1. Impact of dipole self-energy on cavity-induced nonadiabatic dynamics
- Author
-
Fábri, Csaba, Halász, Gábor J., Hofierka, Jaroslav, Cederbaum, Lorenz S., and Vibók, Ágnes
- Subjects
Physics - Chemical Physics - Abstract
The coupling of matter to the quantized electromagnetic field of a plasmonic or optical cavity can be harnessed to modify and control chemical and physical properties of molecules. In optical cavities, a term known as the dipole self-energy (DSE) appears in the Hamiltonian to assure gauge invariance. The aim of this work is twofold. First, we introduce a method, which has its own merits and complements existing methods, to compute the DSE. Second, we study the impact of the DSE on cavity-induced nonadiabatic dynamics in a realistic system. For that purpose, various matrix elements of the DSE are computed as functions of the nuclear coordinates and the dynamics of the system after laser excitation is investigated. The cavity is known to induce conical intersections between polaritons, which gives rise to substantial nonadiabatic effects. The DSE is shown to slightly affect these light-induced conical intersections and, in particular, break their symmetry.
- Published
- 2024