21 results on '"Haimhoffer Á"'
Search Results
2. The Role of Amphiphilic Compounds in Nasal Nanoparticles.
- Author
-
Quoc TT, Bíró K, Pető Á, Kósa D, Haimhoffer Á, Lekli I, Pallér Á, Bak I, Gyöngyösi A, Fehér P, Bácskay I, and Ujhelyi Z
- Subjects
- Nasal Mucosa metabolism, Nasal Mucosa drug effects, Humans, Chemistry, Pharmaceutical methods, Biological Availability, Particle Size, Powders chemistry, Drug Compounding methods, Administration, Intranasal methods, Nanoparticles chemistry, Drug Delivery Systems methods, Surface-Active Agents chemistry
- Abstract
Nasal medications hold significant importance and are widely utilized due to their numerous advantageous properties, offering a compelling route for both local and systemic therapeutic effects. Nowadays, the development of nasal particles under 1 micrometer is in the focus of much scientific research. In our experiments, the use of innovative nanotechnology to increase the effectiveness of the active substance was of paramount importance. Our aim was to create solid nanoparticles that enable targeted and effective delivery of the active ingredient into the body. The innovation of this experimental series lies not only in highlighting the importance of amphiphilic compounds in enhancing penetration, but also in the fact that while most nasally administered formulations are in liquid form, our formulation is solid. Liquid formulations frequently suffer from the disadvantage of possible leakage during administration, which can reduce the bioavailability of the active ingredient. In our experiments we created novel drug delivery systems of finely divided powders, which, thanks to the penetration enhancers, can be successfully administered. These enhancers facilitate the swift disintegration and penetration of the particles through the membrane. This represents a new direction in nasal drug delivery methods. The results of our trials are promising in the development of innovative pharmaceutical products and outline the role of amphiphilic compounds in more efficient utilization and targeted application of active substances. According to our results it can be concluded that this innovative approach not only addresses the common issues associated with liquid nasal formulations but also paves the way for more stable and effective delivery methods. The use of finely divided powders for nasal delivery, enabled by penetration enhancers, represents a major breakthrough in the field, providing a dependable alternative to conventional liquid formulations and ensuring improved therapeutic results., Competing Interests: Declarations Conflict of interest The authors declare no conflict of interest., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
3. Formulation of Thermo-Sensitive In Situ Gels Loaded with Dual Spectrum Antibiotics of Azithromycin and Ofloxacin.
- Author
-
Alsheikh R, Haimhoffer Á, Nemes D, Ujhelyi Z, Fehér P, Józsa L, Vasvári G, Pető Á, Kósa D, Nagy L, Horváth L, Balázs B, and Bácskay I
- Abstract
In situ gels have been developed as an innovative strategy to prolong corneal residence time and enhance drug absorption compared to traditional eye drops. Our study aimed to formulate an ophthalmic in situ gel with a combination of two thermosensitive poloxamers, P407 and P188, in an optimal ratio not only to increase the time of action but also to increase the solubility of selected antibiotics for the treatment of ophthalmic infections. Two BSC II class substances, Azithromycin and Ofloxacin, with different mechanisms of action, have been incorporated into the in situ gel system after determining their solubility. The antibiotics-loaded in situ gel formulation was evaluated for its clarity, pH, rheological properties, and gel characteristics of gelling time, temperature, and capacity. The formulation demonstrated satisfactory clarity, appropriate pH, effective gelation properties in simulated tear fluid, and suitable rheological characteristics. In addition, APIs release insight has been studied through a dissolution test, and the effectivity against sensitive and resistant bacterial strains has been proved through the antimicrobial study. Therefore, our in situ gel system based on thermosensitive poloxamers, with two hydrophobic antibiotics, AZM and OFX, can be considered a valuable approach for ophthalmic drug delivery with an enhancement of the antibiotics bioavailability through increasing the contact time with the ocular surface and enhancing patient compliance.
- Published
- 2024
- Full Text
- View/download PDF
4. Electroretinographical Analysis of the Effect of BGP-15 in Eyedrops for Compensating Global Ischemia-Reperfusion in the Eyes of Sprague Dawley Rats.
- Author
-
Takács B, Szilágyi A, Priksz D, Bombicz M, Szabó AM, Pelles-Taskó B, Rusznyák Á, Haimhoffer Á, Gesztelyi R, Szilvássy Z, Juhász B, and Varga B
- Abstract
Retinal vascular diseases and consequential metabolic disturbances in the eye are major concerns for healthcare systems all around the world. BGP-15, a drug candidate small-molecule [O-(3-piperidino-2-hydroxy-1-propyl) nicotinic amidoxime dihydrochloride], has been formerly demonstrated by our workgroup to be retinoprotective both in the short and long term. Based on these results, the present study was performed to investigate the efficacy of BGP in an eyedrop formulation containing sulfobutylether-β-cyclodextrin (SBECD), which is a solubility enhancer as well. Electroretinographical evaluations were carried out and BGP was demonstrated to improve both scotopic and photopic retinal a- and b-waves, shorten their implicit times and restore oscillatory potentials after ischemia-reperfusion. It was also observed to counteract retinal thinning after ischemia-reperfusion in the eyes of Sprague Dawley rats. This small-molecule drug candidate is able to compensate for experimental global eye ischemia-reperfusion injury elicited by ligation of blood vessels in rats. We successfully demonstrated that BGP is able to exert its protective effects on the retina even if administered in the form of eyedrops.
- Published
- 2024
- Full Text
- View/download PDF
5. Formulation and Evaluation of Transdermal Patches Containing BGP-15.
- Author
-
Bácskay I, Hosszú Z, Budai I, Ujhelyi Z, Fehér P, Kósa D, Haimhoffer Á, and Pető Á
- Abstract
BGP-15 is an active ingredient with many advantages, e.g., beneficial cardiovascular and anti-inflammatory effects. The transdermal administration of BGP-15 has great potential, which has not been investigated yet, despite the fact that it is a non-invasive and safe form of treatment. The aim of our study was to formulate transdermal patches containing BGP-15 and optimize the production with the Box-Behnken design of experiment. The most optimal formulation was further combined with penetration enhancers to improve bioavailability of the active ingredient, and the in vitro drug release and in vitro permeation of BGP-15 from the patches were investigated. FTIR spectra of BGP-15, the formulations and the components were also studied. The most optimal formulation based on the tested parameters was dried for 24 h, with 67% polyvinyl alcohol (PVA) content and low ethanol content. The selected penetration enhancer excipients were not cytotoxic on HaCaT cells. The FTIR measurements and SEM photography proved the compatibility of the active substance and the vehicle; BGP-15 was present in the polymer matrix in dissolved form. The bioavailability of BGP-15 was most significantly enhanced by the combination of Transcutol and Labrasol. The in vitro permeation study confirmed that the formulated patches successfully enabled the transdermal administration of BGP-15.
- Published
- 2023
- Full Text
- View/download PDF
6. In Vitro and In Vivo Efficacy of Topical Dosage Forms Containing Self-Nanoemulsifying Drug Delivery System Loaded with Curcumin.
- Author
-
Frei G, Haimhoffer Á, Csapó E, Bodnár K, Vasvári G, Nemes D, Lekli I, Gyöngyösi A, Bácskay I, Fehér P, and Józsa L
- Abstract
The external use of curcumin is rare, although it can be a valuable active ingredient in the treatment of certain inflammatory diseases. The aim of our experimental work was to formulate topical dosage forms containing curcumin for the treatment of atopic dermatitis. Curcumin has extremely poor solubility and bioavailability, so we have tried to increase it with the usage of self-emulsifying drug delivery systems. Creams and gels were formulated using penetration-enhancing surfactants and gelling agents. The release of the drug from the vehicle and its penetration through the membrane were determined using a Franz diffusion cell. An MTT cytotoxicity and in vitro antioxidant assays were performed on HaCaT cell line. The in vivo anti-inflammatory effect of the preparations was tested by measuring rat paw edema. In addition, we examined the degree of inflammation induced by UV radiation after pretreatment with the cream and the gel on rats. For the gels containing SNEDDS, the highest penetration was measured after half an hour, while for the cream, it took one hour to reach the maximum concentration. The gel containing Pemulen TR-1 showed the highest drug release. It was determined that the curcumin-containing preparations can be safely applied on the skin and have antioxidant effects. The animal experiments have proven the effectiveness of curcumin-containing topical preparations.
- Published
- 2023
- Full Text
- View/download PDF
7. Recent Options and Techniques to Assess Improved Bioavailability: In Vitro and Ex Vivo Methods.
- Author
-
Józsa L, Nemes D, Pető Á, Kósa D, Révész R, Bácskay I, Haimhoffer Á, and Vasvári G
- Abstract
Bioavailability assessment in the development phase of a drug product is vital to reveal the disadvantageous properties of the substance and the possible technological interventions. However, in vivo pharmacokinetic studies provide strong evidence for drug approval applications. Human and animal studies must be designed on the basis of preliminary biorelevant experiments in vitro and ex vivo. In this article, the authors have reviewed the recent methods and techniques from the last decade that are in use for assessing the bioavailability of drug molecules and the effects of technological modifications and drug delivery systems. Four main administration routes were selected: oral, transdermal, ocular, and nasal or inhalation. Three levels of methodologies were screened for each category: in vitro techniques with artificial membranes; cell culture, including monocultures and co-cultures; and finally, experiments where tissue or organ samples were used. Reproducibility, predictability, and level of acceptance by the regulatory organizations are summarized for the readers.
- Published
- 2023
- Full Text
- View/download PDF
8. Effect of Molecular Weight on the Dissolution Profiles of PEG Solid Dispersions Containing Ketoprofen.
- Author
-
Le Khanh HP, Haimhoffer Á, Nemes D, Józsa L, Vasvári G, Budai I, Bényei A, Ujhelyi Z, Fehér P, and Bácskay I
- Abstract
Solid dispersions are typically binary systems with a hydrophilic matrix polymer and a lipophilic active substance. During formulation, the drug undergoes a crystalline to amorphous phase transition, which leads to a supersaturated solution providing enhanced bioavailability. The interaction of the active substance and the polymer is unique and influences the level of supersaturation. We aimed to investigate the relationship between low molecular weight polyethylene glycol derivates PEG 1000, 1500, and 2000 and ketoprofen regarding the effect of molecular weight. The physicochemical properties of solid dispersions prepared with hot melt homogenization and their respective physical mixtures were investigated with Fourier transform infrared spectroscopy, powder X-ray diffraction and scanning electron microscopy techniques. A phase solubility study was carried out in hydrochloric acid media which showed no difference between the three polymers, but the dissolution curves differed considerably. PEG 1000 had higher percentage of released drug than PEG 1500 and 2000, which had similar results. These results indicate that when multiple low molecular weight PEGs are suitable as matrix polymers of solid dispersions, the molecular weight has only limited impact on physicochemical characteristics and interactions and further investigation is needed to select the most applicable candidate.
- Published
- 2023
- Full Text
- View/download PDF
9. Investigation of the Drug Carrier Properties of Insoluble Cyclodextrin Polymer Microspheres.
- Author
-
Haimhoffer Á, Vas A, Árvai G, Fenyvesi É, Jicsinszky L, Budai I, Bényei A, Regdon G Jr, Rusznyák Á, Vasvári G, Váradi J, Bácskay I, Vecsernyés M, and Fenyvesi F
- Subjects
- Caco-2 Cells, Cellulose, Drug Carriers, Estradiol, Humans, Microspheres, Polymers, Solubility, Curcumin pharmacology, Cyclodextrins
- Abstract
The investigation of the usability of solid insoluble β-cyclodextrin polymers (βCDP) in micro-sized, controlled drug delivery systems has only recently attracted interest. Our aim was to form complexes with poorly soluble active pharmaceutical ingredients (APIs) with two types of βCDP for drug delivery applications. Solid insoluble cyclodextrin polymer of irregular shape (βCDPIS) and cyclodextrin microbeads (βCDPB) were used in the experiments. Morphology, surface area, size distribution and swelling capacity of carriers were investigated. We created complexes with two APIs, curcumin and estradiol, and applied powder X-ray diffraction, FTIR and thermal analysis (TGA/DSC) to prove the complexation. Finally, the dissolution, biocompatibility and permeation of APIs on Caco-2 cells were investigated. The size of the beads was larger than 100 µm, their shape was spherical and surfaces were smooth; while the βCDPIS particles were around 4 µm with irregular shape and surface. None of the polymers showed any cytotoxic effect on Caco-2 cells. Both carriers were able to extract curcumin and estradiol from aqueous solutions, and the dissolution test showed prolonged estradiol release. Caco-2 permeability tests were in accordance with the complexation abilities and dissolution of the complexes. This study offers useful data for further pharmaceutical applications of insoluble cyclodextrin polymers.
- Published
- 2022
- Full Text
- View/download PDF
10. Topical Dosage Formulation of Lyophilized Philadelphus coronarius L. Leaf and Flower: Antimicrobial, Antioxidant and Anti-Inflammatory Assessment of the Plant.
- Author
-
Pető Á, Kósa D, Haimhoffer Á, Nemes D, Fehér P, Ujhelyi Z, Vecsernyés M, Váradi J, Fenyvesi F, Frum A, Gligor FG, Vicaș LG, Marian E, Jurca T, Pallag A, Muresan ME, Tóth Z, and Bácskay I
- Subjects
- Anti-Bacterial Agents pharmacology, Anti-Inflammatory Agents pharmacology, Flowers, Ointments, Plant Extracts pharmacology, Plant Leaves, Anti-Infective Agents pharmacology, Antioxidants pharmacology
- Abstract
Philadelphus coronarius is a versatile plant and its use in folk medicine has a long tradition; however, scientifically, the medical utilization of the herb is a less explored research field. The aim of our study was to identify and determine the quantity of the bioactive compounds of both the leaf and the flower and prepare a lyophilized product of them, from which medical ointments were formulated, since the topical application of P. coronarius has also not been studied. In vitro drug release, texture analysis and biocompatibility experiments were carried out, as well as the investigation of microbiological, antioxidant and anti-inflammatory properties. According to our results the composition and the selected excipients of the ointments have a great impact on the drug release, texture and bioavailability of the preparation. During the microbiological testing, the P. coronarius leaf was effective against Escherichia coli and Staphylococcus aureus , but it did not significantly decrease IL-4 production when it was tested on HaCaT cells. P. coronarius is a promising herb, and its topical application in antimicrobial therapy can be a useful addition to modern medical therapy.
- Published
- 2022
- Full Text
- View/download PDF
11. Investigation of the Role and Effectiveness of Chitosan Coating on Probiotic Microcapsules.
- Author
-
Erdélyi L, Fenyvesi F, Gál B, Haimhoffer Á, Vasvári G, Budai I, Remenyik J, Bereczki I, Fehér P, Ujhelyi Z, Bácskay I, Vecsernyés M, Kovács R, and Váradi J
- Abstract
Microencapsulation and coating are preferred methods to increase the viability of the probiotic strains. The effect of microencapsulation technologies and materials used as microcapsule cores on viability is being investigated during development. In the present study, chitosan-coated and Eudragit L100-55-coated alginate microspheres were produced to encapsulate Lactobacillus plantarum probiotic bacteria. After the heat loading and simulated gastrointestinal juice dissolution study, the differences in viability were compared based on the CFU/mL values of the samples. The kinetics of the bacterial release and the ratio of the released live/dead cells of Lactobacillus plantarum were examined by flow cytometry. In all cases, we found that the CFU value for the chitosan-coated samples was virtually zero. The ratio of live/dead cells in the 120 min samples was significantly reduced to less than 20% for chitosan, while it was nearly 90% in the uncoated and Eudragit L100-55-coated samples. In the case of chitosan, based on some published MIC values and the amount of chitosan coating determined in the present study, we concluded the reason for our results. It was the first time to determine the amount of the released chitosan coat of the dried microcapsule, which reached the MIC value during the dissolution studies.
- Published
- 2022
- Full Text
- View/download PDF
12. Cellular Effects of Cyclodextrins: Studies on HeLa Cells.
- Author
-
Rusznyák Á, Palicskó M, Malanga M, Fenyvesi É, Szente L, Váradi J, Bácskay I, Vecsernyés M, Réti-Nagy KS, Vasvári G, Haimhoffer Á, and Fenyvesi F
- Subjects
- Caco-2 Cells, Excipients, HeLa Cells, Humans, Solubility, Cyclodextrins pharmacology
- Abstract
Cyclodextrins are high molecular weight, hydrophilic, cyclic, non-reducing oligosaccharides, applied as excipients for the improvement of the solubility and permeability of insoluble active pharmaceutical ingredients. On the other hand, beta-cyclodextrins are used as cholesterol sequestering agents in life sciences. Recently, we demonstrated the cellular internalization and intracellular effects of cyclodextrins on Caco-2 cells. In this study, we aimed to further investigate the endocytosis of (2-hydroxylpropyl)-beta-(HPBCD) and random methylated-beta-cyclodextrin (RAMEB) to test their cytotoxicity, NF-kappa B pathway induction, autophagy, and lysosome formation on HeLa cells. These derivatives were able to enter the cells; however, major differences were revealed in the inhibition of their endocytosis compared to Caco-2 cells. NF-kappa B p65 translocation was not detected in the cell nuclei after HPBCD or RAMEB pre-treatment and cyclodextrin treatment did not enhance the formation of autophagosomes. These cyclodextrin derivates were partially localized in lysosomes after internalization.
- Published
- 2022
- Full Text
- View/download PDF
13. In Vitro and In Vivo Studies of a Verapamil-Containing Gastroretentive Solid Foam Capsule.
- Author
-
Haimhoffer Á, Vasvári G, Budai I, Béresová M, Deák Á, Németh N, Váradi J, Sinka D, Bácskay I, Vecsernyés M, and Fenyvesi F
- Abstract
Gastroretentive systems may overcome problems associated with incomplete drug absorption by localized release of the API in the stomach. Low-density drug delivery systems can float in the gastric content and improve the bioavailability of small molecules. The current publication presents verapamil-HCl-containing solid foam prepared by continuous manufacturing. Production runs were validated, and the foam structure was characterized by micro-CT scans and SEM. Dissolution properties, texture changes during dissolution, and floating forces were analyzed. An optimized formulation was chosen and given orally to Beagle dogs to determine the pharmacokinetic parameters of the solid foam capsules. As a result, a 12.5 m/m% stearic acid content was found to be the most effective to reduce the apparent density of capsules. Drug release can be described by the first-order model, where 70% of verapamil dissolved after 10 h from the optimized formulation. The texture analysis proved that the structures of the solid foams are resistant. Additionally, the floating forces of the samples remained constant during their dissolution in acidic media. An in vivo study confirmed the prolonged release of the API, and gastroscopic images verified the retention of the capsule in the stomach.
- Published
- 2022
- Full Text
- View/download PDF
14. Nicotinic Amidoxime Derivate BGP-15, Topical Dosage Formulation and Anti-Inflammatory Effect.
- Author
-
Pető Á, Kósa D, Haimhoffer Á, Fehér P, Ujhelyi Z, Sinka D, Fenyvesi F, Váradi J, Vecsernyés M, Gyöngyösi A, Lekli I, Szentesi P, Marton A, Gombos I, Dukic B, Vígh L, and Bácskay I
- Abstract
BGP-15 is a Hungarian-developed drug candidate with numerous beneficial effects. Its potential anti-inflammatory effect is a common assumption, but it has not been investigated in topical formulations yet. The aim of our study was to formulate 10% BGP-15 creams with different penetration enhancers to ensure good drug delivery, improve bioavailability of the drug and investigate the potential anti-inflammatory effect of BGP-15 creams in vivo. Since the exact mechanism of the effect is still unknown, the antioxidant effect (tested with UVB radiation) and the ability of BGP-15 to decrease macrophage activation were evaluated. Biocompatibility investigations were carried out on HaCaT cells to make sure that the formulations and the selected excipients can be safely used. Dosage form studies were also completed with texture analysis and in vitro release with Franz diffusion chamber apparatus. Our results show that the ointments were able to reduce the extent of local inflammation in mice, but the exact mechanism of the effect remains unknown since BGP-15 did not show any antioxidant effect, nor was it able to decrease LPS-induced macrophage activation. Our results support the hypothesis that BGP-15 has a potential anti-inflammatory effect, even if it is topically applied, but the mechanism of the effect remains unclear and requires further pharmacological studies.
- Published
- 2021
- Full Text
- View/download PDF
15. Preformulation Studies and Bioavailability Enhancement of Curcumin with a 'Two in One' PEG-β-Cyclodextrin Polymer.
- Author
-
Haimhoffer Á, Dossi E, Béresová M, Bácskay I, Váradi J, Afsar A, Rusznyák Á, Vasvári G, and Fenyvesi F
- Abstract
Drug delivery systems are used to improve the biopharmaceutical properties of curcumin. Our aim was to investigate the effect of a water-soluble 'two in one' polymer containing covalently bonded PEG and βCD moieties (βCPCD) on the solubility and bioavailability of curcumin and compare it to a polymeric β-cyclodextrin (βCDP) cross-linked with epichlorohydrin. Phase-solubility and dynamic light scattering (DLS) experiments showed that the solubility of curcumin increased significantly in 10 m / m % βCPCD and βCDP solutions, but βCPCD-curcumin particles had higher hydrodynamic volume. The formation of the βCPCD-curcumin complex in solution and sedimented phase was confirmed by NMR spectroscopy. Biocompatibility and permeability experiments were performed on Caco-2 cells. Polymers did not show cytotoxicity up to 10 m / m % and βCPCD significantly increased the permeability of curcumin. DLS measurements revealed that among the interaction of polymers with mucin, βCPCD formed bigger aggregates compared to βCDP. Curcumin complexes were lyophilized into capsules and structurally characterized by micro-CT spectroscopy. Drug release was tested in a pH 1.2 medium. Lyophilized complexes had a solid porous matrix and both βCPCD and βCDP showed rapid drug release. βCPCD provides an opportunity to create a swellable, mucoadhesive matrix system for oral drug delivery.
- Published
- 2021
- Full Text
- View/download PDF
16. Preparation of Acyclovir-Containing Solid Foam by Ultrasonic Batch Technology.
- Author
-
Haimhoffer Á, Fenyvesi F, Lekli I, Béresová M, Bak I, Czagány M, Vasvári G, Bácskay I, Tóth J, and Budai I
- Abstract
In recent years, the application of solid foams has become widespread. Solid foams are not only used in the aerospace field but also in everyday life. Although foams are promising dosage forms in the pharmaceutical industry, their usage is not prevalent due to decreased stability of the solid foam structure. These special dosage forms can result in increased bioavailability of drugs. Low-density floating formulations can also increase the gastric residence time of drugs; therefore, drug release will be sustained. Our aim was to produce a stable floating formula by foaming. Matrix components, PEG 4000 and stearic acid type 50, were selected with the criteria of low gastric irritation, a melting range below 70 °C, and well-known use in oral drug formulations. This matrix was melted at 54 °C in order to produce a dispersion of active substance and was foamed by different gases at atmospheric pressure using an ultrasonic homogenizer. The density of the molded solid foam was studied by the pycnometer method, and its structure was investigated by SEM and micro-CT. The prolonged drug release and mucoadhesive properties were proved in a pH 1.2 buffer. According to our experiments, a stable foam could be produced by rapid homogenization (less than 1 min) without any surfactant material.
- Published
- 2021
- Full Text
- View/download PDF
17. Process Optimization for the Continuous Production of a Gastroretentive Dosage Form Based on Melt Foaming.
- Author
-
Haimhoffer Á, Vasvári G, Trencsényi G, Béresová M, Budai I, Czomba Z, Rusznyák Á, Váradi J, Bácskay I, Ujhelyi Z, Fehér P, Vecsernyés M, and Fenyvesi F
- Subjects
- Animals, Barium Sulfate administration & dosage, Biological Availability, Delayed-Action Preparations administration & dosage, Delayed-Action Preparations chemical synthesis, Delayed-Action Preparations pharmacokinetics, Dosage Forms, Gastric Mucosa drug effects, Gastric Mucosa metabolism, Gastrointestinal Absorption physiology, Male, Porosity, Rats, Rats, Inbred F344, Barium Sulfate chemical synthesis, Barium Sulfate pharmacokinetics, Drug Delivery Systems methods, Gastrointestinal Absorption drug effects
- Abstract
Several drugs have poor oral bioavailability due to low or incomplete absorption which is affected by various effects as pH, motility of GI, and enzyme activity. The gastroretentive drug delivery systems are able to deal with these problems by prolonging the gastric residence time, while increasing the therapeutic efficacy of drugs. Previously, we developed a novel technology to foam hot and molten dispersions on atmospheric pressure by a batch-type in-house apparatus. Our aim was to upgrade this technology by a new continuous lab-scale apparatus and confirm that our formulations are gastroretentive. At first, we designed and built the apparatus and continuous production was optimized using a Box-Behnken experimental design. Then, we formulated barium sulfate-loaded samples with the optimal production parameters, which was suitable for in vivo imaging analysis. In vitro study proved the low density, namely 507 mg/cm
3 , and the microCT record showed high porosity with 40 μm average size of bubbles in the molten suspension. The BaSO4 -loaded samples showed hard structure at room temperature and during the wetting test, the complete wetting was detected after 120 min. During the in vivo study, the X-ray taken showed the retention of the formulation in the rat stomach after 2 h. We can conclude that with our device low-density floating formulations were prepared with prolonged gastric residence time. This study provides a promising platform for marketed active ingredients with low bioavailability.- Published
- 2021
- Full Text
- View/download PDF
18. Investigation of the Cellular Effects of Beta- Cyclodextrin Derivatives on Caco-2 Intestinal Epithelial Cells.
- Author
-
Rusznyák Á, Malanga M, Fenyvesi É, Szente L, Váradi J, Bácskay I, Vecsernyés M, Vasvári G, Haimhoffer Á, Fehér P, Ujhelyi Z, Nagy B Jr, Fejes Z, and Fenyvesi F
- Abstract
Cyclodextrins are widely used excipients for increasing water-solubility, delivery and bioavailability of lipophilic drugs. By using fluorescent cyclodextrin derivatives, we showed previously that cyclodextrins are able to enter Caco-2 intestinal cells by endocytosis, but the influence of different fluorescent labeling on the same cyclodextrin derivative has not been studied. The consequences of the cellular internalization of cyclodextrins have not been revealed yet either. The aims of this study were to compare the cellular internalization of fluorescein- and rhodamine-labeled (2-hydroxypropyl)-, (HPBCD) and randommethyl-β-cyclodextrins (RAMEB) and to investigate the intracellular effects of these derivatives on Caco-2 cells. Stimulation of the NF-kappa B pathway and autophagy and localization of these derivatives in lysosomes were tested. The endocytosis of these derivatives was examined by fluorescence microscopy and flow cytometry. Both fluorescein- and rhodamine-labeled derivatives entered the cells, therefore the type of the fluorescent labeling did not influence their internalization. Cyclodextrin pretreatment did not activate the translocation of the p65 subunit of the NF-kappa B heterodimer into the cell nuclei from the cytoplasm. After HPBCD or RAMEB treatment, formation of the autophagosomes did not increase compared to the control sample and at the same time these derivatives could be detected in lysosomes after internalization.
- Published
- 2021
- Full Text
- View/download PDF
19. In Vitro Tests of FDM 3D-Printed Diclofenac Sodium-Containing Implants.
- Author
-
Arany P, Papp I, Zichar M, Csontos M, Elek J, Regdon G Jr, Budai I, Béres M, Gesztelyi R, Fehér P, Ujhelyi Z, Vasvári G, Haimhoffer Á, Fenyvesi F, Váradi J, Miklós V, and Bácskay I
- Subjects
- Biomedical Technology, Chemical Phenomena, Mechanical Phenomena, Polymers chemistry, Solubility, Thermogravimetry, X-Ray Microtomography, Anti-Inflammatory Agents, Non-Steroidal administration & dosage, Anti-Inflammatory Agents, Non-Steroidal chemistry, Diclofenac administration & dosage, Diclofenac chemistry, Printing, Three-Dimensional, Prostheses and Implants
- Abstract
One of the most promising emerging innovations in personalized medication is based on 3D printing technology. For use as authorized medications, 3D-printed products require different in vitro tests, including dissolution and biocompatibility investigations. Our objective was to manufacture implantable drug delivery systems using fused deposition modeling, and in vitro tests were performed for the assessment of these products. Polylactic acid, antibacterial polylactic acid, polyethylene terephthalate glycol, and poly(methyl methacrylate) filaments were selected, and samples with 16, 19, or 22 mm diameters and 0%, 5%, 10%, or 15% infill percentages were produced. The dissolution test was performed by a USP dissolution apparatus 1. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H -tetrazolium bromide dye (MTT)-based prolonged cytotoxicity test was performed on Caco-2 cells to certify the cytocompatibility properties. The implantable drug delivery systems were characterized by thermogravimetric and heatflow assay, contact angle measurement, scanning electron microscopy, microcomputed tomography, and Raman spectroscopy. Based on our results, it can be stated that the samples are considered nontoxic. The dissolution profiles are influenced by the material properties of the polymers, the diameter, and the infill percentage. Our results confirm the potential of fused deposition modeling (FDM) 3D printing for the manufacturing of different implantable drug delivery systems in personalized medicine and may be applied during surgical interventions.
- Published
- 2020
- Full Text
- View/download PDF
20. Cyclodextrin Complexation Improves the Solubility and Caco-2 Permeability of Chrysin.
- Author
-
Fenyvesi F, Nguyen TLP, Haimhoffer Á, Rusznyák Á, Vasvári G, Bácskay I, Vecsernyés M, Ignat SR, Dinescu S, Costache M, Ciceu A, Hermenean A, and Váradi J
- Abstract
Chrysin is a bioflavonoid that can be found in natural products such as honey and propolis, and it possesses several biological effects such as antioxidant, anti-inflammatory, and anti-cancer activity. However, it is poorly soluble in water, and its bioavailability is limited. The aim of this research is to investigate the chrysin solubilization capacity of different β-cylcodextrin derivatives and compare their biological activities. Chrysin was complexed with β-cyclodextrin (βCD), hydroxypropyl-β-, (HPBCD) sulfobutylether-β-, (SBECD), and randomly-methylated-β-cyclodextrin (RAMEB) by the lyophilization method in 1:1 and 1:2 molar ratios. The solubilities of the chrysin-cyclodextrin complexes were tested, and the solubilization abilities of cyclodextrins were studied by phase solubility experiments. The cytotoxicity of the complexes was measured by the MTT method, and the permeability enhancement was tested on Caco-2 monolayers. The solubility study showed that the complexes formed with RAMEB had the highest solubility in water. The phase solubility experiments confirmed the strongest interaction between RAMEB and chrysin. In the viability test, none of the complexes showed cytotoxicity up to 100 µM concentration. The permeability study revealed that both at 1:1 and 1:2 ratios, the RAMEB complexes were the most effective to enhance chrysin permeability through the Caco-2 monolayers. In conclusion, cyclodextrins, especially RAMEB, are suitable for improving chrysin solubility and absorption.
- Published
- 2020
- Full Text
- View/download PDF
21. Development and Characterisation of Gastroretentive Solid Dosage Form Based on Melt Foaming.
- Author
-
Vasvári G, Haimhoffer Á, Horváth L, Budai I, Trencsényi G, Béresová M, Dobó-Nagy C, Váradi J, Bácskay I, Ujhelyi Z, Fehér P, Sinka D, Vecsernyés M, and Fenyvesi F
- Subjects
- Biological Availability, Delayed-Action Preparations, Drug Compounding, Drug Liberation, Excipients chemistry, Gastric Emptying, Metronidazole pharmacokinetics, Solubility, Stearic Acids chemistry, Dosage Forms, Hot Temperature, Metronidazole chemistry, Stomach
- Abstract
Dosage forms with increased gastric residence time are promising tools to increase bioavailability of drugs with narrow absorption window. Low-density floating formulations could avoid gastric emptying; therefore, sustained drug release can be achieved. Our aim was to develop a new technology to produce low-density floating formulations by melt foaming. Excipients were selected carefully, with the criteria of low gastric irritation, melting range below 70°C and well-known use in oral drug formulations. PEG 4000, Labrasol and stearic acid type 50 were used to create metronidazole dispersion which was foamed by air on atmospheric pressure using in-house developed apparatus at 53°C. Stearic acid was necessary to improve the foamability of the molten dispersion. Additionally, it reduced matrix erosion, thus prolonging drug dissolution and preserving hardness of the moulded foam. Labrasol as a liquid solubiliser can be used to increase drug release rate and drug solubility. Based on the SEM images, metronidazole in the molten foam remained in crystalline form. MicroCT scans with the electron microscopic images revealed that the foam has a closed-cell structure, where spherical voids have smooth inner wall, they are randomly dispersed, while adjacent voids often interconnected with each other. Drug release from all compositions followed Korsmeyer-Peppas kinetic model. Erosion of the matrix was the main mechanism of the release of metronidazole. Texture analysis confirmed that stearic acid plays a key role in preserving the integrity of the matrix during dissolution in acidic buffer. The technology creates low density and solid matrix system with micronsized air-filled voids.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.