1. Measurement of the branching fractions of D-s(+) -> eta ' X and D-s(+) -> eta 'rho(+) in e(+)e(-) -> Ds+Ds-
- Author
-
Ablikim, M, Achasov, MN, Ai, XC, Albayrak, O, Albrecht, M, Ambrose, DJ, Amoroso, A, An, FF, An, Q, Bai, JZ, Ferroli, R Baldini, Ban, Y, Bennett, DW, Bennett, JV, Bertani, M, Bettoni, D, Bian, JM, Bianchi, F, Boger, E, Boyko, I, Briere, RA, Cai, H, Cai, X, Cakir, O, Calcaterra, A, Cao, GF, Cetin, SA, Chang, JF, Chelkov, G, Chen, G, Chen, HS, Chen, HY, Chen, JC, Chen, ML, Chen, SJ, Chen, X, Chen, XR, Chen, YB, Cheng, HP, Chu, XK, Cibinetto, G, Dai, HL, Dai, JP, Dbeyssi, A, Dedovich, D, Deng, ZY, Denig, A, Denysenko, I, Destefanis, M, De Mori, F, Ding, Y, Dong, C, Dong, J, Dong, LY, Dong, MY, Du, SX, Duan, PF, Eren, EE, Fan, JZ, Fang, J, Fang, SS, Fang, X, Fang, Y, Fava, L, Feldbauer, F, Felici, G, Feng, CQ, Fioravanti, E, Fritsch, M, Fu, CD, Gao, Q, Gao, XY, Gao, Y, Gao, Z, Garzia, I, Geng, C, Goetzen, K, Gong, WX, Gradl, W, Greco, M, Gu, MH, Gu, YT, Guan, YH, Guo, AQ, Guo, LB, Guo, Y, Guo, YP, Haddadi, Z, Hafner, A, Han, S, Han, YL, Hao, XQ, Harris, FA, He, KL, He, ZY, Held, T, Heng, YK, Hou, ZL, Hu, C, and Hu, HM
- Subjects
BESIII ,D-s ,Branching fractions ,Brain Disorders ,Intellectual and Developmental Disabilities (IDD) ,Down Syndrome ,hep-ex ,Nuclear & Particles Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Astronomical and Space Sciences ,Mathematical Physics ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics - Abstract
We study $D_{s}^{+}$ decays to final states involving the $\eta'$ with a482$\,$pb$^{-1}$ data sample collected at $\sqrt{s}$ = 4.009$\,$GeV with the\mbox{BESIII} detector at the BEPCII collider. We measure the branchingfractions $\mathcal{B}(D^+_{s}\rightarrow \eta'X)$ = (8.8$\pm$1.8$\pm$0.5)$\%$and $\mathcal{B}(D_{s}^{+}\rightarrow \eta'\rho^{+})$ = ($5.8\pm1.4\pm0.4$)$\%$where the first uncertainty is statistical and the second is systematic. Inaddition, we estimate an upper limit on the non-resonant branching ratio$\mathcal{B}(D_{s}^{+}\rightarrow \eta'\pi^+\pi^0)
- Published
- 2015