1. The Hamiltonian of f(R) gravity
- Author
-
Abdelmohssin, Faisal A.Y. and Mekki, Osman M.H. El
- Subjects
Gravity -- Models ,General relativity (Physics) -- Models ,Hamiltonian function -- Usage ,Physics - Abstract
We derive conjugate momenta variable tensors and the Hamiltonian equation of the source-free f(R) gravity from first principles using the Legendre transformation of these conjugate momenta variable tensors, conjugate coordinates variables--fundamental metric tensor and its first ordinary partial derivatives with respect to space-time coordinates and second ordinary partial derivatives with respect to space-time coordinates--and the Lagrangian of the f(R) gravity. Interpreting the derived Hamiltonian as the energy of the f(R) gravity we have shown that it vanishes for linear Lagrangians in Ricci scalar curvature without source (e.g., Einstein-Hilbert Lagrangian without matter fields), which is the same result obtained using the stress-energy tensor equation derived from variation of the matter field Lagrangian density. The resulting Hamiltonian equation forbids any negative power law model in the dependence of the f(R) gravity on Ricci scalar curvature: f(R) = [alpha][R.sup.-r], where r and a are positive real numbers; it also forbids any polynomial equation that contains terms with negative powers of the Ricci scalar curvature including a constant term, in which cases the Hamiltonian function in the Ricci scalar and therefore the energy of the f(R) gravity would attain a negative value and would not be bounded from below. The restrictions imposed by the non-negative Hamiltonian have [alpha][R.sup.-r] reaching consequences as a result of applying f(R) gravity to the study of black holes and the Friedmann-Lemaitre-Robertson-Walker model in cosmology. Key words: calculus of variations, analytical mechanics, Lagrangian and Hamiltonian formalisms, classical general theory of relativity, modified theory of gravity, f(R) gravity. Nous derivons les tenseurs des variables conjugues d'impulsion, ainsi que les equations de Hamilton pour une gravite f(R) sans source a partir de principes premiers utilisant la transformation de Legendre de ces tenseurs des variables conjugues d'impulsion, variables conjuguees des coordonnees (le tenseur metrique fondamental et ses premieres derivees partielles ordinaires par rapport aux coordonnees d'espace-temps et les secondes derivees partielles ordinaires par rapport aux coordonnees d'espace-temps) et le Lagrangien de la gravite f(R). Interpretant le Hamiltonien obtenu comme etant l'energie de la gravite f(R), nous montrons que qu'il devient nul pour des Lagrangiens lineaires dans le scalaire de courbure de Ricci sans source (e.g. la densite Lagrangienne de Einstein-Hilbert sans champ de matiere), ce qui est le meme resultat obtenu en utilisant l'equation du tenseur d'energie-impulsion derive de la variation de la densite Lagrangienne du champ de matiere. Les equations de Hamilton qui en resultent interdisent tout modele de loi de puissance negative dans la dependance de la gravite f(R) sur le scalaire de Ricci : f(R) = [alpha][R.sup.-r], oU r et a sont des nombres reels positifs et il interdit aussi tout developpement polynomial contenant des termes de puissance negative du salaire de Ricci, auquel cas l'energie de la gravite f(R) aurait une valeur negative sans borne inferieure. Les restrictions imposees aux Hamiltoniens non negatifs ont des consequences importances sur l'application de la gravite f(R) a l'etude des trous noirs et des modeles FLRW en cosmologie. [Traduit par la Redaction] Mots-cles: calcul des variations, mecanique analytique, formalismes de Lagrange et de Hamilton, theorie classique de la relativite generale, theorie modifiee de la gravite, f(R) gravite., 1. Introduction Buchdahl [1] proposed his generalization to the Einstein field equations by considering a generalization of the gravitational Lagrangian to be a general function of the Ricci scalar curvature [...]
- Published
- 2021
- Full Text
- View/download PDF