1. Model-Based Reinforcement Learning via Stochastic Hybrid Models
- Author
-
Hany Abdulsamad and Jan Peters
- Subjects
Bayesian inference ,behavioral cloning ,expectation-maximization ,hidden Markov models ,hybrid models ,piecewise feedback control ,Control engineering systems. Automatic machinery (General) ,TJ212-225 ,Technology - Abstract
Optimal control of general nonlinear systems is a central challenge in automation. Enabled by powerful function approximators, data-driven approaches to control have recently successfully tackled challenging applications. However, such methods often obscure the structure of dynamics and control behind black-box over-parameterized representations, thus limiting our ability to understand closed-loop behavior. This article adopts a hybrid-system view of nonlinear modeling and control that lends an explicit hierarchical structure to the problem and breaks down complex dynamics into simpler localized units. We consider a sequence modeling paradigm that captures the temporal structure of the data and derive an expectation-maximization (EM) algorithm that automatically decomposes nonlinear dynamics into stochastic piecewise affine models with nonlinear transition boundaries. Furthermore, we show that these time-series models naturally admit a closed-loop extension that we use to extract local polynomial feedback controllers from nonlinear experts via behavioral cloning. Finally, we introduce a novel hybrid relative entropy policy search (Hb-REPS) technique that incorporates the hierarchical nature of hybrid models and optimizes a set of time-invariant piecewise feedback controllers derived from a piecewise polynomial approximation of a global state-value function.
- Published
- 2023
- Full Text
- View/download PDF