14 results on '"Hančárová M"'
Search Results
2. Spectrum of CFTR mutations in the Czech Republic
- Author
-
Krenkova, P., Piskackova, T., Balascakova, M., Holubova, A., Camajova, J., Hancarova, M., Dvorakova, L., Skalicka, V., Vavrova, V., Stambergova, A., and Macek, M., Jr.
- Published
- 2010
- Full Text
- View/download PDF
3. CFTR gene analysis in the Western-Ukrainian population: an unusually high frequency of the 2184insA mutation
- Author
-
Krenkova, P., Makukh, H., Hancarova, M., Dvorakova, L., Stambergova, A., and Macek, M., Jr.
- Published
- 2009
- Full Text
- View/download PDF
4. Detection of large intra-CFTR rearrangements by MLPA: utilization of a new web-based software “eMLPA” for the analysis of raw data
- Author
-
Camajova, J., Krhounek, J., Hancarova, M., Vejvalka, J., Macek, M., Sr, and Macek, M.
- Published
- 2008
- Full Text
- View/download PDF
5. Correction: Expanded phenotypic spectrum of neurodevelopmental and neurodegenerative disorder Bryant-Li-Bhoj syndrome with 38 additional individuals.
- Author
-
Layo-Carris DE, Lubin EE, Sangree AK, Clark KJ, Durham EL, Gonzalez EM, Smith S, Angireddy R, Wang XM, Weiss E, Toutain A, Mendoza-Londono R, Dupuis L, Damseh N, Velasco D, Valenzuela I, Codina-Solà M, Ziats C, Have J, Clarkson K, Steel D, Kurian M, Barwick K, Carrasco D, Dagli AI, Nowaczyk MJM, Hančárová M, Bendová Š, Prchalova D, Sedláček Z, Baxová A, Nowak CB, Douglas J, Chung WK, Longo N, Platzer K, Klöckner C, Averdunk L, Wieczorek D, Krey I, Zweier C, Reis A, Balci T, Simon M, Kroes HY, Wiesener A, Vasileiou G, Marinakis NM, Veltra D, Sofocleous C, Kosma K, Synodinos JT, Voudris KA, Vuillaume ML, Gueguen P, Derive N, Colin E, Battault C, Au B, Delatycki M, Wallis M, Gallacher L, Majdoub F, Smal N, Weckhuysen S, Schoonjans AS, Kooy RF, Meuwissen M, Cocanougher BT, Taylor K, Pizoli CE, McDonald MT, James P, Roeder ER, Littlejohn R, Borja NA, Thorson W, King K, Stoeva R, Suerink M, Nibbeling E, Baskin S, Guyader GLE, Kaplan J, Muss C, Carere DA, Bhoj EJK, and Bryant LM
- Published
- 2024
- Full Text
- View/download PDF
6. Expanded phenotypic spectrum of neurodevelopmental and neurodegenerative disorder Bryant-Li-Bhoj syndrome with 38 additional individuals.
- Author
-
Layo-Carris DE, Lubin EE, Sangree AK, Clark KJ, Durham EL, Gonzalez EM, Smith S, Angireddy R, Wang XM, Weiss E, Toutain A, Mendoza-Londono R, Dupuis L, Damseh N, Velasco D, Valenzuela I, Codina-Solà M, Ziats C, Have J, Clarkson K, Steel D, Kurian M, Barwick K, Carrasco D, Dagli AI, Nowaczyk MJM, Hančárová M, Bendová Š, Prchalova D, Sedláček Z, Baxová A, Nowak CB, Douglas J, Chung WK, Longo N, Platzer K, Klöckner C, Averdunk L, Wieczorek D, Krey I, Zweier C, Reis A, Balci T, Simon M, Kroes HY, Wiesener A, Vasileiou G, Marinakis NM, Veltra D, Sofocleous C, Kosma K, Traeger Synodinos J, Voudris KA, Vuillaume ML, Gueguen P, Derive N, Colin E, Battault C, Au B, Delatycki M, Wallis M, Gallacher L, Majdoub F, Smal N, Weckhuysen S, Schoonjans AS, Kooy RF, Meuwissen M, Cocanougher BT, Taylor K, Pizoli CE, McDonald MT, James P, Roeder ER, Littlejohn R, Borja NA, Thorson W, King K, Stoeva R, Suerink M, Nibbeling E, Baskin S, L E Guyader G, Kaplan J, Muss C, Carere DA, Bhoj EJK, and Bryant LM
- Subjects
- Humans, Male, Female, Child, Neurodegenerative Diseases genetics, Neurodegenerative Diseases pathology, Neurodevelopmental Disorders genetics, Neurodevelopmental Disorders pathology, Child, Preschool, Adolescent, Adult, Intellectual Disability genetics, Intellectual Disability pathology, Phenotype, Histones genetics
- Abstract
Bryant-Li-Bhoj syndrome (BLBS), which became OMIM-classified in 2022 (OMIM: 619720, 619721), is caused by germline variants in the two genes that encode histone H3.3 (H3-3A/H3F3A and H3-3B/H3F3B) [1-4]. This syndrome is characterized by developmental delay/intellectual disability, craniofacial anomalies, hyper/hypotonia, and abnormal neuroimaging [1, 5]. BLBS was initially categorized as a progressive neurodegenerative syndrome caused by de novo heterozygous variants in either H3-3A or H3-3B [1-4]. Here, we analyze the data of the 58 previously published individuals along 38 unpublished, unrelated individuals. In this larger cohort of 96 people, we identify causative missense, synonymous, and stop-loss variants. We also expand upon the phenotypic characterization by elaborating on the neurodevelopmental component of BLBS. Notably, phenotypic heterogeneity was present even amongst individuals harboring the same variant. To explore the complex phenotypic variation in this expanded cohort, the relationships between syndromic phenotypes with three variables of interest were interrogated: sex, gene containing the causative variant, and variant location in the H3.3 protein. While specific genotype-phenotype correlations have not been conclusively delineated, the results presented here suggest that the location of the variants within the H3.3 protein and the affected gene (H3-3A or H3-3B) contribute more to the severity of distinct phenotypes than sex. Since these variables do not account for all BLBS phenotypic variability, these findings suggest that additional factors may play a role in modifying the phenotypes of affected individuals. Histones are poised at the interface of genetics and epigenetics, highlighting the potential role for gene-environment interactions and the importance of future research., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
7. Unveiling the crucial neuronal role of the proteasomal ATPase subunit gene PSMC5 in neurodevelopmental proteasomopathies.
- Author
-
Küry S, Stanton JE, van Woerden G, Hsieh TC, Rosenfelt C, Scott-Boyer MP, Most V, Wang T, Papendorf JJ, de Konink C, Deb W, Vignard V, Studencka-Turski M, Besnard T, Hajdukowicz AM, Thiel F, Möller S, Florenceau L, Cuinat S, Marsac S, Wentzensen I, Tuttle A, Forster C, Striesow J, Golnik R, Ortiz D, Jenkins L, Rosenfeld JA, Ziegler A, Houdayer C, Bonneau D, Torti E, Begtrup A, Monaghan KG, Mullegama SV, Volker-Touw CMLN, van Gassen KLI, Oegema R, de Pagter M, Steindl K, Rauch A, Ivanovski I, McDonald K, Boothe E, Dauber A, Baker J, Fabie NAV, Bernier RA, Turner TN, Srivastava S, Dies KA, Swanson L, Costin C, Jobling RK, Pappas J, Rabin R, Niyazov D, Tsai AC, Kovak K, Beck DB, Malicdan M, Adams DR, Wolfe L, Ganetzky RD, Muraresku C, Babikyan D, Sedláček Z, Hančárová M, Timberlake AT, Al Saif H, Nestler B, King K, Hajianpour MJ, Costain G, Prendergast D, Li C, Geneviève D, Vitobello A, Sorlin A, Philippe C, Harel T, Toker O, Sabir A, Lim D, Hamilton M, Bryson L, Cleary E, Weber S, Hoffman TL, Cueto-González AM, Tizzano EF, Gómez-Andrés D, Codina-Solà M, Ververi A, Pavlidou E, Lambropoulos A, Garganis K, Rio M, Levy J, Jurgensmeyer S, McRae AM, Lessard MK, D'Agostino MD, De Bie I, Wegler M, Jamra RA, Kamphausen SB, Bothe V, Busch LM, Völker U, Hammer E, Wende K, Cogné B, Isidor B, Meiler J, Bosc-Rosati A, Marcoux J, Bousquet MP, Poschmann J, Laumonnier F, Hildebrand PW, Eichler EE, McWalter K, Krawitz PM, Droit A, Elgersma Y, Grabrucker AM, Bolduc FV, Bézieau S, Ebstein F, and Krüger E
- Abstract
Neurodevelopmental proteasomopathies represent a distinctive category of neurodevelopmental disorders (NDD) characterized by genetic variations within the 26S proteasome, a protein complex governing eukaryotic cellular protein homeostasis. In our comprehensive study, we identified 23 unique variants in PSMC5 , which encodes the AAA-ATPase proteasome subunit PSMC5/Rpt6, causing syndromic NDD in 38 unrelated individuals. Overexpression of PSMC5 variants altered human hippocampal neuron morphology, while PSMC5 knockdown led to impaired reversal learning in flies and loss of excitatory synapses in rat hippocampal neurons. PSMC5 loss-of-function resulted in abnormal protein aggregation, profoundly impacting innate immune signaling, mitophagy rates, and lipid metabolism in affected individuals. Importantly, targeting key components of the integrated stress response, such as PKR and GCN2 kinases, ameliorated immune dysregulations in cells from affected individuals. These findings significantly advance our understanding of the molecular mechanisms underlying neurodevelopmental proteasomopathies, provide links to research in neurodegenerative diseases, and open up potential therapeutic avenues.
- Published
- 2024
- Full Text
- View/download PDF
8. Haploinsufficiency of PRR12 causes a spectrum of neurodevelopmental, eye, and multisystem abnormalities.
- Author
-
Chowdhury F, Wang L, Al-Raqad M, Amor DJ, Baxová A, Bendová Š, Biamino E, Brusco A, Caluseriu O, Cox NJ, Froukh T, Gunay-Aygun M, Hančárová M, Haynes D, Heide S, Hoganson G, Kaname T, Keren B, Kosaki K, Kubota K, Lemons JM, Magriña MA, Mark PR, McDonald MT, Montgomery S, Morley GM, Ohnishi H, Okamoto N, Rodriguez-Buritica D, Rump P, Sedláček Z, Schatz K, Streff H, Uehara T, Walia JS, Wheeler PG, Wiesener A, Zweier C, Kawakami K, Wentzensen IM, Lalani SR, Siu VM, Bi W, and Balci TB
- Subjects
- Animals, Humans, Mice, Muscle Hypotonia, Mutation, Missense, Phenotype, Haploinsufficiency genetics, Intellectual Disability genetics
- Abstract
Purpose: Proline Rich 12 (PRR12) is a gene of unknown function with suspected DNA-binding activity, expressed in developing mice and human brains. Predicted loss-of-function variants in this gene are extremely rare, indicating high intolerance of haploinsufficiency., Methods: Three individuals with intellectual disability and iris anomalies and truncating de novo PRR12 variants were described previously. We add 21 individuals with similar PRR12 variants identified via matchmaking platforms, bringing the total number to 24., Results: We observed 12 frameshift, 6 nonsense, 1 splice-site, and 2 missense variants and one patient with a gross deletion involving PRR12. Three individuals had additional genetic findings, possibly confounding the phenotype. All patients had developmental impairment. Variable structural eye defects were observed in 12/24 individuals (50%) including anophthalmia, microphthalmia, colobomas, optic nerve and iris abnormalities. Additional common features included hypotonia (61%), heart defects (52%), growth failure (54%), and kidney anomalies (35%). PrediXcan analysis showed that phecodes most strongly associated with reduced predicted PRR12 expression were enriched for eye- (7/30) and kidney- (4/30) phenotypes, such as wet macular degeneration and chronic kidney disease., Conclusion: These findings support PRR12 haploinsufficiency as a cause for a novel disorder with a wide clinical spectrum marked chiefly by neurodevelopmental and eye abnormalities.
- Published
- 2021
- Full Text
- View/download PDF
9. Variants in the degron of AFF3 are associated with intellectual disability, mesomelic dysplasia, horseshoe kidney, and epileptic encephalopathy.
- Author
-
Voisin N, Schnur RE, Douzgou S, Hiatt SM, Rustad CF, Brown NJ, Earl DL, Keren B, Levchenko O, Geuer S, Verheyen S, Johnson D, Zarate YA, Hančárová M, Amor DJ, Bebin EM, Blatterer J, Brusco A, Cappuccio G, Charrow J, Chatron N, Cooper GM, Courtin T, Dadali E, Delafontaine J, Del Giudice E, Doco M, Douglas G, Eisenkölbl A, Funari T, Giannuzzi G, Gruber-Sedlmayr U, Guex N, Heron D, Holla ØL, Hurst ACE, Juusola J, Kronn D, Lavrov A, Lee C, Lorrain S, Merckoll E, Mikhaleva A, Norman J, Pradervand S, Prchalová D, Rhodes L, Sanders VR, Sedláček Z, Seebacher HA, Sellars EA, Sirchia F, Takenouchi T, Tanaka AJ, Taska-Tench H, Tønne E, Tveten K, Vitiello G, Vlčková M, Uehara T, Nava C, Yalcin B, Kosaki K, Donnai D, Mundlos S, Brunetti-Pierri N, Chung WK, and Reymond A
- Subjects
- Adolescent, Amino Acid Sequence, Animals, Brain Diseases etiology, Child, Child, Preschool, Epilepsy complications, Evolution, Molecular, Female, Gene Frequency, Humans, Infant, Male, Mice, Models, Molecular, Nuclear Proteins chemistry, Nuclear Proteins deficiency, Phenotype, Protein Stability, Syndrome, Transcriptional Elongation Factors chemistry, Transcriptional Elongation Factors genetics, Young Adult, Zebrafish genetics, Brain Diseases genetics, Epilepsy genetics, Fused Kidney genetics, Intellectual Disability genetics, Mutation, Missense, Nuclear Proteins genetics, Osteochondrodysplasias genetics
- Abstract
The ALF transcription factor paralogs, AFF1, AFF2, AFF3, and AFF4, are components of the transcriptional super elongation complex that regulates expression of genes involved in neurogenesis and development. We describe an autosomal dominant disorder associated with de novo missense variants in the degron of AFF3, a nine amino acid sequence important for its binding to ubiquitin ligase, or with de novo deletions of this region. The sixteen affected individuals we identified, along with two previously reported individuals, present with a recognizable pattern of anomalies, which we named KINSSHIP syndrome (KI for horseshoe kidney, NS for Nievergelt/Savarirayan type of mesomelic dysplasia, S for seizures, H for hypertrichosis, I for intellectual disability, and P for pulmonary involvement), partially overlapping the AFF4-associated CHOPS syndrome. Whereas homozygous Aff3 knockout mice display skeletal anomalies, kidney defects, brain malformations, and neurological anomalies, knockin animals modeling one of the microdeletions and the most common of the missense variants identified in affected individuals presented with lower mesomelic limb deformities like KINSSHIP-affected individuals and early lethality, respectively. Overexpression of AFF3 in zebrafish resulted in body axis anomalies, providing some support for the pathological effect of increased amount of AFF3. The only partial phenotypic overlap of AFF3- and AFF4-associated syndromes and the previously published transcriptome analyses of ALF transcription factors suggest that these factors are not redundant and each contributes uniquely to proper development., (Copyright © 2021 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
10. De novo SMARCA2 variants clustered outside the helicase domain cause a new recognizable syndrome with intellectual disability and blepharophimosis distinct from Nicolaides-Baraitser syndrome.
- Author
-
Cappuccio G, Sayou C, Tanno PL, Tisserant E, Bruel AL, Kennani SE, Sá J, Low KJ, Dias C, Havlovicová M, Hančárová M, Eichler EE, Devillard F, Moutton S, Van-Gils J, Dubourg C, Odent S, Gerard B, Piton A, Yamamoto T, Okamoto N, Firth H, Metcalfe K, Moh A, Chapman KA, Aref-Eshghi E, Kerkhof J, Torella A, Nigro V, Perrin L, Piard J, Le Guyader G, Jouan T, Thauvin-Robinet C, Duffourd Y, George-Abraham JK, Buchanan CA, Williams D, Kini U, Wilson K, Sousa SB, Hennekam RCM, Sadikovic B, Thevenon J, Govin J, Vitobello A, and Brunetti-Pierri N
- Subjects
- Facies, Foot Deformities, Congenital, Humans, Phenotype, Transcription Factors genetics, Blepharophimosis, Hypotrichosis, Intellectual Disability genetics
- Abstract
Purpose: Nontruncating variants in SMARCA2, encoding a catalytic subunit of SWI/SNF chromatin remodeling complex, cause Nicolaides-Baraitser syndrome (NCBRS), a condition with intellectual disability and multiple congenital anomalies. Other disorders due to SMARCA2 are unknown., Methods: By next-generation sequencing, we identified candidate variants in SMARCA2 in 20 individuals from 18 families with a syndromic neurodevelopmental disorder not consistent with NCBRS. To stratify variant interpretation, we functionally analyzed SMARCA2 variants in yeasts and performed transcriptomic and genome methylation analyses on blood leukocytes., Results: Of 20 individuals, 14 showed a recognizable phenotype with recurrent features including epicanthal folds, blepharophimosis, and downturned nasal tip along with variable degree of intellectual disability (or blepharophimosis intellectual disability syndrome [BIS]). In contrast to most NCBRS variants, all SMARCA2 variants associated with BIS are localized outside the helicase domains. Yeast phenotype assays differentiated NCBRS from non-NCBRS SMARCA2 variants. Transcriptomic and DNA methylation signatures differentiated NCBRS from BIS and those with nonspecific phenotype. In the remaining six individuals with nonspecific dysmorphic features, clinical and molecular data did not permit variant reclassification., Conclusion: We identified a novel recognizable syndrome named BIS associated with clustered de novo SMARCA2 variants outside the helicase domains, phenotypically and molecularly distinct from NCBRS.
- Published
- 2020
- Full Text
- View/download PDF
11. Severe paroxysmal dyskinesias without epilepsy in a RHOBTB2 mutation carrier.
- Author
-
Necpál J, Zech M, Valachová A, Sedláček Z, Bendová Š, Hančárová M, Okáľová K, Winkelmann J, and Jech R
- Subjects
- Dyskinesias diagnosis, Epilepsy diagnosis, Female, Humans, Dyskinesias genetics, Epilepsy genetics, GTP-Binding Proteins genetics, Mutation genetics, Tumor Suppressor Proteins genetics
- Published
- 2020
- Full Text
- View/download PDF
12. Correction: IQSEC2-related encephalopathy in males and females: a comparative study including 37 novel patients.
- Author
-
Mignot C, McMahon AC, Bar C, Campeau PM, Davidson C, Buratti J, Nava C, Jacquemont ML, Tallot M, Milh M, Edery P, Marzin P, Barcia G, Barnerias C, Besmond C, Bienvenu T, Bruel AL, Brunga L, Ceulemans B, Coubes C, Cristancho AG, Cunningham F, Dehouck MB, Donner EJ, Duban-Bedu B, Dubourg C, Gardella E, Gauthier J, Geneviève D, Gobin-Limballe S, Goldberg EM, Hagebeuk E, Hamdan FF, Hančárová M, Hubert L, Ioos C, Ichikawa S, Janssens S, Journel H, Kaminska A, Keren B, Koopmans M, Lacoste C, Laššuthová P, Lederer D, Lehalle D, Marjanovic D, Métreau J, Michaud JL, Miller K, Minassian BA, Morales J, Moutard ML, Munnich A, Ortiz-Gonzalez XR, Pinard JM, Prchalová D, Putoux A, Quelin C, Rosen AR, Roume J, Rossignol E, Simon MEH, Smol T, Shur N, Shelihan I, Štěrbová K, Vyhnálková E, Vilain C, Soblet J, Smits G, Yang SP, van der Smagt JJ, van Hasselt PM, van Kempen M, Weckhuysen S, Helbig I, Villard L, Héron D, Koeleman B, Møller RS, Lesca G, Helbig KL, Nabbout R, Verbeek NE, and Depienne C
- Abstract
This Article was originally published under Nature Research's License to Publish, but has now been made available under a CC BY 4.0 license. The PDF and HTML versions of the Article have been modified accordingly.
- Published
- 2019
- Full Text
- View/download PDF
13. IQSEC2-related encephalopathy in males and females: a comparative study including 37 novel patients.
- Author
-
Mignot C, McMahon AC, Bar C, Campeau PM, Davidson C, Buratti J, Nava C, Jacquemont ML, Tallot M, Milh M, Edery P, Marzin P, Barcia G, Barnerias C, Besmond C, Bienvenu T, Bruel AL, Brunga L, Ceulemans B, Coubes C, Cristancho AG, Cunningham F, Dehouck MB, Donner EJ, Duban-Bedu B, Dubourg C, Gardella E, Gauthier J, Geneviève D, Gobin-Limballe S, Goldberg EM, Hagebeuk E, Hamdan FF, Hančárová M, Hubert L, Ioos C, Ichikawa S, Janssens S, Journel H, Kaminska A, Keren B, Koopmans M, Lacoste C, Laššuthová P, Lederer D, Lehalle D, Marjanovic D, Métreau J, Michaud JL, Miller K, Minassian BA, Morales J, Moutard ML, Munnich A, Ortiz-Gonzalez XR, Pinard JM, Prchalová D, Putoux A, Quelin C, Rosen AR, Roume J, Rossignol E, Simon MEH, Smol T, Shur N, Shelihan I, Štěrbová K, Vyhnálková E, Vilain C, Soblet J, Smits G, Yang SP, van der Smagt JJ, van Hasselt PM, van Kempen M, Weckhuysen S, Helbig I, Villard L, Héron D, Koeleman B, Møller RS, Lesca G, Helbig KL, Nabbout R, Verbeek NE, and Depienne C
- Subjects
- Brain growth & development, Brain metabolism, Brain Diseases epidemiology, Brain Diseases physiopathology, Female, Humans, Infant, Infant, Newborn, Intellectual Disability epidemiology, Intellectual Disability physiopathology, Male, Mutation, Pedigree, Phenotype, Protein Isoforms genetics, Seizures epidemiology, Seizures physiopathology, Sex Characteristics, Brain Diseases genetics, Guanine Nucleotide Exchange Factors genetics, Intellectual Disability genetics, Seizures genetics
- Abstract
Purpose: Variants in IQSEC2, escaping X inactivation, cause X-linked intellectual disability with frequent epilepsy in males and females. We aimed to investigate sex-specific differences., Methods: We collected the data of 37 unpublished patients (18 males and 19 females) with IQSEC2 pathogenic variants and 5 individuals with variants of unknown significance and reviewed published variants. We compared variant types and phenotypes in males and females and performed an analysis of IQSEC2 isoforms., Results: IQSEC2 pathogenic variants mainly led to premature truncation and were scattered throughout the longest brain-specific isoform, encoding the synaptic IQSEC2/BRAG1 protein. Variants occurred de novo in females but were either de novo (2/3) or inherited (1/3) in males, with missense variants being predominantly inherited. Developmental delay and intellectual disability were overall more severe in males than in females. Likewise, seizures were more frequently observed and intractable, and started earlier in males than in females. No correlation was observed between the age at seizure onset and severity of intellectual disability or resistance to antiepileptic treatments., Conclusion: This study provides a comprehensive overview of IQSEC2-related encephalopathy in males and females, and suggests that an accurate dosage of IQSEC2 at the synapse is crucial during normal brain development.
- Published
- 2019
- Full Text
- View/download PDF
14. Dominant variants in the splicing factor PUF60 cause a recognizable syndrome with intellectual disability, heart defects and short stature.
- Author
-
El Chehadeh S, Kerstjens-Frederikse WS, Thevenon J, Kuentz P, Bruel AL, Thauvin-Robinet C, Bensignor C, Dollfus H, Laugel V, Rivière JB, Duffourd Y, Bonnet C, Robert MP, Isaiko R, Straub M, Creuzot-Garcher C, Calvas P, Chassaing N, Loeys B, Reyniers E, Vandeweyer G, Kooy F, Hančárová M, Havlovicová M, Prchalová D, Sedláček Z, Gilissen C, Pfundt R, Wassink-Ruiter JSK, and Faivre L
- Subjects
- Adolescent, Child, Child, Preschool, Chromosome Deletion, Chromosomes, Human, Pair 8 genetics, Dwarfism physiopathology, Exome genetics, Female, Frameshift Mutation, Heart Defects, Congenital physiopathology, High-Throughput Nucleotide Sequencing, Humans, Intellectual Disability physiopathology, Male, Phenotype, RNA Splicing genetics, Dwarfism genetics, Heart Defects, Congenital genetics, Intellectual Disability genetics, RNA Splicing Factors genetics, Repressor Proteins genetics
- Abstract
Verheij syndrome, also called 8q24.3 microdeletion syndrome, is a rare condition characterized by ante- and postnatal growth retardation, microcephaly, vertebral anomalies, joint laxity/dislocation, developmental delay (DD), cardiac and renal defects and dysmorphic features. Recently, PUF60 (Poly-U Binding Splicing Factor 60 kDa), which encodes a component of the spliceosome, has been discussed as the best candidate gene for the Verheij syndrome phenotype, regarding the cardiac and short stature phenotype. To date, only one patient has been reported with a de novo variant in PUF60 that probably affects function (c.505C>T leading to p.(His169Tyr)) associated with DD, microcephaly, craniofacial and cardiac defects. Additional patients were required to confirm the pathogenesis of this association and further delineate the clinical spectrum. Here we report five patients with de novo heterozygous variants in PUF60 identified using whole exome sequencing. Variants included a splice-site variant (c.24+1G>C), a frameshift variant (p.(Ile136Thrfs*31)), two nonsense variants (p.(Arg448*) and p.(Lys301*)) and a missense change (p.(Val483Ala)). All six patients with a PUF60 variant (the five patients of the present study and the unique reported patient) have the same core facial gestalt as 8q24.3 microdeletions patients, associated with DD. Other findings include feeding difficulties (3/6), cardiac defects (5/6), short stature (5/6), joint laxity and/or dislocation (5/6), vertebral anomalies (3/6), bilateral microphthalmia and irido-retinal coloboma (1/6), bilateral optic nerve hypoplasia (2/6), renal anomalies (2/6) and branchial arch defects (2/6). These results confirm that PUF60 is a major driver for the developmental, craniofacial, skeletal and cardiac phenotypes associated with the 8q24.3 microdeletion.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.