1. Right ventricular preload and afterload challenge induces contractile dysfunction and arrhythmia in isolated hearts of dystrophin-deficient male mice.
- Author
-
Behrmann A, Cayton J, Hayden MR, Lambert MD, Nourian Z, Nyanyo K, Godbee B, Hanft LM, Krenz M, McDonald KS, and Domeier TL
- Subjects
- Animals, Male, Mice, Ventricular Dysfunction, Right physiopathology, Ventricular Dysfunction, Right genetics, Ventricular Dysfunction, Right metabolism, Muscular Dystrophy, Duchenne physiopathology, Muscular Dystrophy, Duchenne genetics, Muscular Dystrophy, Duchenne complications, Muscular Dystrophy, Duchenne metabolism, Mice, Inbred mdx, Mice, Inbred C57BL, Dystrophin genetics, Dystrophin deficiency, Myocardial Contraction, Arrhythmias, Cardiac physiopathology, Arrhythmias, Cardiac etiology, Arrhythmias, Cardiac genetics
- Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive myopathy due to mutations in the dystrophin gene. Diaphragmatic weakness in DMD causes hypoventilation and elevated afterload on the right ventricle (RV). Thus, RV dysfunction in DMD develops early in disease progression. Herein, we deliver a 30-min sustained RV preload/afterload challenge to isolated hearts of wild-type (Wt) and dystrophic (Dmd
mdx-4Cv ) mice at both young (2-6 month) and middle-age (8-12 month) to test the hypothesis that the dystrophic RV is susceptible to dysfunction with elevated load. Young dystrophic hearts exhibited greater pressure development than wild type under baseline (Langendorff) conditions, but following RV challenge exhibited similar contractile function as wild type. Following the RV challenge, young dystrophic hearts had an increased incidence of premature ventricular contractions (PVCs) compared to wild type. Hearts of middle-aged wild-type and dystrophic mice had similar contractile function during baseline conditions. After RV challenge, hearts of middle-aged dystrophic mice had severe RV dysfunction and arrhythmias, including ventricular tachycardia. Following the RV load challenge, dystrophic hearts had greater lactate dehydrogenase (LDH) release than wild-type mice indicative of damage. Our data indicate age-dependent changes in RV function with load in dystrophin deficiency, highlighting the need to avoid sustained RV load to forestall dysfunction and arrhythmia., (© 2024 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.)- Published
- 2024
- Full Text
- View/download PDF