1. A Selective, Efficient, Facile, and Reusable Natural Clay/Metal Organic Framework as a Promising Adsorbent for the Removal of Drug Residue and Heavy Metal Ions
- Author
-
Rania Abdelazeem, Heba A. Younes, Zienab E. Eldin, Ahmed A. Allam, Hassan Ahmed Rudayni, Sarah I. Othman, Ahmed A. Farghali, Hamada M. Mahmoud, and Rehab Mahmoud
- Subjects
safinamide ,wastewater ,zeolite ,MOF ,adsorption ,heavy metals ,Chemistry ,QD1-999 - Abstract
It is imperative to eliminate heavy metals and pharmaceutical residual pollutants from wastewater to reduce their detrimental effects on the environment. In this work, natural zeolite and a 2-amino terephthalic acid-based multi-metallic organic framework were used to create a new composite that can be utilized as an adsorbent for cadmium and safinamide. The adsorption study was examined in a variety of settings (pH, adsorbent dosage, pollutant concentration, and time). Moreover, Zeta potential, BET, SEM, FTIR, XRD, and SEM measurements were used to characterize the adsorbents. The adsorption process was confirmed using FTIR, XRD, and SEM analysis. Various nonlinear adsorption isotherm models were applied to adsorption results. The results showed a significantly better adsorption ability for safinamide and cadmium using zeolite/MOF compared to zeolite. Adsorption kinetics were represented by five models: pseudo first-order, pseudo second-order, intraparticle diffusion, mixed first- and second-order, and the Avrami model. Regarding both adsorbent substances, safinamide adsorption was best represented by the intraparticle diffusion model. In contrast, the pseudo second-order and intraparticle diffusion models for zeolite and zeolite/MOF, respectively, better fit the experimental results in the case of cadmium adsorption. The thermodynamic parameters ΔH°, ΔS°, and ΔG° were investigated through temperature tests carried out at 25, 35, 45, and 55 °C. Exothermic and spontaneous adsorption processes were demonstrated by the computed values. The study of adsorbent regeneration involved the use of several chemical solvents. The DMSO solvent was shown to have the highest adsorbent regeneration method efficiency at 63%. Safinamide elimination was lessened by organic interfering species like cefixime and humic acid compared to inorganic species like chloride, sulphate, and nitrate, most likely as a result of intense competition for the few available active sites. Using zeolite/MOF nanocomposite, the percentage of safinamide removed from spiked real water samples (tap water, Nile River water, and groundwater samples) was 48.80%, 64.30%, and 44.44%, respectively. Based on cytotoxicity results, the highest percentages of cell viability for zeolite and zeolite/MOF at 24 h were 83% and 81%, respectively, in comparison to untreated controls. According to these results, zeolite and zeolite/MOF composites can be used as effective adsorbents for these pollutants in wastewater.
- Published
- 2024
- Full Text
- View/download PDF