheim, D., Fedkevych, M., Felden, A., Fischer, S., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Frenzel, H., Friedel, F., Fulst, A., Gauda, K., Gehring, R., Gil, W., Glück, F., Görhardt, S., Grimm, J., Grohmann, S., Groh, S., Grössle, R., Gumbsheimer, R., Hackenjos, M., Häßler, D., Hannen, V., Harms, F., Harper, G. C., Hartmann, J., Haußmann, N., Heizmann, F., Helbing, K., Held, M., Hickford, S., Hilk, D., Hillen, B., Hiller, R., Hillesheimer, D., Hinz, D., Höhn, T., Holzmann, S., Horn, S., Hötzel, M., Houdy, T., Howe, M. A., Huber, A., James, T., Jansen, A., Kaiser, M., Karl, C., Kazachenko, O., Kellerer, J., Kippenbrock, L., Kleesiek, M., Kleifges, M., Kleinfeller, J., Klein, M., Köllenberger, L., Kopmann, A., Korzeczek, M., Kosmider, A., Kovalík, A., Krasch, B., Krause, H., Kraus, M., Kuckert, L., Kumb, A., Kunka, N., Lasserre, T., La Cascio, L., Lebeda, O., Leber, M. L., Lehnert, B., Leiber, B., Letnev, J., Lewis, R. J., Le, T. L., Lichter, S., Lokhov, A., Poyato, J. M. Lopez, Machatschek, M., Malcherek, E., Mark, M., Marsteller, A., Martin, E. L., Mehret, K., Meloni, M., Melzer, C., Menshikov, A., Mertens, S., Minter, L. I., Monreal, B., Mostafa, J., Müller, K., Myers, A. W., Naumann, U., Neumann, H., Niemes, S., Oelpmann, P., Off, A., Ortjohann, H. -W., Osipowicz, A., Ostrick, B., Parno, D. S., Peterson, D. A., Plischke, P., Poon, A. W. P., Prall, M., Priester, F., Ranitzsch, P. C. -O., Reich, J., Renschler, P., Rest, O., Rinderspacher, R., Robertson, R. G. H., Rodejohann, W., Rodenbeck, C., Rohr, P., Röllig, M., Röttele, C., Rupp, S., Ryšavý, M., Sack, R., Saenz, A., Sagawe, M., Schäfer, P., Schaller, A., Schimpf, L., Schlösser, K., Schlösser, M., Schlüter, L., Schneidewind, S., Schön, H., Schönung, K., Schrank, M., Schulz, B., Schwarz, J., Šefčík, M., Seitz-Moskaliuk, H., Seller, W., Sibille, V., Siegmann, D., Slezák, M., Spanier, F., Steidl, M., Sturm, M., Sun, M., Tcherniakhovski, D., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Valerius, K., VanDevender, B. A., Van Wechel, T. D., Vénos, D., Verbeek, A., Vianden, R., Hernández, A. P. Vizcaya, Vogt, K., Wall, B. L., Wandkowsky, N., Weber, M., Weingardt, H., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wierman, K. J., Wilkerson, J. F., Wolf, J., Wüstling, S., Xu, W., Yen, Y. -R., Zacher, M., Zadoroghny, S., Zboril, M., and Zeller, G.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The KArlsruhe TRItium Neutrino (KATRIN) experiment, which aims to make a direct and model-independent determination of the absolute neutrino mass scale, is a complex experiment with many components. More than 15 years ago, we published a technical design report (TDR) [https://publikationen.bibliothek.kit.edu/270060419] to describe the hardware design and requirements to achieve our sensitivity goal of 0.2 eV at 90% C.L. on the neutrino mass. Since then there has been considerable progress, culminating in the publication of first neutrino mass results with the entire beamline operating [arXiv:1909.06048]. In this paper, we document the current state of all completed beamline components (as of the first neutrino mass measurement campaign), demonstrate our ability to reliably and stably control them over long times, and present details on their respective commissioning campaigns., Comment: Added missing acknowledgement, corrected performance statement in chapter 4.2.5, updated author list and references
- Published
- 2021
- Full Text
- View/download PDF
13. PANDA Phase One
- Author
-
Barucca, G., Davì, F., Lancioni, G., Mengucci, P., Montalto, L., Natali, P. P., Paone, N., Rinaldi, D., Scalise, L., Krusche, B., Steinacher, M., Liu, Z., Liu, C., Liu, B., Shen, X., Sun, S., Zhao, G., Zhao, J., Albrecht, M., Alkakhi, W., Bökelmann, S., Coen, S., Feldbauer, F., Fink, M., Frech, J., Freudenreich, V., Fritsch, M., Grochowski, J., Hagdorn, R., Heinsius, F. H., Held, T., Holtmann, T., Keshk, I., Koch, H., Kopf, B., Kümmel, M., Küßner, M., Li, J., Linzen, L., Maldaner, S., Oppotsch, J., Pankonin, S., Pelizäus, M., Pflüger, S., Reher, J., Reicherz, G., Schnier, C., Steinke, M., Triffterer, T., Wenzel, C., Wiedner, U., Denizli, H., Er, N., Keskin, U., Yerlikaya, S., Yilmaz, A., Beck, R., Chauhan, V., Hammann, C., Hartmann, J., Ketzer, B., Müllers, J., Salisbury, B., Schmidt, C., Thoma, U., Urban, M., Bianconi, A., Bragadireanu, M., Pantea, D., Rimjaem, S., Domagala, M., Filo, G., Lisowski, E., Lisowski, F., Michałek, M., Poznański, P., Płażek, J., Korcyl, K., Lebiedowicz, P., Pysz, K., Schäfer, W., Szczurek, A., Firlej, M., Fiutowski, T., Idzik, M., Moron, J., Swientek, K., Terlecki, P., Korcyl, G., Lalik, R., Malige, A., Moskal, P., Nowakowski, K., Przygoda, W., Rathod, N., Salabura, P., Smyrski, J., Augustin, I., Böhm, R., Lehmann, I., Schmitt, L., Varentsov, V., Al-Turany, M., Belias, A., Deppe, H., Dzhygadlo, R., Flemming, H., Gerhardt, A., Götzen, K., Heinz, A., Jiang, P., Karabowicz, R., Koch, S., Kurilla, U., Lehmann, D., Lühning, J., Lynen, U., Orth, H., Peters, K., Ritman, J., Schepers, G., Schmidt, C. J., Schwarz, C., Schwiening, J., Täschner, A., Traxler, M., Voss, B., Wieczorek, P., Abazov, V., Alexeev, G., Barabanov, M. Yu., Dodokhov, V. Kh., Efremov, A., Fechtchenko, A., Galoyan, A., Golovanov, G., Koshurnikov, E. K., Lobanov, Y. Yu., Olshevskiy, A. G., Piskun, A. A., Samartsev, A., Shimanski, S., Skachkov, N. B., Skachkova, A. N., Strokovsky, E. A., Tokmenin, V., Uzhinsky, V., Verkheev, A., Vodopianov, A., Zhuravlev, N. I., Watts, D., Böhm, M., Eyrich, W., Lehmann, A., Miehling, D., Pfaffinger, M., Seth, K., Xiao, T., Ali, A., Hamdi, A., Himmelreich, M., Krebs, M., Nakhoul, S., Nerling, F., Gianotti, P., Lucherini, V., Bracco, G., Bodenschatz, S., Brinkmann, K. T., Brück, L., Diehl, S., Dormenev, V., Düren, M., Erlen, T., Hahn, C., Hayrapetyan, A., Hofmann, J., Kegel, S., Khalid, F., Köseoglu, I., Kripko, A., Kühn, W., Metag, V., Moritz, M., Nanova, M., Novotny, R., Orsich, P., Pereira-de-Lira, J., Sachs, M., Schmidt, M., Schubert, R., Strickert, M., Wasem, T., Zaunick, H. G., Tomasi-Gustafsson, E., Glazier, D., Ireland, D., Seitz, B., Kappert, R., Kavatsyuk, M., Loehner, H., Messchendorp, J., Rodin, V., Kalita, K., Huang, G., Liu, D., Peng, H., Qi, H., Sun, Y., Zhou, X., Kunze, M., Azizi, K., Olgun, A. T., Tavukoglu, Z., Derichs, A., Dosdall, R., Esmail, W., Gillitzer, A., Goldenbaum, F., Grunwald, D., Jokhovets, L., Kannika, J., Kulessa, P., Orfanitski, S., Perez-Andrade, G., Prasuhn, D., Prencipe, E., Pütz, J., Rosenthal, E., Schadmand, S., Schmitz, R., Scholl, A., Sefzick, T., Serdyuk, V., Stockmanns, T., Veretennikov, D., Wintz, P., Wüstner, P., Xu, H., Zhou, Y., Cao, X., Hu, Q., Liang, Y., Rigato, V., Isaksson, L., Achenbach, P., Corell, O., Denig, A., Distler, M., Hoek, M., Lauth, W., Leithoff, H. H., Merkel, H., Müller, U., Petersen, J., Pochodzalla, J., Schlimme, S., Sfienti, C., Thiel, M., Bleser, S., Bölting, M., Capozza, L., Dbeyssi, A., Ehret, A., Klasen, R., Kliemt, R., Maas, F., Motzko, C., Noll, O., Piñeiro, D. Rodríguez, Schupp, F., Steinen, M., Wolff, S., Zimmermann, I., Kazlou, D., Korzhik, M., Missevitch, O., Balanutsa, P., Chernetsky, V., Demekhin, A., Dolgolenko, A., Fedorets, P., Gerasimov, A., Golubev, A., Kantsyrev, A., Kirin, D. Y., Kristi, N., Ladygina, E., Luschevskaya, E., Matveev, V. A., Panjushkin, V., Stavinskiy, A. V., Balashoff, A., Boukharov, A., Bukharova, M., Malyshev, O., Vishnevsky, E., Bonaventura, D., Brand, P., Hetz, B., Hüsken, N., Kellers, J., Khoukaz, A., Klostermann, D., Mannweiler, C., Vestrick, S., Bumrungkoh, D., Herold, C., Khosonthongkee, K., Kobdaj, C., Limphirat, A., Manasatitpong, K., Nasawad, T., Pongampai, S., Simantathammakul, T., Srisawad, P., Wongprachanukul, N., Yan, Y., Yu, C., Zhang, X., Zhu, W., Antokhin, E., Barnyakov, A. Yu., Beloborodov, K., Blinov, V. E., Kuyanov, I. A., Pivovarov, S., Pyata, E., Tikhonov, Y., Blinov, A. E., Kononov, S., Kravchenko, E. A., Lattery, M., Boca, G., Duda, D., Finger, M., Finger, Jr., M., Kveton, A., Prochazka, I., Slunecka, M., Volf, M., Jary, V., Korchak, O., Marcisovsky, M., Neue, G., Novy, J., Tomasek, L., Tomasek, M., Virius, M., Vrba, V., Abramov, V., Bukreeva, S., Chernichenko, S., Derevschikov, A., Ferapontov, V., Goncharenko, Y., Levin, A., Maslova, E., Melnik, Y., Meschanin, A., Minaev, N., Mochalov, V., Moiseev, V., Morozov, D., Nogach, L., Poslavskiy, S., Ryazantsev, A., Ryzhikov, S., Semenov, P., Shein, I., Uzunian, A., Vasiliev, A., Yakutin, A., Belostotski, S., Fedotov, G., Izotov, A., Manaenkov, S., Miklukho, O., Cederwall, B., Preston, M., Tegner, P. E., Wölbing, D., Gandhi, K., Rai, A. K., Godre, S., Crede, V., Dobbs, S., Eugenio, P., Bussa, M. P., Spataro, S., Calvo, D., De Remigis, P., Filippi, A., Mazza, G., Wheadon, R., Iazzi, F., Lavagno, A., Akram, A., Calen, H., Andersson, W. Ikegami, Johansson, T., Kupsc, A., Marciniewski, P., Papenbrock, M., Regina, J., Rieger, J., Schönning, K., Wolke, M., Chlopik, A., Kesik, G., Melnychuk, D., Tarasiuk, J., Wojciechowski, M., Wronka, S., Zwieglinski, B., Amsler, C., Bühler, P., Marton, J., Zimmermann, S., Fischer, C. S., Haidenbauer, J., Hanhart, C., Lutz, M. F. M., and Ryan, Sinéad M.
- Subjects
High Energy Physics - Experiment ,Nuclear Experiment - Abstract
The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of hadron-, nuclear- and atomic physics experiments. The future antiProton ANnihilations at DArmstadt (PANDA or $\overline{\rm P}$ANDA) experiment at FAIR will offer a broad physics programme, covering different aspects of the strong interaction. Understanding the latter in the non-perturbative regime remains one of the greatest challenges in contemporary physics. The antiproton-nucleon interaction studied with PANDA provides crucial tests in this area. Furthermore, the high-intensity, low-energy domain of PANDA allows for searches for physics beyond the Standard Model, e.g. through high precision symmetry tests. This paper takes into account a staged approach for the detector setup and for the delivered luminosity from the accelerator. The available detector setup at the time of the delivery of the first antiproton beams in the HESR storage ring is referred to as the \textit{Phase One} setup. The physics programme that is achievable during Phase One is outlined in this paper., Comment: 35 pages, 15 figures
- Published
- 2021
- Full Text
- View/download PDF
14. The composition of the choice set modulates probability weighting in risky decisions
- Author
-
Grubb, M. A., Li, Y., Larisch, R., Hartmann, J., Gottlieb, J., and Levy, I.
- Published
- 2023
- Full Text
- View/download PDF
15. Lasing in Group-IV materials
- Author
-
Reboud, V., Buca, D., Sigg, H., Hartmann, J. M., Ikonic, Z., Pauc, N., Calvo, V., Rodriguez, P., and Chelnokov, A.
- Subjects
Physics - Optics ,Physics - Applied Physics - Abstract
Silicon photonics in the near-Infra-Red, up to 1.6 um, is already one of key technologies in optical data communications, particularly short-range. It is also being prospected for applications in quantum computing, artificial intelligence, optical signal processing, where complex photonic integration is to be combined with large-volume fabrication. However, silicon photonics does not yet cover a large portion of applications in the mid-IR. In the 2 to 5 um wavelength range, environmental sensing, life sensing, and security all rely on optical signatures of molecular vibrations to identify complex individual chemical species. The markets for such analysis are huge and constantly growing, with a push for sensitivity, specificity, compactness, low-power operation and low cost. An all-group-IV, CMOS-compatible mid-IR integrated photonic platform would be a key enabler in this wavelength range. As for other wavelengths, such a platform should be complete with low-loss guided interconnects, detectors, modulators, eventually, and most importantly efficient and integrated light sources. This chapter reviews recent developments in the fields of mid-IR silicon-compatible optically and electrically pumped lasers, light emitting diodes and photodetectors based on Ge, GeSn and SiGeSn alloys. It contains insights into the fundamentals of these developments, including band structure modelling, material growth and processing techniques., Comment: Silicon Photonics IV: Innovative Frontiers, edited by David J. Lockwood and Lorenzo Pavesi, Springer series Topics in Applied Physics (2021)
- Published
- 2020
16. Schmerzhafte, livide Plaques an beiden Unterschenkeln
- Author
-
Hartmann, J. and Toberer, F.
- Published
- 2023
- Full Text
- View/download PDF
17. Surgical Safety Does Not Happen By Accident: Learning From Perioperative Near Miss Case Studies
- Author
-
Stucky, Christopher H., Michael Hartmann, J., Yauger, Young J., Romito, Kenneth J., Bradley, David F., Baza, Gaston, Lorenz, Megan E., House, Sherita L., Dindinger, Rebeccah A., Wymer, Joshua A., Miller, Melissa J., and Knight, Albert R.
- Published
- 2024
- Full Text
- View/download PDF
18. The design, construction, and commissioning of the KATRIN experiment
- Author
-
Aker, M, Altenmüller, K, Amsbaugh, JF, Arenz, M, Babutzka, M, Bast, J, Bauer, S, Bechtler, H, Beck, M, Beglarian, A, Behrens, J, Bender, B, Berendes, R, Berlev, A, Besserer, U, Bettin, C, Bieringer, B, Blaum, K, Block, F, Bobien, S, Böttcher, M, Bohn, J, Bokeloh, K, Bolz, H, Bornschein, B, Bornschein, L, Bouquet, H, Boyd, NM, Brunst, T, Burritt, TH, Caldwell, TS, Chaoui, Z, Chilingaryan, S, Choi, W, Corona, TJ, Cox, GA, Debowski, K, Deffert, M, Descher, M, Barrero, D Díaz, Doe, PJ, Dragoun, O, Drexlin, G, Dunmore, JA, Dyba, S, Edzards, F, Eichelhardt, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Erhard, M, Eversheim, D, Fedkevych, M, Felden, A, Fischer, S, Formaggio, JA, Fränkle, FM, Franklin, GB, Frenzel, H, Friedel, F, Fulst, A, Gauda, K, Gehring, R, Gil, W, Glück, F, Görhardt, S, Grimm, J, Grössle, R, Groh, S, Grohmann, S, Gumbsheimer, R, Hackenjos, M, Häßler, D, Hannen, V, Harms, F, Harper, GC, Hartmann, J, Haußmann, N, Heizmann, F, Helbing, K, Held, M, Hickford, S, Hilk, D, Hillen, B, Hiller, R, Hillesheimer, D, Hinz, D, Höhn, T, Hötzel, M, Holzmann, S, Horn, S, Houdy, T, Howe, MA, Huber, A, James, T, Jansen, A, Kaiser, M, Karl, C, and Kazachenko, O
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,Beam-line instrumentation ,Spectrometers ,Gas systems and purification ,Neutrino detectors ,Engineering ,Nuclear & Particles Physics ,Physical sciences - Abstract
The KArlsruhe TRItium Neutrino (KATRIN) experiment, which aims to make a direct and model-independent determination of the absolute neutrino mass scale, is a complex experiment with many components. More than 15 years ago, we published a technical design report (TDR) [1] to describe the hardware design and requirements to achieve our sensitivity goal of 0.2 eV at 90% C.L. on the neutrino mass. Since then there has been considerable progress, culminating in the publication of first neutrino mass results with the entire beamline operating [2]. In this paper, we document the current state of all completed beamline components (as of the first neutrino mass measurement campaign), demonstrate our ability to reliably and stably control them over long times, and present details on their respective commissioning campaigns.
- Published
- 2021
19. Molecular alignment echoes probe collision-induced rotational-speed changes
- Author
-
Hartmann, J. -M., Ma, J., Delahaye, T., Billard, F., Hertz, E., Wu, J., Lavorel, B., Boulet, C., and Faucher, O.
- Subjects
Physics - Optics ,Quantum Physics - Abstract
We show that the decays with pressure of the alignment echoes induced in N2O-He gas mixtures by two laser pulses with various delays bring detailed information on collision-induced changes of the rotational speed. Measurements and calculations demonstrate that collisions reduce the echo amplitude all the more efficiently when the echo appears late. We quantitatively explain this behavior by the filamentation of the classical rotational phase space induced by the first pulse and the progressive narrowing of the filaments with time. The variation of the echo decay thus reflects the ability of collisions to change the molecules' rotational speed by various amounts, enabling refined tests of models for the dissipation induced by intermolecular forces.
- Published
- 2020
- Full Text
- View/download PDF
20. Ultra-low threshold cw and pulsed lasing in tensile strained GeSn alloys
- Author
-
Elbaz, A., Buca, D., Driesch, N. Von den, Pantzas, K., Patriarche, G., Zerounian, N., Herth, E., Checoury, X., Sauvage, S., Sagnes, I., Foti, A., Ossikovski, R., Hartmann, J. -M., Boeuf, F., Ikonic, Z., Boucaud, P., Grutzmacher, D., and Kurdi, M. El
- Subjects
Physics - Applied Physics ,Condensed Matter - Materials Science ,Physics - Optics - Abstract
GeSn alloys are the most promising semiconductors for light emitters entirely based on group IV elements. Alloys containing more than 8 at.% Sn have fundamental direct band-gaps, similar to conventional III-V semiconductors and thus can be employed for light emitting devices. Here, we report on GeSn microdisk lasers encapsulated with a SiNx stressor layer to produce tensile strain. A 300nm GeSn layer with 5.4 at.% Sn, which is an indirect band-gap semiconductor as-grown with a compressive strain of -0.32 %, is transformed via tensile strain engineering into a truly direct band-gap semiconductor. In this approach the low Sn concentration enables improved defect engineering and the tensile strain delivers a low density of states at the valence band edge, which is the light hole band. Continuous wave (cw) as well as pulsed lasing are observed at very low optical pump powers. Lasers with emission wavelength of 2.5 um have thresholds as low as 0.8kWcm^-2 for ns-pulsed excitation, and 1.1kWcm^-2 under cw excitation. These thresholds are more than two orders of magnitude lower than those previously reported for bulk GeSn lasers, approaching these values obtained for III-V lasers on Si. The present results demonstrate the feasabiliy and are the guideline for monolithically integrated Si-based laser sources on Si photonics platform.
- Published
- 2020
- Full Text
- View/download PDF
21. The SPEAK study rationale and design: A linguistic corpus-based approach to understanding thought disorder
- Author
-
Bayer, J.M.M., Spark, J., Krcmar, M., Formica, M., Gwyther, K., Srivastava, A., Selloni, A., Cotter, M., Hartmann, J., Polari, A., Bilgrami, Z.R., Sarac, C., Lu, A., Yung, Alison R., McGowan, A., McGorry, P., Shah, J.L., Cecchi, G.A., Mizrahi, R., Nelson, B., and Corcoran, C.M.
- Published
- 2023
- Full Text
- View/download PDF
22. Technical Design Report for the PANDA Endcap Disc DIRC
- Author
-
Panda Collaboration, Davi, F., Erni, W., Krusche, B., Steinacher, M., Walford, N., Liu, H., Liu, Z., Liu, B., Shen, X., Wang, C., Zhao, J., Albrecht, M., Erlen, T., Feldbauer, F., Fink, M., Freudenreich, V., Fritsch, M., Heinsius, F. H., Held, T., Holtmann, T., Keshk, I., Koch, H., Kopf, B., Kuhlmann, M., Kümmel, M., Leiber, S., Musiol, P., Mustafa, A., Pelizäus, M., Pitka, A., Reicherz, G., Richter, M., Schnier, C., Schröder, T., Sersin, S., Sohl, L., Sowa, C., Steinke, M., Triffterer, T., Wiedner, U., Beck, R., Hammann, C., Hartmann, J., Ketzer, B., Kube, M., Rossbach, M., Schmidt, C., Schmitz, R., Thoma, U., Urban, M., Bianconi, A., Bragadireanu, M., Pantea, D., Czyzycki, W., Domagala, M., Filo, G., Jaworowski, J., Krawczyk, M., Lisowski, E., Lisowski, F., Michalek, M., Plazek, J., Korcyl, K., Kozela, A., Kulessa, P., Lebiedowicz, P., Pysz, K., Schäfer, W., Szczurek, A., Fiutowski, T., Idzik, M., Mindur, B., Swientek, K., Biernat, J., Kamys, B., Kistryn, S., Korcyl, G., Krzemien, W., Magiera, A., Moskal, P., Przygoda, W., Rudy, Z., Salabura, P., Smyrski, J., Strzempek, P., Wronska, A., Augustin, I., Böhm, R., Lehmann, I., Marinescu, D. Nicmorus, Schmitt, L., Varentsov, V., Al-Turany, M., Belias, A., Deppe, H., Veis, N. Divani, Dzhygadlo, R., Flemming, H., Gerhardt, A., Götzen, K., Karabowicz, R., Kurilla, U., Lehmann, D., Löchner, S., Lühning, J., Lynen, U., Nakhoul, S., Orth, H., Peters, K., Saito, T., Schepers, G., Schmidt, C. J., Schwarz, C., Schwiening, J., Täschner, A., Traxler, M., Voss, B., Wieczorek, P., Wilms, A., Abazov, V., Alexeev, G., Arefiev, V. A., Astakhov, V., Barabanov, M. Yu., Batyunya, B. V., Dodokhov, V. Kh., Efremov, A., Fechtchenko, A., Galoyan, A., Golovanov, G., Koshurnikov, E. K., Lobanov, Y. Yu., Lobanov, V. I., Malyshev, V., Olshevskiy, A. G., Piskun, A. A., Samartsev, A., Sapozhnikov, M. G., Skachkov, N. B., Skachkova, A. N., Strokovsky, E. A., Tokmenin, V., Uzhinsky, V., Verkheev, A., Vodopianov, A., Zhuravlev, N. I., Zinchenko, A., Branford, D., Glazier, D., Watts, D., Böhm, M., Eyrich, W., Lehmann, A., Miehling, D., Pfaffinger, M., Stelter, S., Uhlig, F., Dobbs, S., Seth, K., Tomaradze, A., Xiao, T., Bettoni, D., Ali, A., Hamdi, A., Krebs, M., Nerling, F., Akishina, V., Gorbunov, S., Kisel, I., Kozlov, G., Pugach, M., Zyzak, M., Bianchi, N., Gianotti, P., Guaraldo, C., Lucherini, V., Bracco, G., Bodenschatz, S., Brinkmann, K. T., Di Pietro, V., Diehl, S., Dormenev, V., Düren, M., Etzelmüller, E., Föhl, K., Galuska, M., Geßler, T., Gutz, E., Hahn, C., Hayrapetyan, A., Kesselkaul, M., Kühn, W., Kuske, T., Lange, J. S., Liang, Y., Metag, V., Moritz, M., Nanova, M., Novotny, R., Quagli, T., Riccardi, A., Rieke, J., Schmidt, M., Schnell, R., Stenzel, H., Strickert, M., Thöring, U., Wasem, T., Wohlfahrt, B., Zaunick, H. G., Tomasi-Gustafsson, E., Ireland, D., Rosner, G., Seitz, B., Deepak, P. N., Kulkarni, A., Apostolou, A., Babai, M., Kavatsyuk, M., Loehner, H., Messchendorp, J., Schakel, P., Tiemens, M., van der Weele, J. C., Vejdani, S., Dutta, K., Kalita, K., Sohlbach, H., Bai, M., Bianchi, L., Büscher, M., Derichs, A., Dosdall, R., Erven, A., Fracassi, V., Gillitzer, A., Goldenbaum, F., Grunwald, D., Jokhovets, L., Kemmerling, G., Kleines, H., Lai, A., Lehrach, A., Mikirtychyants, M., Orfanitski, S., Prasuhn, D., Prencipe, E., Pütz, J., Ritman, J., Rosenthal, E., Schadmand, S., Sefzick, T., Serdyuk, V., Sterzenbach, G., Stockmanns, T., Wintz, P., Wüstner, P., Xu, H., Zhou, Y., Li, Z., Ma, X., Rigato, V., Isaksson, L., Achenbach, P., Aycock, A., Corell, O., Denig, A., Distler, M., Hoek, M., Lauth, W., Merkel, H., Müller, U., Pochodzalla, J., Sanchez, S., Schlimme, S., Sfienti, C., Thiel, M., Zambrana, M., Ahmadi, H., Ahmed, S., Bleser, S., Capozza, L., Cardinali, M., Dbeyssi, A., Ehret, A., Fröhlich, B., Grasemann, P., Haasler, S., Izard, D., Jorge, J., Khaneft, D., Klasen, R., Kliemt, R., Köhler, J., Leithoff, H. H., Lin, D., Maas, F., Maldaner, S., Michel, M., Espi, M. C. Mora, Morales, C. Morales, Motzko, C., Noll, O., Pflüger, S., Pineiro, D. Rodriguez, Steinen, M., Walaa, E., Wolff, S., Zimmermann, I., Fedorov, A., Korzhik, M., Missevitch, O., Balanutsa, P., Chernetsky, V., Demekhin, A., Dolgolenko, A., Fedorets, P., Gerasimov, A., Goryachev, V., Kirin, D. Y., Matveev, V. A., Stavinskiy, A. V., Balashoff, A., Boukharov, A., Malyshev, O., Marishev, I., Chandratre, V., Datar, V., Jha, V., Kumawat, H., Mohanty, A. K., Parmar, A., Rai, A. K., Roy, B., Sonika, G., Fritzsch, C., Grieser, S., Hergemöller, A. K., Hetz, B., Hüsken, N., Khoukaz, A., Wessels, J. P., Herold, C., Khosonthongkee, K., Kobdaj, C., Limphirat, A., Srisawad, P., Yan, Y., Blinov, A. E., Kononov, S., Kravchenko, E. A., Antokhin, E., Barnyakov, M., Barnyakov, A. Yu., Beloborodov, K., Blinov, V. E., Bobrovnikov, V. S., Kuyanov, I. A., Onuchin, A. P., Pivovarov, S., Pyata, E., Serednyakov, S., Tikhonov, Y., Kunne, R., Marchand, D., Ramstein, B., van de Wiele, J., Wang, Y., Boca, G., Burian, V., Finger, M., Nikolovova, A., Pesek, M., Peskova, M., Pfeffer, M., Prochazka, I., Slunecka, M., Gallus, P., Jary, V., Novy, J., Tomasek, M., Virius, M., Vrba, V., Abramov, V., Belikov, N., Bukreeva, S., Davidenko, A., Derevschikov, A., Goncharenko, Y., Grishin, V., Kachanov, V., Kormilitsin, V., Levin, A., Melnik, Y., Minaev, N., Mochalov, V., Morozov, D., Nogach, L., Poslavskiy, S., Ryazantsev, A., Ryzhikov, S., Semenov, P., Shein, I., Uzunian, A., Vasiliev, A., Yakutin, A., Roy, U., Yabsley, B., Belostotski, S., Gavrilov, G., Izotov, A., Manaenkov, S., Miklukho, O., Veretennikov, D., Zhdanov, A., Bäck, T., Cederwall, B., Makonyi, K., Preston, M., Tegner, P. E., Wölbing, D., Godre, S., Bussa, M. P., Marcello, S., Spataro, S., Iazzi, F., Introzzi, R., Lavagno, A., Calvo, D., De Remigis, P., Filippi, A., Mazza, G., Rivetti, A., Wheadon, R., Martin, A., Calen, H., Andersson, W. Ikegami, Johansson, T., Kupsc, A., Marciniewski, P., Papenbrock, M., Pettersson, J., Regina, J., Schönning, K., Wolke, M., Diaz, J., Chackara, V. Pothodi, Chlopik, A., Kesik, G., Melnychuk, D., Slowinski, B., Trzcinski, A., Wojciechowski, M., Wronka, S., Zwieglinski, B., Bühler, P., Marton, J., Steinschaden, D., Suzuki, K., Widmann, E., Zimmermann, S., and Zmeskal, J.
- Subjects
Physics - Instrumentation and Detectors - Abstract
PANDA (anti-Proton ANnihiliation at DArmstadt) is planned to be one of the four main experiments at the future international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. It is going to address fundamental questions of hadron physics and quantum chromodynamics using cooled antiproton beams with a high intensity and and momenta between 1.5 and 15 GeV/c. PANDA is designed to reach a maximum luminosity of 2x10^32 cm^2 s. Most of the physics programs require an excellent particle identification (PID). The PID of hadronic states at the forward endcap of the target spectrometer will be done by a fast and compact Cherenkov detector that uses the detection of internally reflected Cherenkov light (DIRC) principle. It is designed to cover the polar angle range from 5{\deg} to 22{\deg} and to provide a separation power for the separation of charged pions and kaons up to 3 standard deviations (s.d.) for particle momenta up to 4 GeV/c in order to cover the important particle phase space. This document describes the technical design and the expected performance of the novel PANDA Disc DIRC detector that has not been used in any other high energy physics experiment (HEP) before. The performance has been studied with Monte-Carlo simulations and various beam tests at DESY and CERN. The final design meets all PANDA requirements and guarantees suffcient safety margins., Comment: TDR for Panda/Fair to be published
- Published
- 2019
23. Towards scalable silicon quantum computing
- Author
-
Vinet, M., Hutin, L., Bertrand, B., Barraud, S., Hartmann, J. -M., Kim, Y. -J., Mazzocchi, V., Amisse, A., Bohuslavskyi, H., Bourdet, L., Crippa, A., Jehl, X., Maurand, R., Niquet, Y. -M., Sanquer, M., Venitucci, B., Jadot, B., Chanrion, E., Mortemousque, P. -A., Spence, C., Urdampilleta, M., De Franceschi, S., and Meunier, T.
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
We report the efforts and challenges dedicated towards building a scalable quantum computer based on Si spin qubits. We review the advantages of relying on devices fabricated in a thin film technology as their properties can be in situ tuned by the back gate voltage, which prefigures tuning capabilities in scalable qubits architectures.
- Published
- 2019
- Full Text
- View/download PDF
24. Suppression of Penning discharges between the KATRIN spectrometers
- Author
-
Aker, M., Altenmüller, K., Beglarian, A., Behrens, J., Berlev, A., Besserer, U., Blaum, K., Block, F., Bobien, S., Bornschein, B., Bornschein, L., Bouquet, H., Brunst, T., Caldwell, T. S., Chilingaryan, S., Choi, W., Debowski, K., Deffert, M., Descher, M., Barrero, D. Díaz, Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Eversheim, D., Fedkevych, M., Felden, A., Formaggio, J. A., Fränkle, F., Franklin, G. B., Frankrone, H., Friedel, F., Fulst, A., Gauda, K., Gil, W., Glück, F., Grohmann, S., Grössle, R., Gumbsheimer, R., Hackenjos, M., Hannen, V., Hartmann, J., Haußmann, N., Heizmann, F., Heizmann, J., Helbing, K., Hickford, S., Hillesheimer, D., Hinz, D., Höhn, T., Holzapfel, B., Holzmann, S., Houdy, T., Jansen, A., Karl, C., Kellerer, J., Kernert, N., Kippenbrock, L., Klein, M., Köhler, C., Köllenberger, L., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Krause, H., Kuffner, B., Kunka, N., Lasserre, T., La Cascio, L., Lebeda, O., Lehnert, B., Letnev, J., Leven, F., Le, T. L., Lichter, S., Lokhov, A., Machatschek, M., Malcherek, E., Marsteller, A., Martin, E. L., Melzer, C., Menshikov, A., Mertens, S., Monreal, B., Müller, K., Naumann, U., Neumann, H., Niemes, S., Noe, M., Ortjohann, H. -W., Osipowicz, A., Otten, E., Parno, D. S., Pollithy, A., Poon, A. W. P., Poyato, J. M. L., Priester, F., Ranitzsch, P. C. -O., Rest, O., Rinderspacher, R., Robertson, R. G. H., Rodenbeck, C., Rohr, P., Röllig, M., Röttele, C., Ryšavý, M., Sack, R., Saenz, A., Schäfer, P., Schimpf, L., Schlösser, K., Schlösser, M., Schlüter, L., Schrank, M., Schulz, B., Seitz-Moskaliuk, H., Seller, W., Sibille, V., Siegmann, D., Slezák, M., Spanier, F., Steidl, M., Steven, M., Sturm, M., Suesser, M., Sun, M., Tcherniakhovski, D., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Valerius, K., Vénos, D., Vianden, R., Hernández, A. P. Vizcaya, Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., Xu, W., Yen, Y. -R., Zadoroghny, S., and Zeller, G.
- Subjects
Physics - Instrumentation and Detectors - Abstract
The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to determine the effective electron (anti)neutrino mass with a sensitivity of $0.2\textrm{ eV/c}^2$ (90$\%$ C.L.) by precisely measuring the endpoint region of the tritium $\beta$-decay spectrum. It uses a tandem of electrostatic spectrometers working as MAC-E (magnetic adiabatic collimation combined with an electrostatic) filters. In the space between the pre-spectrometer and the main spectrometer, an unavoidable Penning trap is created when the superconducting magnet between the two spectrometers, biased at their respective nominal potentials, is energized. The electrons accumulated in this trap can lead to discharges, which create additional background electrons and endanger the spectrometer and detector section downstream. To counteract this problem, "electron catchers" were installed in the beamline inside the magnet bore between the two spectrometers. These catchers can be moved across the magnetic-flux tube and intercept on a sub-ms time scale the stored electrons along their magnetron motion paths. In this paper, we report on the design and the successful commissioning of the electron catchers and present results on their efficiency in reducing the experimental background., Comment: - 12 pages, 14 figures, LaTeX; typos corrected, references added; precised a few arguments, added additional discussions, results unchanged
- Published
- 2019
- Full Text
- View/download PDF
25. New data on $\vec{\gamma} \vec{p}\rightarrow \eta p$ with polarized photons and protons and their implications for $N^* \to N\eta$ decays
- Author
-
Müller, J., Hartmann, J., Grüner, M., Afzal, F., Anisovich, A. V., Bantes, B., Bayadilov, D., Beck, R., Becker, M., Beloglazov, Y., Berlin, M., Bichow, M., Böse, S., Brinkmann, K. -T., Challand, T., Crede, V., Dietz, F., Dieterle, M., Drexler, P., Dutz, H., Eberhardt, H., Elsner, D., Ewald, R., Fornet-Ponse, K., Friedrich, S., Frommberger, F., Funke, C., Gottschall, M., Gridnev, A., Goertz, S., Gutz, E., Hammann, C., Hannen, V., Hannappel, J., Herick, J., Hillert, W., Hoffmeister, P., Honisch, C., Jahn, O., Jude, T., Jaegle, I., Käser, A., Kaiser, D., Kalinowsky, H., Kalischewski, F., Kammer, S., Keshelashvili, I., Klassen, P., Kleber, V., Klein, F., Klempt, E., Koop, K., Krusche, B., Kube, M., Lang, M., Lopatin, I., Maghrbi, Y., Mahlberg, P., Makonyi, K., Messi, F., Metag, V., Meyer, W., Müllers, J., Nanova, M., Nikonov, V., Novinski, D., Novotny, R., Piontek, D., Reicherz, G., Rosenbaum, C., Rostomyan, T., Roth, B., Sarantsev, A., Schmidt, C., Schmieden, H., Schmitz, R., Seifen, T., Sokhoyan, V., Thiel, A., Thoma, U., Urban, M., van Pee, H., Walther, D., Wendel, C., Wiedner, U., Wilson, A., Winnebeck, A., Witthauer, L., and Collaboration, CBELSA/TAPS
- Subjects
Nuclear Experiment - Abstract
The polarization observables $T, E, P, H$, and $G$ in photoproduction of $\eta$ mesons off protons are measured for photon energies from threshold to $W=2400\,$MeV ($T$), 2280 MeV ($E$), 1620 MeV ($P, H$), or 1820 MeV ($G$), covering nearly the full solid angle. The data are compared to predictions from the SAID, MAID, J\"uBo, and BnGa partial-wave analyses. A refit within the BnGa approach including further data yields precise branching ratios for the $N\eta$ decay of nucleon resonances. A $N\eta$-branching ratio of $0.33\pm 0.04$ for $N(1650)1/2^-$ is found, which reduces the large and controversially discussed $N\eta$-branching ratio difference of the two lowest mass $J^P=1/2^-$-resonances significantly., Comment: 10 pages, 11 figures
- Published
- 2019
- Full Text
- View/download PDF
26. An improved upper limit on the neutrino mass from a direct kinematic method by KATRIN
- Author
-
Aker, M., Altenmüller, K., Arenz, M., Babutzka, M., Barrett, J., Bauer, S., Beck, M., Beglarian, A., Behrens, J., Bergmann, T., Besserer, U., Blaum, K., Block, F., Bobien, S., Bokeloh, K., Bonn, J., Bornschein, B., Bornschein, L., Bouquet, H., Brunst, T., Caldwell, T. S., La Cascio, L., Chilingaryan, S., Choi, W., Corona, T. J., Debowski, K., Deffert, M., Descher, M., Doe, P. J., Dragoun, O., Drexlin, G., Dunmore, J. A., Dyba, S., Edzards, F., Eisenblätter, L., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Erhard, M., Eversheim, D., Fedkevych, M., Felden, A., Fischer, S., Flatt, B., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Frankrone, H., Friedel, F., Fuchs, D., Fulst, A., Furse, D., Gauda, K., Gemmeke, H., Gil, W., Glück, F., Görhardt, S., Groh, S., Grohmann, S., Grössle, R., Gumbsheimer, R., Minh, M. Ha, Hackenjos, M., Hannen, V., Harms, F., Hartmann, J., Haußmann, N., Heizmann, F., Helbing, K., Hickford, S., Hilk, D., Hillen, B., Hillesheimer, D., Hinz, D., Höhn, T., Holzapfel, B., Holzmann, S., Houdy, T., Howe, M. A., Huber, A., Jansen, A., Kaboth, A., Karl, C., Kazachenko, O., Kellerer, J., Kernert, N., Kippenbrock, L., Kleesiek, M., Klein, M., Köhler, C., Köllenberger, L., Kopmann, A., Korzeczek, M., Kosmider, A., Kovalí, A., Krasch, B., Kraus, M., Krause, H., Kuckert, L., Kuffner, B., Kunka, N., Lasserre, T., Le, T. L., Lebeda, O., Leber, M., Lehnert, B., Letnev, J., Leven, F., Lichter, S., Lobashev, V. M., Lokhov, A., Machatschek, M., Malcherek, E., Müller, K., Mark, M., Marsteller, A., Martin, E. L., Melzer, C., Menshikov, A., Mertens, S., Minter, L. I., Mirz, S., Monreal, B., Guzman, P. I. Morales, Naumann, U., Ndeke, W., Neumann, H., Niemes, S., Noe, M., Oblath, N. S., Ortjohann, H. -W., Osipowicz, A., Ostrick, B., Otten, E., Parno, D. S., Phillips II, D. G., Plischke, P., Pollithy, A., Poon, A. W. P., Pouryamout, J., Prall, M., Priester, F., Röllig, M., Röttele, C., Ranitzsch, P. C. -O., Rest, O., Rinderspacher, R., Robertson, R. G. H., Rodenbeck, C., Rohr, P., Roll, Ch., Rupp, S., Rysavy, M., Sack, R., Saenz, A., Schäfer, P., Schimpf, L., Schlösser, K., Schlösser, M., Schlüter, L., Schön, H., Schönung, K., Schrank, M., Schulz, B., Schwarz, J., Seitz-Moskaliuk, H., Seller, W., Sibille, V., Siegmann, D., Skasyrskaya, A., Slezak, M., Spalek, A., Spanier, F., Steidl, M., Steinbrink, N., Sturm, M., Suesser, M., Sun, M., Tcherniakhovski, D., Telle, H. H., Thümmler, T., Thorne, L. A., Titov, N., Tkachev, I., Trost, N., Urban, K., Venos, D., Valerius, K., VanDevender, B. A., Vianden, R., Hernandez, A. P. Vizcaya, Wall, B. L., Wüstling, S., Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wierman, K. J., Wilkerson, J. F., Wolf, J., Xu, W., Yen, Y. -R., Zacher, M., Zadorozhny, S., Zboril, M., and Zeller, G.
- Subjects
High Energy Physics - Experiment ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Nuclear Experiment ,Physics - Instrumentation and Detectors - Abstract
We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic endpoint at 18.57 keV gives an effective neutrino mass square value of $(-1.0^{+0.9}_{-1.1})$ eV$^2$. From this we derive an upper limit of 1.1 eV (90$\%$ confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of two and provides model-independent input to cosmological studies of structure formation.
- Published
- 2019
- Full Text
- View/download PDF
27. First operation of the KATRIN experiment with tritium
- Author
-
Aker, M., Altenmüller, K., Arenz, M., Baek, W. -J., Barrett, J., Beglarian, A., Behrens, J., Berlev, A., Besserer, U., Blaum, K., Block, F., Bobien, S., Bornschein, B., Bornschein, L., Bouquet, H., Brunst, T., Caldwell, T. S., Chilingaryan, S., Choi, W., Debowski, K., Deffert, M., Descher, M., Barrero, D. Díaz, Doe, P. J., Dragoun, O., Drexlin, G., Dyba, S., Edzards, F., Eitel, K., Ellinger, E., Engel, R., Enomoto, S., Eversheim, D., Fedkevych, M., Felden, A., Formaggio, J. A., Fränkle, F. M., Franklin, G. B., Frankrone, H., Friedel, F., Fuchs, D., Fulst, A., Gauda, K., Gil, W., Glück, F., Grohmann, S., Grössle, R., Gumbsheimer, R., Hackenjos, M., Hannen, V., Hartmann, J., Haußmann, N., Minh, M. Ha, Heizmann, F., Heizmann, J., Helbing, K., Hickford, S., Hillesheimer, D., Hinz, D., Höhn, T., Holzapfel, B., Holzmann, S., Houdy, T., Howe, M. A., Huber, A., Jansen, A., Karl, C., Kellerer, J., Kernert, N., Kippenbrock, L., Kleesiek, M., Klein, M., Köhler, C., Köllenberger, L., Kopmann, A., Korzeczek, M., Kovalík, A., Krasch, B., Krause, H., Kuffner, B., Kunka, N., Lasserre, T., La Cascio, L., Lebeda, O., Lebert, M., Lehnert, B., Letnev, J., Leven, F., Le, T. L., Lichter, S., Lokhov, A., Machatschek, M., Malcherek, E., Mark, M., Marsteller, A., Martin, E. L., Megas, F., Melzer, C., Menshikov, A., Mertens, S., Meier, M., Mirz, S., Monreal, B., Guzmán, P. I. Morales, Müller, K., Naumann, U., Neumann, H., Niemes, S., Noe, M., Off, A., Ortjohann, H. -W., Osipowicz, A., Otten, E., Parno, D. S., Pollithy, A., Poon, A. W. P., Poyato, J. M. L., Priester, F., Ranitzsch, P. C. -O., Rest, O., Rinderspacher, R., Robertson, R. G. H., Rodenbeck, C., Rohr, P., Röllig, M., Röttele, C., Ryšavý, M., Sack, R., Saenz, A., Schäfer, P., Schimpf, L., Schlösser, K., Schlösser, M., Schlüter, L., Schrank, M., Schulz, B., Seitz-Moskaliuk, H., Seller, W., Sibille, V., Siegmann, D., Slezák, M., Spanier, F., Steidl, M., Steven, M., Sturm, M., Suesser, M., Sun, M., Tcherniakhovski, D., Telle, H. H., Thorne, L. A., Thümmler, T., Titov, N., Tkachev, I., Trost, N., Urban, K., Valerius, K., Vénos, D., Vianden, R., Hernández, A. P. Vizcaya, Weber, M., Weinheimer, C., Weiss, C., Welte, S., Wendel, J., Wilkerson, J. F., Wolf, J., Wüstling, S., Xu, W., Yen, Y. -R., Zadorozhny, S., and Zeller, G.
- Subjects
Physics - Instrumentation and Detectors ,Astrophysics - Cosmology and Nongalactic Astrophysics ,High Energy Physics - Experiment ,Nuclear Experiment - Abstract
The determination of the neutrino mass is one of the major challenges in astroparticle physics today. Direct neutrino mass experiments, based solely on the kinematics of beta-decay, provide a largely model-independent probe to the neutrino mass scale. The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to directly measure the effective electron antineutrino mass with a sensitivity of 0.2 eV 90% CL. In this work we report on the first operation of KATRIN with tritium which took place in 2018. During this commissioning phase of the tritium circulation system, excellent agreement of the theoretical prediction with the recorded spectra was found and stable conditions over a time period of 13 days could be established. These results are an essential prerequisite for the subsequent neutrino mass measurements with KATRIN in 2019.
- Published
- 2019
- Full Text
- View/download PDF
28. Observing collisions beyond the secular approximation limit
- Author
-
Ma, J., Zhang, H., Lavorel, B., Billard, F., Hertz, E., Wu, J., Boulet, C., Hartmann, J. -M., and Faucher, O.
- Subjects
Physics - Chemical Physics ,Physics - Optics ,Quantum Physics - Abstract
Energy transfer through quantum coherences plays an essential role in diverse natural phenomena and technological applications, such as human vision, light-harvesting complexes, quantum heat engines, and quantum information and computing. The understanding of the long-lived coherence involved in these phenomena requires a detailed modeling of the system-bath interactions beyond the so-called secular and/or Markovian approximations. Despite continuous theoretical progress on understanding nonsecular dynamics in the last decades, convincing experimental observations are still lacking. By using the laser-kicked molecular rotor as a model system, we here experimentally unveil the nonsecular dynamics in the rotational relaxation of molecules due to thermal collisions. Specifically, the rotational coherence in gas-phase molecules is systematically probed and characterized by the recently discovered rotational alignment echoes featuring a decoherence and dissipation process which can only be explained by the nonsecular quantum master equations for modeling molecular collisions.
- Published
- 2019
- Full Text
- View/download PDF
29. Measurement of the Helicity Asymmetry $E$ for the reaction $ \gamma p\to \pi^0 p$
- Author
-
collaboration, CBELSA/TAPS, Gottschall, M., Afzal, F., Anisovich, A. V., Bayadilov, D., Beck, R., Bichow, M., Brinkmann, K. -Th., Crede, V., Dieterle, M., Dietz, F., Dutz, H., Eberhardt, H., Elsner, D., Ewald, R., Fornet-Ponse, K., Friedrich, St., Frommberger, F., Gridnev, A., Grüner, M., Gutz, E., Hammann, Ch., Hannappel, J., Hartmann, J., Hillert, W., Hoffmeister, Ph., Honisch, Ch., Jude, T., Kammer, S., Kalinowsky, H., Keshelashvili, I., Klassen, P., Klein, F., Klempt, E., Koop, K., Krusche, B., Kube, M., Lang, M., Lopatin, I., Mahlberg, P., Makonyi, K., Metag, V., Meyer, W., Müller, J., Müllers, J., Nanova, M., Nikonov, V., Novotny, R., Piontek, D., Reicherz, G., Rostomyan, T., Sarantsev, A., Schmidt, Ch., Schmieden, H., Seifen, T., Sokhoyan, V., Spieker, K., Thiel, A., Thoma, U., Urban, M., van Pee, H., Walther, D., Wendel, Ch., Werthmüller, D., Wiedner, U., Wilson, A., Winnebeck, A., Witthauer, L., and Wunderlich, Y.
- Subjects
Nuclear Experiment - Abstract
A measurement of the double-polarization observable $E$ for the reaction $\gamma p\to \pi^0 p$ is reported. The data were taken with the CBELSA/TAPS experiment at the ELSA facility in Bonn using the Bonn frozen-spin butanol (C$_4$H$_9$OH) target, which provided longitudinally-polarized protons. Circularly-polarized photons were produced via bremsstrahlung of longitudinally-polarized electrons. The data cover the photon energy range from $E_\gamma =600$~MeV to $E_\gamma =2310$~MeV and nearly the complete angular range. The results are compared to and have been included in recent partial wave analyses., Comment: 21 pages
- Published
- 2019
30. Measurement of polarization observables TPHπ0η, TPHπ0η, and TPHπ0η in TPHπ0η and TPHπ0η photoproduction off quasi-free nucleons
- Author
-
Jermann, N., Krusche, B., Metag, V., Afzal, F., Badea, M., Beck, R., Bielefeldt, P., Bieling, J., Biroth, M., Blanke, E., Borisov, N., Bornstein, M., Brinkmann, K.-T., Ciupka, S., Crede, V., Dolzhikov, A., Drexler, P., Dutz, H., Elsner, D., Fedorov, A., Frommberger, F., Gardner, S., Ghosal, D., Goertz, S., Gorodnov, I., Grüner, M., Hammann, C., Hartmann, J., Hillert, W., Hoffmeister, P., Honisch, C., Jude, T. C., Kalischewski, F., Ketzer, B., Klassen, P., Klein, F., Klempt, E., Knaust, J., Kolanus, N., Kreit, J., Krönert, P., Lang, M., Lazarev, A. B., Livingston, K., Lutterer, S., Mahlberg, P., Meier, C., Meyer, W., Mitlasoczki, B., Müllers, J., Nanova, M., Neganov, A., Nikonov, K., Noël, J. F., Ostrick, M., Ottnad, J., Otto, B., Penman, G., Poller, T., Proft, D., Reicherz, G., Reinartz, N., Richter, L., Runkel, S., Salisbury, B., Sarantsev, A. V., Schaab, D., Schmidt, C., Schmieden, H., Schultes, J., Seifen, T., Spieker, K., Stausberg, N., Steinacher, M., Taubert, F., Thiel, A., Thoma, U., Thomas, A., Urban, M., Urff, G., Usov, Y., van Pee, H., Wang, Y. C., Wendel, C., Wiedner, U., and Wunderlich, Y.
- Published
- 2023
- Full Text
- View/download PDF
31. Laser-driven x-ray and proton micro-source and application to simultaneous single-shot bi-modal radiographic imaging.
- Author
-
Ostermayr, TM, Kreuzer, C, Englbrecht, FS, Gebhard, J, Hartmann, J, Huebl, A, Haffa, D, Hilz, P, Parodi, K, Wenz, J, Donovan, ME, Dyer, G, Gaul, E, Gordon, J, Martinez, M, Mccary, E, Spinks, M, Tiwari, G, Hegelich, BM, and Schreiber, J
- Subjects
Animals ,Gryllidae ,Protons ,Radiography ,Lasers ,X-Rays ,Multimodal Imaging - Abstract
Radiographic imaging with x-rays and protons is an omnipresent tool in basic research and applications in industry, material science and medical diagnostics. The information contained in both modalities can often be valuable in principle, but difficult to access simultaneously. Laser-driven solid-density plasma-sources deliver both kinds of radiation, but mostly single modalities have been explored for applications. Their potential for bi-modal radiographic imaging has never been fully realized, due to problems in generating appropriate sources and separating image modalities. Here, we report on the generation of proton and x-ray micro-sources in laser-plasma interactions of the focused Texas Petawatt laser with solid-density, micrometer-sized tungsten needles. We apply them for bi-modal radiographic imaging of biological and technological objects in a single laser shot. Thereby, advantages of laser-driven sources could be enriched beyond their small footprint by embracing their additional unique properties, including the spectral bandwidth, small source size and multi-mode emission.
- Published
- 2020
32. Suppression of Penning discharges between the KATRIN spectrometers
- Author
-
Aker, M, Altenmüller, K, Beglarian, A, Behrens, J, Berlev, A, Besserer, U, Blaum, K, Block, F, Bobien, S, Bornschein, B, Bornschein, L, Bouquet, H, Brunst, T, Caldwell, TS, Chilingaryan, S, Choi, W, Debowski, K, Deffert, M, Descher, M, Díaz Barrero, D, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Eversheim, D, Fedkevych, M, Felden, A, Formaggio, JA, Fränkle, F, Franklin, GB, Frankrone, H, Friedel, F, Fulst, A, Gauda, K, Gil, W, Glück, F, Grohmann, S, Grössle, R, Gumbsheimer, R, Hackenjos, M, Hannen, V, Hartmann, J, Haußmann, N, Heizmann, F, Heizmann, J, Helbing, K, Hickford, S, Hillesheimer, D, Hinz, D, Höhn, T, Holzapfel, B, Holzmann, S, Houdy, T, Jansen, A, Karl, C, Kellerer, J, Kernert, N, Kippenbrock, L, Klein, M, Köhler, C, Köllenberger, L, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Krause, H, Kuffner, B, Kunka, N, Lasserre, T, La Cascio, L, Lebeda, O, Lehnert, B, Letnev, J, Leven, F, Le, TL, Lichter, S, Lokhov, A, Machatschek, M, Malcherek, E, Marsteller, A, Martin, EL, Melzer, C, Menshikov, A, Mertens, S, Mirz, S, Monreal, B, Müller, K, Naumann, U, Neumann, H, Niemes, S, Noe, M, Ortjohann, HW, Osipowicz, A, Otten, E, Parno, DS, and Pollithy, A
- Subjects
Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Nuclear & Particles Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to determine the effective electron (anti)-neutrino mass with a sensitivity of 0.2eV/c2 by precisely measuring the endpoint region of the tritium β-decay spectrum. It uses a tandem of electrostatic spectrometers working as magnetic adiabatic collimation combined with an electrostatic (MAC-E) filters. In the space between the pre-spectrometer and the main spectrometer, creating a Penning trap is unavoidable when the superconducting magnet between the two spectrometers, biased at their respective nominal potentials, is energized. The electrons accumulated in this trap can lead to discharges, which create additional background electrons and endanger the spectrometer and detector section downstream. To counteract this problem, “electron catchers” were installed in the beamline inside the magnet bore between the two spectrometers. These catchers can be moved across the magnetic-flux tube and intercept on a sub-ms time scale the stored electrons along their magnetron motion paths. In this paper, we report on the design and the successful commissioning of the electron catchers and present results on their efficiency in reducing the experimental background.
- Published
- 2020
33. First operation of the KATRIN experiment with tritium
- Author
-
Aker, M, Altenmüller, K, Arenz, M, Baek, WJ, Barrett, J, Beglarian, A, Behrens, J, Berlev, A, Besserer, U, Blaum, K, Block, F, Bobien, S, Bornschein, B, Bornschein, L, Bouquet, H, Brunst, T, Caldwell, TS, Chilingaryan, S, Choi, W, Debowski, K, Deffert, M, Descher, M, Díaz Barrero, D, Doe, PJ, Dragoun, O, Drexlin, G, Dyba, S, Edzards, F, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Eversheim, D, Fedkevych, M, Felden, A, Formaggio, JA, Fränkle, FM, Franklin, GB, Frankrone, H, Friedel, F, Fuchs, D, Fulst, A, Gauda, K, Gil, W, Glück, F, Grohmann, S, Grössle, R, Gumbsheimer, R, Hackenjos, M, Hannen, V, Hartmann, J, Haußmann, N, Ha-Minh, M, Heizmann, F, Heizmann, J, Helbing, K, Hickford, S, Hillesheimer, D, Hinz, D, Höhn, T, Holzapfel, B, Holzmann, S, Houdy, T, Howe, MA, Huber, A, Jansen, A, Karl, C, Kellerer, J, Kernert, N, Kippenbrock, L, Klein, M, Köhler, C, Köllenberger, L, Kopmann, A, Korzeczek, M, Kovalík, A, Krasch, B, Krause, H, Kuffner, B, Kunka, N, Lasserre, T, La Cascio, L, Lebeda, O, Lebert, M, Lehnert, B, Letnev, J, Leven, F, Le, TL, Lichter, S, Lokhov, A, Machatschek, M, Malcherek, E, Mark, M, Marsteller, A, Martin, EL, Megas, F, Melzer, C, Menshikov, A, Mertens, S, and Meier, M
- Subjects
Nuclear & Particles Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Quantum Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
The determination of the neutrino mass is one of the major challenges in astroparticle physics today. Direct neutrino mass experiments, based solely on the kinematics of β -decay, provide a largely model-independent probe to the neutrino mass scale. The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to directly measure the effective electron antineutrino mass with a sensitivity of 0.2eV (90 % CL). In this work we report on the first operation of KATRIN with tritium which took place in 2018. During this commissioning phase of the tritium circulation system, excellent agreement of the theoretical prediction with the recorded spectra was found and stable conditions over a time period of 13 days could be established. These results are an essential prerequisite for the subsequent neutrino mass measurements with KATRIN in 2019.
- Published
- 2020
34. Nanosecond laser annealing of pseudomorphic GeSn layers: Impact of Sn content
- Author
-
Frauenrath, M., Acosta Alba, P., Concepción, O., Bae, J.-H., Gauthier, N., Nolot, E., Veillerot, M., Bernier, N., Buca, D., and Hartmann, J.-M.
- Published
- 2023
- Full Text
- View/download PDF
35. A novel approach to electron data background treatment in an online wide-angle spectrometer for laser-accelerated ion and electron bunches
- Author
-
Lindner, F. H., Bin, J. H., Englbrecht, F., Haffa, D., Bolton, P. R., Gao, Y., Hartmann, J., Hilz, P., Kreuzer, C., Ostermayr, T. M., Rösch, T. F., Speicher, M., Parodi, K., Thirolf, P. G., and Schreiber, J.
- Subjects
Physics - Plasma Physics - Abstract
Laser-based ion acceleration is driven by electrical fields emerging when target electrons absorb laser energy and consecutively leave the target material. A direct correlation between these electrons and the accelerated ions is thus to be expected and predicted by theoretical models. We report on a modified wide-angle spectrometer allowing the simultaneous characterization of angularly resolved energy distributions of both ions and electrons. Equipped with online pixel detectors, the RadEye1 detectors, the investigation of this correlation gets attainable on a single shot basis. In addition to first insights, we present a novel approach for reliably extracting the primary electron energy distribution from the interfering secondary radiation background. This proves vitally important for quantitative extraction of average electron energies (temperatures) and emitted total charge.
- Published
- 2018
- Full Text
- View/download PDF
36. The {\eta}'-carbon potential at low meson momenta
- Author
-
Nanova, M., Friedrich, S., Metag, V., Paryev, E. Ya., Afzal, F. N., Bayadilov, D., Bantes, B., Beck, R., Becker, M., Böse, S., Brinkmann, K. -T., Crede, V., Drexler, P., Eberhardt, H., Elsner, D., Frommberger, F., Funke, Ch., Gottschall, M., Grüner, M., Gutz, E., Hammann, Ch., Hannappel, J., Hartmann, J., Hillert, W., Hoffmeister, Ph., Honisch, Ch., Jude, T., Kaiser, D., Kalischewski, F., Keshelashvili, I., Klein, F., Koop, K., Krusche, B., Lang, M., Makonyi, K., Messi, F., Müller, J., Müllers, J., Piontek, D., Rostomyan, T., Schaab, D., Schmidt, Ch., Schmieden, H., Schmitz, R., Seifen, T., Sokhoyan, V., Sowa, C., Spieker, K., Thiel, A., Thoma, U., Triffterer, T., Urban, M., van Pee, H., Walther, D., Wendel, Ch., Werthmüller, D., Wiedner, U., Wilson, A., Witthauer, L., Wunderlich, Y., and Zaunick, H. -G.
- Subjects
Nuclear Experiment - Abstract
The production of $\eta^\prime$ mesons in coincidence with forward-going protons has been studied in photon-induced reactions on $^{12}$C and on a liquid hydrogen (LH$_2$) target for incoming photon energies of 1.3-2.6 GeV at the electron accelerator ELSA. The $\eta^\prime$ mesons have been identified via the $\eta^\prime\rightarrow \pi^0 \pi^0\eta \rightarrow 6 \gamma$ decay registered with the CBELSA/TAPS detector system. Coincident protons have been identified in the MiniTAPS BaF$_2$ array at polar angles of $2^{\circ} \le \theta _{p} \le 11^{\circ}$. Under these kinematic constraints the $\eta^\prime$ mesons are produced with relatively low kinetic energy ($\approx$ 150 MeV) since the coincident protons take over most of the momentum of the incident-photon beam. For the C-target this allows the determination of the real part of the $\eta^\prime$-carbon potential at low meson momenta by comparing with collision model calculations of the $\eta^\prime$ kinetic energy distribution and excitation function. Fitting the latter data for $\eta^\prime$ mesons going backwards in the center-of-mass system yields a potential depth of V = $-$(44 $\pm$ 16(stat)$\pm$15(syst)) MeV, consistent with earlier determinations of the potential depth in inclusive measurements for average $\eta^\prime$ momenta of $\approx$ 1.1 GeV/$c$. Within the experimental uncertainties, there is no indication of a momentum dependence of the $\eta^\prime$-carbon potential. The LH$_2$ data, taken as a reference to check the data analysis and the model calculations, provide differential and integral cross sections in good agreement with previous results for $\eta^\prime$ photoproduction off the free proton., Comment: 9 pages, 13 figures. arXiv admin note: text overlap with arXiv:1608.06074
- Published
- 2018
- Full Text
- View/download PDF
37. 99.992 % $^{28}$Si CVD-grown epilayer on 300 mm substrates for large scale integration of silicon spin qubits
- Author
-
Mazzocchi, V., Sennikov, P. G., Bulanov, A. D., Churbanov, M. F., Bertrand, B., Hutin, L., Barnes, J. P., Drozdov, M. N., Hartmann, J. M., and Sanquer, M.
- Subjects
Condensed Matter - Materials Science - Abstract
Silicon-based quantum bits with electron spins in quantum dots or nuclear spins on dopants are serious contenders in the race for quantum computation. Added to process integration maturity, the lack of nuclear spins in the most abundant $^{28}$silicon isotope host crystal for qubits is a major asset for this silicon quantum technology. We have grown $^{28}$silicon epitaxial layers (epilayers) with an isotopic purity greater than 99.992 % on 300mm natural abundance silicon crystals. The quality of the mono-crystalline isotopically purified epilayer conforms to the same drastic quality requirements as the natural epilayers used in our pre-industrial CMOS facility. The isotopically purified substrates are now ready for the fabrication of silicon qubits using a state-of-the-art 300 mm Si CMOS-foundries equipment and processes, Comment: 7 pages, 7 figures
- Published
- 2018
- Full Text
- View/download PDF
38. Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN
- Author
-
Aker, M, Altenmüller, K, Arenz, M, Babutzka, M, Barrett, J, Bauer, S, Beck, M, Beglarian, A, Behrens, J, Bergmann, T, Besserer, U, Blaum, K, Block, F, Bobien, S, Bokeloh, K, Bonn, J, Bornschein, B, Bornschein, L, Bouquet, H, Brunst, T, Caldwell, TS, La Cascio, L, Chilingaryan, S, Choi, W, Corona, TJ, Debowski, K, Deffert, M, Descher, M, Doe, PJ, Dragoun, O, Drexlin, G, Dunmore, JA, Dyba, S, Edzards, F, Eisenblätter, L, Eitel, K, Ellinger, E, Engel, R, Enomoto, S, Erhard, M, Eversheim, D, Fedkevych, M, Felden, A, Fischer, S, Flatt, B, Formaggio, JA, Fränkle, FM, Franklin, GB, Frankrone, H, Friedel, F, Fuchs, D, Fulst, A, Furse, D, Gauda, K, Gemmeke, H, Gil, W, Glück, F, Görhardt, S, Groh, S, Grohmann, S, Grössle, R, Gumbsheimer, R, Minh, M Ha, Hackenjos, M, Hannen, V, Harms, F, Hartmann, J, Haußmann, N, Heizmann, F, Helbing, K, Hickford, S, Hilk, D, Hillen, B, Hillesheimer, D, Hinz, D, Höhn, T, Holzapfel, B, Holzmann, S, Houdy, T, Howe, MA, Huber, A, James, TM, Jansen, A, Kaboth, A, Karl, C, Kazachenko, O, Kellerer, J, Kernert, N, Kippenbrock, L, Kleesiek, M, Klein, M, Köhler, C, Köllenberger, L, Kopmann, A, Korzeczek, M, Kosmider, A, Kovalík, A, Krasch, B, Kraus, M, and Krause, H
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,KATRIN Collaboration ,hep-ex ,astro-ph.CO ,nucl-ex ,physics.ins-det ,Mathematical Sciences ,Engineering ,General Physics ,Mathematical sciences ,Physical sciences - Abstract
We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (-1.0_{-1.1}^{+0.9}) eV^{2}. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation.
- Published
- 2019
39. Use of hyperspectral sounders to retrieve daytime sea-surface temperature from mid-infrared radiances: Application to IASI
- Author
-
Capelle, V. and Hartmann, J.-M.
- Published
- 2022
- Full Text
- View/download PDF
40. Absorption of methane broadened by carbon dioxide in the 3.3 μm spectral region: From line centers to the far wings
- Author
-
Tran, H., Auwera, J. Vander, Bertin, T., Fakhardji, W., Pirali, O., and Hartmann, J.-M.
- Published
- 2022
- Full Text
- View/download PDF
41. Influence of Global Operating Parameters on the Reactivity of Soot Particles from Direct Injection Gasoline Engines
- Author
-
Koch, S., Hagen, F. P., Büttner, L., Hartmann, J., Velji, A., Kubach, H., Koch, T., Bockhorn, H., Trimis, D., and Suntz, R.
- Published
- 2022
- Full Text
- View/download PDF
42. Si/Si0.7Ge0.3 A2RAM nanowires fabrication and characterization for 1T-DRAM applications
- Author
-
Lacord, J., Tcheme Wakam, F., Chalupa, Z., Hartmann, J.-M., Besson, P., Loup, V., Vizioz, C., Brevard, L., Aussenac, F., Mescot, X., Lee, K., and Bawedin, M.
- Published
- 2022
- Full Text
- View/download PDF
43. Optically pumped GeSn micro-disks with 16 % Sn lasing at 3.1 um up to 180K
- Author
-
Reboud, V., Gassenq, A., Pauc, N., Aubin, J., Milord, L., Thai, Q. M., Bertrand, M., Guilloy, K., Rouchon, D., Rothman, J., Zabel, T., Pilon, F. Armand, Sigg, H., Chelnokov, A., Hartmann, J. M., and Calvo, V.
- Subjects
Physics - Optics ,Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
Recent demonstrations of optically pumped lasers based on GeSn alloys put forward the prospect of efficient laser sources monolithically integrated on a Si photonic platform. For instance, GeSn layers with 12.5% of Sn were reported to lase at 2.5 um wavelength up to 130 K. In this work, we report a longer emitted wavelength and a significant improvement in lasing temperature. The improvements resulted from the use of higher Sn content GeSn layers of optimized crystalline quality, grown on graded Sn content buffers using Reduced Pressure CVD. The fabricated GeSn micro-disks with 13% and 16% of Sn showed lasing operation at 2.6 um and 3.1 um wavelengths, respectively. For the longest wavelength (i.e 3.1 um), lasing was demonstrated up to 180 K, with a threshold of 377 kW/cm2 at 25 K., Comment: 15 pages with supplementary information. 6 figures and 2 tables in total
- Published
- 2017
- Full Text
- View/download PDF
44. Photoproduction of eta mesons from the neutron: cross sections and double polarization observable E
- Author
-
Witthauer, L., Dieterle, M., Afzal, F., Anisovich, A. V., Bantes, B., Bayadilov, D., Beck, R., Bichow, M., Brinkmann, K. -T., Böse, S., Challand, Th., Crede, V., Dutz, H., Eberhardt, H., Elsner, D., Ewald, R., Fornet-Ponse, K., Friedrich, St., Frommberger, F., Funke, Ch., Goertz, St., Gottschall, M., Gridnev, A., Grüner, M., Gutzınst, E., Hammann, D., Hammann, Ch., Hannappel, J., Hartmann, J., Hillert, W., Hoffmeister, Ph., Honisch, Ch., Jude, T., Kaiser, D., Kalinowsky, H., Kalischewski, F., Kammer, S., Käser, A., Keshelashvili, I., Klassen, P., Kleber, V., Klein, F., Koop, K., Krusche, B., Lang, M., Lopatin, I., Mahlberg, Ph., Makonyi, K., Metag, V., Meyer, W., Müller, J., Müllers, J., Nanova, M., Nikonov, V., Piontek, D., Reicherz, G., Rostomyan, T., Sarantsev, A., Schmidt, Ch., Schmieden, H., Seifen, T., Sokhoyan, V., Spieker, K., Thiel, A., Thoma, U., Urban, M., van Pee, H., Walford, N. K., Walther, D., Wendel, Ch., Werthmüller, D., Wilson, A., and Winnebeck, A.
- Subjects
Nuclear Experiment - Abstract
Photoproduction of $\eta$ mesons from neutrons} \abstract{Results from measurements of the photoproduction of $\eta$ mesons from quasifree protons and neutrons are summarized. The experiments were performed with the CBELSA/TAPS detector at the electron accelerator ELSA in Bonn using the $\eta\to3\pi^{0}\to6\gamma$ decay. A liquid deuterium target was used for the measurement of total cross sections and angular distributions. The results confirm earlier measurements from Bonn and the MAMI facility in Mainz about the existence of a narrow structure in the excitation function of $\gamma n\rightarrow n\eta$. The current angular distributions show a forward-backward asymmetry, which was previously not seen, but was predicted by model calculations including an additional narrow $P_{11}$ state. Furthermore, data obtained with a longitudinally polarized, deuterated butanol target and a circularly polarized photon beam were analyzed to determine the double polarization observable $E$. Both data sets together were also used to extract the helicity dependent cross sections $\sigma_{1/2}$ and $\sigma_{3/2}$. The narrow structure in the excitation function of $\gamma n\rightarrow n\eta$ appears associated with the helicity-1/2 component of the reaction.
- Published
- 2017
- Full Text
- View/download PDF
45. The HITRAN2020 molecular spectroscopic database
- Author
-
Gordon, I.E., Rothman, L.S., Hargreaves, R.J., Hashemi, R., Karlovets, E.V., Skinner, F.M., Conway, E.K., Hill, C., Kochanov, R.V., Tan, Y., Wcisło, P., Finenko, A.A., Nelson, K., Bernath, P.F., Birk, M., Boudon, V., Campargue, A., Chance, K.V., Coustenis, A., Drouin, B.J., Flaud, J.–M., Gamache, R.R., Hodges, J.T., Jacquemart, D., Mlawer, E.J., Nikitin, A.V., Perevalov, V.I., Rotger, M., Tennyson, J., Toon, G.C., Tran, H., Tyuterev, V.G., Adkins, E.M., Baker, A., Barbe, A., Canè, E., Császár, A.G., Dudaryonok, A., Egorov, O., Fleisher, A.J., Fleurbaey, H., Foltynowicz, A., Furtenbacher, T., Harrison, J.J., Hartmann, J.–M., Horneman, V.–M., Huang, X., Karman, T., Karns, J., Kassi, S., Kleiner, I., Kofman, V., Kwabia–Tchana, F., Lavrentieva, N.N., Lee, T.J., Long, D.A., Lukashevskaya, A.A., Lyulin, O.M., Makhnev, V.Yu., Matt, W., Massie, S.T., Melosso, M., Mikhailenko, S.N., Mondelain, D., Müller, H.S.P., Naumenko, O.V., Perrin, A., Polyansky, O.L., Raddaoui, E., Raston, P.L., Reed, Z.D., Rey, M., Richard, C., Tóbiás, R., Sadiek, I., Schwenke, D.W., Starikova, E., Sung, K., Tamassia, F., Tashkun, S.A., Vander Auwera, J., Vasilenko, I.A., Vigasin, A.A., Villanueva, G.L., Vispoel, B., Wagner, G., Yachmenev, A., and Yurchenko, S.N.
- Published
- 2022
- Full Text
- View/download PDF
46. Lasing in Group-IV Materials
- Author
-
Reboud, V., Buca, D., Sigg, H., Hartmann, J. M., Ikonic, Z., Pauc, N., Calvo, V., Rodriguez, P., Chelnokov, A., Lee, Young Pak, Series Editor, Lockwood, David J., Series Editor, Ossi, Paolo M., Series Editor, Yamanouchi, Kaoru, Series Editor, and Pavesi, Lorenzo, editor
- Published
- 2021
- Full Text
- View/download PDF
47. Atomic Order in Non-Equilibrium Silicon-Germanium-Tin Semiconductors
- Author
-
Mukherjee, S., Kodali, N., Isheim, D., Wirths, S., Hartmann, J. M., Buca, D., Seidman, D. N., and Moutanabbir, O.
- Subjects
Condensed Matter - Materials Science - Abstract
The precise knowledge of the atomic order in monocrystalline alloys is fundamental to understand and predict their physical properties. With this perspective, we utilized laser-assisted atom probe tomography to investigate the three-dimensional distribution of atoms in non-equilibrium epitaxial Sn-rich group IV SiGeSn ternary semiconductors. Different atom probe statistical analysis tools including frequency distribution analysis, partial radial distribution functions, and nearest neighbor analysis were employed in order to evaluate and compare the behavior of the three elements to their spatial distributions in an ideal solid solution. This atomistic-level analysis provided clear evidence of an unexpected repulsive interaction between Sn and Si leading to the deviation of Si atoms from the theoretical random distribution. This departure from an ideal solid solution is supported by first principal calculations and attributed to the tendency of the system to reduce its mixing enthalpy throughout the layer-by-layer growth process., Comment: 15 pages, 4 figures
- Published
- 2017
- Full Text
- View/download PDF
48. Enhanced IR Light Absorption in Group IV-SiGeSn Core-Shell Nanowires
- Author
-
Attiaoui, Anis, Wirth, Stephan, Blanchard-Dionne, André-Pierre, Meunier, Michel, Hartmann, J. M., Buca, Dan, and Moutanabbir, Oussama
- Subjects
Condensed Matter - Materials Science ,Physics - Optics - Abstract
Sn-containing Si and Ge alloys belong to an emerging family of semiconductors with the potential to impact group IV semiconductor devices. Indeed, the ability to independently engineer both lattice parameter and band gap holds the premise to develop enhanced or novel photonic, optoelectronic, and electronic devices. With this perspective, we present detailed investigations of the influence of Ge1-y-xSixSny layers on the optical properties of Si- and Ge-based heterostructures and nanowires. We found that adding a thin Ge1-x-ySixSny capping layer on Si or Ge greatly enhances light absorption especially in the near IR range leading to an increase in short-circuit current density. For the Ge1-y-xSixSny structure at thicknesses below 30 nm, a 14-fold increase in the short-circuit current is predicted with respect to bare Si. This enhancement decreases by reducing the capping layer thickness. Conversely, decreasing the shell thickness was found to improve the short-circuit current in Si/Ge1-y-xSixSny and Ge/Ge1-y-xSixSny core/shell nanowires. The optical absorption becomes very important when increasing the Sn content. Moreover, by exploiting optical antenna effect, these nanowires show an extreme light absorption reaching an enhancement factor, with respect to Si or Ge nanowires, on the order of ~104 in Si/Ge0.84Si0.04Sn0.12 and ~12 in Ge/Ge0.84Si0.04Sn0.12 core/shell nanowires. Furthermore, we analyzed the optical response of the addition of a dielectric capping layer consisting of Si3N4 to the Si/Ge1-y-xSixSny core-shell nanowire and found about 50% increase in short-circuit current density for a dielectric layer thickness of 45 nm and a core radius and shell thickness superior to 40 nm. The core/shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances in the semiconductor part and antireflection effects in the dielectric part., Comment: 47 pages, 11 figures
- Published
- 2017
- Full Text
- View/download PDF
49. Raman spectral shift versus strain and composition in GeSn layers with: 6 to 15% Sn contents
- Author
-
Gassenq, A., Milord, L., Aubin, J., Pauc, N., Guilloy, K., Rothman, J., Rouchon, D., Chelnokov, A., Hartmann, J. M., Reboud, V., and Calvo, V.
- Subjects
Condensed Matter - Materials Science - Abstract
GeSn alloys are the subject of intense research activities as these group IV semiconductors present direct bandgap behaviors for high Sn contents. Today, the control of strain becomes an important challenge to improve GeSn devices. Strain micro-measurements are usually performed by Raman spectroscopy. However, different relationships linking the Raman spectral shifts to the built-in strain can be found in the literature. They were deduced from studies on low Sn content GeSn layers (i.e. xSn<8%) or on GeSiSn layers. In this work, we have calibrated the GeSn Raman relationship for really high Sn content GeSn binaries (6
- Published
- 2017
- Full Text
- View/download PDF
50. Momentum dependence of the imaginary part of the $\omega$- and $\eta^\prime$-nucleus optical potential
- Author
-
Friedrich, S., Nanova, M., Metag, V., Afzal, F. N., Bayadilov, D., Bantes, B., Beck, R., Becker, M., Böse, S., Brinkmann, K. -T., Crede, V., Drexler, P., Eberhardt, H., Elsner, D., Frommberger, F., Funke, Ch., Gottschall, M., Grüner, M., Gutz, E., Hammann, Ch., Hannappel, J., Hartmann, J., Hillert, W., Hoffmeister, Ph., Honisch, Ch., Jude, T., Kaiser, D., Kalischewski, F., Keshelashvili, I., Klein, F., Koop, K., Krusche, B., Lang, M., Makonyi, K., Messi, F., Müller, J., Müllers, J., Piontek, D. -M., Rostomyan, T., Schaab, D., Schmidt, Ch., Schmieden, H., Schmitz, R., Seifen, T., Sokhoyan, V., Sowa, C., Spieker, K., Thiel, A., Thoma, U., Triffterer, T., Urban, M., van Pee, H., Walther, D., Wendel, Ch., Werthmüller, D., Wiedner, U., Wilson, A., Witthauer, L., Wunderlich, Y., and Zaunick, H. -G.
- Subjects
Nuclear Experiment - Abstract
The photoproduction of $\omega$ and $\eta^\prime$ mesons off carbon and niobium nuclei has been measured as a function of the meson momentum for incident photon energies of 1.2-2.9 GeV at the electron accelerator ELSA. The mesons have been identified via the $\omega \rightarrow \pi^0 \gamma \rightarrow 3 \gamma$ and $\eta^\prime\rightarrow \pi^0 \pi^0\eta \rightarrow 6 \gamma$ decays, respectively, registered with the CBELSA/TAPS detector system. From the measured meson momentum distributions the momentum dependence of the transparency ratio has been determined for both mesons. Within a Glauber analysis the in-medium $\omega$ and $\eta^\prime$ widths and the corresponding absorption cross sections have been deduced as a function of the meson momentum. The results are compared to recent theoretical predictions for the in-medium $\omega$ width and $\eta^\prime$-N absorption cross sections. The energy dependence of the imaginary part of the $\omega$- and $\eta^\prime$-nucleus optical potential has been extracted. The finer binning of the present data compared to the existing data allows a more reliable extrapolation towards the production threshold. The modulus of the imaginary part of the $\eta^\prime$ nucleus potential is found to be about three times smaller than recently determined values of the real part of the $\eta^\prime$-nucleus potential, which makes the $\eta^\prime$ meson a suitable candidate for the search for meson-nucleus bound states. For the $\omega$ meson, the modulus of the imaginary part near threshold is comparable to the modulus of the real part of the potential. As a consequence, only broad structures can be expected which makes the observation of $\omega$ mesic states very difficult experimentally., Comment: 10 pages, 8 figures
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.