290,576 results on '"Hahn, A"'
Search Results
2. Contents
- Author
-
Hahn, Allison
- Published
- 2021
3. ICT Development for Mobile Communities
- Author
-
Hahn, Allison
- Published
- 2021
4. Back Cover
- Author
-
Hahn, Allison
- Published
- 2021
5. Title Page, Copyright
- Author
-
Hahn, Allison
- Published
- 2021
6. Introduction
- Author
-
Hahn, Allison
- Published
- 2021
7. Standing Rock Unites International Protesters
- Author
-
Hahn, Allison
- Published
- 2021
8. Inner Mongolian Online Identity
- Author
-
Hahn, Allison
- Published
- 2021
9. New Herding Networks
- Author
-
Hahn, Allison
- Published
- 2021
10. Mongolia's Cell Phone Referendum
- Author
-
Hahn, Allison
- Published
- 2021
11. Maasai Online Petitions
- Author
-
Hahn, Allison
- Published
- 2021
12. Bedouin Poetry in Personal and Public Spheres
- Author
-
Hahn, Allison
- Published
- 2021
13. Works Cited
- Author
-
Hahn, Allison
- Published
- 2021
14. In the Company of Rebels: A Generational Memory of Bohemians, Deep Heads, and History Makers by Chellis Glendinning (review)
- Author
-
Hahn, Allison
- Published
- 2022
15. Open problems of the 32nd Workshop on Cycles and Colourings
- Author
-
Barát, János, Cambie, Stijn, Hahn, Geňa, Mattiolo, Davide, Onderko, Alfréd, Schiermeyer, Ingo, and Tuza, Zsolt
- Subjects
Mathematics - Combinatorics - Abstract
Since its beginnings, every Cycles and Colourings workshop holds one or two open problem sessions; this document contains the problems (together with notes regarding the current state of the art and related bibliography) presented by participants of the 32nd edition of the workshop which took place in Poprad, Slovakia during September 8-13, 2024 (see the workshop webpage https://candc.upjs.sk)., Comment: Problems presented during the problem sessions of the 32nd Workshop on Cycles and Colours (Poprad, Slovakia, 8-13 September 2024)
- Published
- 2024
16. Joint wireless and computing resource management with optimal slice selection in in-network-edge metaverse system
- Author
-
Rashid, Sulaiman Muhammad, Aliyu, Ibrahim, Isah, Abubakar, Lee, Jihoon, Oh, Sangwon, Hahn, Minsoo, and Kim, Jinsul
- Subjects
Computer Science - Distributed, Parallel, and Cluster Computing ,Computer Science - Networking and Internet Architecture - Abstract
This paper presents an approach to joint wireless and computing resource management in slice-enabled metaverse networks, addressing the challenges of inter-slice and intra-slice resource allocation in the presence of in-network computing. We formulate the problem as a mixed-integer nonlinear programming (MINLP) problem and derive an optimal solution using standard optimization techniques. Through extensive simulations, we demonstrate that our proposed method significantly improves system performance by effectively balancing the allocation of radio and computing resources across multiple slices. Our approach outperforms existing benchmarks, particularly in scenarios with high user demand and varying computational tasks.
- Published
- 2024
17. Increasing the Hardness of Posiform Planting Using Random QUBOs for Programmable Quantum Annealer Benchmarking
- Author
-
Pelofske, Elijah, Hahn, Georg, and Djidjev, Hristo
- Subjects
Quantum Physics ,Mathematics - Optimization and Control - Abstract
Posiform planting is a method for constructing QUBO problems with a single unique planted solution that can be tailored to arbitrary connectivity graphs. In this study we investigate making posiform planted QUBOs computationally harder by fusing many smaller random discrete coefficient spin-glass Ising models, whose global minimum energy is computed classically using classical binary integer programming optimization software, with posiform-planted QUBOs. The single unique ground-state solution of the resulting QUBO problem is the concatenation of (exactly one of) the ground-states of each of the smaller problems. We apply these modified posiform planted QUBOs to the task of benchmarking programmable D-Wave quantum annealers. The proposed method enables generating binary variable combinatorial optimization problems that cover the entire quantum annealing processor hardware graph, have a unique solution, are entirely hardware-graph-native, and can have tunable computational hardness. We benchmark the capabilities of three D-Wave superconducting qubit quantum annealing processors, having from 563 up to 5627 qubits, to sample the optimal unique planted solution of problems generated by our proposed method and compare them against simulated annealing and Gurobi. We find that the D-Wave QPU ground-state sampling success rate does not change with respect to the size of the random QUBOs we employ. Surprisingly, we find that some of these classes of QUBOs are solved at very high success rates at short annealing times compared to longer annealing times for the Zephyr connectivity graph QPUs.
- Published
- 2024
18. Cross-correlation of Luminous Red Galaxies with ML-selected AGN in HSC-SSP II: AGN classification and clustering with DESI spectroscopy
- Author
-
Rosado, Rodrigo Córdova, Goulding, Andy D., Greene, Jenny E., Kokron, Nickolas, Strauss, Michael A., Hahn, ChangHoon, Petter, Grayson C., and Hickox, Ryan C.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
An unresolved question in studies of active galactic nuclei (AGN) is whether their different classes probe different evolutionary stages of black hole--host galaxy interaction. We present the projected two-point cross-correlation function between a sample of Dark Energy Spectroscopic Instrument (DESI)-matched AGN selected from Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) optical + Wide-field Infrared Survey Explorer ($WISE$) mid-IR photometry, and DESI-designated luminous red galaxies, for $z\in 0.5-1.0$. The total overlap area is 43.4 deg$^2$, including $\sim27,000$ spectroscopic LRGs in our redshift range. We visually classified 1,991 matched HSC-DESI objects in our redshift range, spectroscopically confirming that 1,517 ($76\%$) of them are AGN. Of these 1,517 objects, $73\%$ are broad-line AGN, $27\%$ are obscured AGN. We infer that the parent HSC+$WISE$ AGN catalog has a number density of at least $\sim 240$ deg$^{-2}$, confirming it is one of the most complete optical/infrared AGN catalog to date. We investigate the AGN clustering as a function of the spectroscopic classification and infer the halo mass for each sample. The inferred average mass of the halos $\langle M_h\rangle$ that host unobscured broad-line AGN ($M_h \approx 10^{13.4}h^{-1}M_\odot$) is $\sim 5.5\times$ larger than the halos that host obscured AGN ($M_h \approx 10^{12.6}\, h^{-1}M_\odot$), at $2.8\sigma$ significance, in the same sense as our prior work based on photometric redshifts. This suggests that we may relax our concerns about systematic shifts in the inferred redshift distribution producing this halo mass difference. While we do not yet find statistically significant spectroscopic evidence that unobscured AGN reside in more massive halos than their obscured counterparts, further analyses are necessary to distinguish if more complex evolutionary histories are needed to model these AGN populations., Comment: 27 pages, 12 figures, submitted to ApJ
- Published
- 2024
19. Improving the accuracy of circuit quantization using the electromagnetic properties of superconductors
- Author
-
Park, Seong Hyeon, Choi, Gahyun, Kim, Eunjong, Park, Gwanyeol, Choi, Jisoo, Choi, Jiman, Chong, Yonuk, Lee, Yong-Ho, and Hahn, Seungyong
- Subjects
Quantum Physics ,Condensed Matter - Superconductivity - Abstract
Recent advances in quantum information processing with superconducting qubits have fueled a growing demand for scaling and miniaturizing circuit layouts. Despite significant progress, accurately predicting the Hamiltonian of complex circuits remains a challenging task. In this work, we propose an improved method for quantizing superconducting circuits that incorporates material- and geometry-dependent kinetic inductance. Our approach models thin superconducting films as equivalent reactive boundary elements, seamlessly integrating into the conventional circuit quantization framework without adding computational complexity. As a proof of concept, we experimentally verify our method using planar superconducting quantum devices made of 35 nm-thick disordered niobium films, known to exhibit large kinetic inductance values. We demonstrate significantly improved accuracy in predicting the Hamiltonian based solely on the chip layout and material properties of the superconducting films and Josephson junctions, with discrepancies in mode frequencies remaining below 2%. Our method enables systematic studies of superconducting devices based on disordered thin films or compact, fine-pitched elements and, more broadly, facilitates the precise engineering of superconducting quantum circuits at scale., Comment: 12 pages, 4 figures, 1 table
- Published
- 2024
20. Assessing non-Gaussian quantum state conversion with the stellar rank
- Author
-
Hahn, Oliver, Ferrini, Giulia, Ferraro, Alessandro, and Chabaud, Ulysse
- Subjects
Quantum Physics - Abstract
State conversion is a fundamental task in quantum information processing. Quantum resource theories allow to analyze and bound conversions that use restricted sets of operations. In the context of continuous-variable systems, state conversions restricted to Gaussian operations are crucial for both fundamental and practical reasons -- particularly in state preparation and quantum computing with bosonic codes. However, previous analysis did not consider the relevant case of approximate state conversion. In this work, we introduce a framework for assessing approximate Gaussian state conversion by extending the stellar rank to the approximate stellar rank, which serves as an operational measure of non-Gaussianity. We derive bounds for Gaussian state conversion under both approximate and probabilistic conditions, yielding new no-go results for non-Gaussian state preparation and enabling a reliable assessment of the performance of generic Gaussian conversion protocols.
- Published
- 2024
21. Insights from the first flaring activity of a high-synchrotron-peaked blazar with X-ray polarization and VHE gamma rays
- Author
-
Abe, K., Abe, S., Abhir, J., Abhishek, A., Acciari, V. A., Aguasca-Cabot, A., Agudo, I., Aniello, T., Ansoldi, S., Antonelli, L. A., Engels, A. Arbet, Arcaro, C., Asano, K., Babić, A., de Almeida, U. Barres, Barrio, J. A., Barrios-Jiménez, L., Batković, I., Baxter, J., González, J. Becerra, Bednarek, W., Bernardini, E., Bernete, J., Berti, A., Besenrieder, J., Bigongiari, C., Biland, A., Blanch, O., Bonnoli, G., Bošnjak, Ž., Bronzini, E., Burelli, I., Campoy-Ordaz, A., Carosi, A., Carosi, R., Carretero-Castrillo, M., Castro-Tirado, A. J., Cerasole, D., Ceribella, G., Chai, Y., Chilingarian, A., Cifuentes, A., Colombo, E., Contreras, J. L., Cortina, J., Covino, S., D'Ammando, F., D'Amico, G., Da Vela, P., Dazzi, F., De Angelis, A., De Lotto, B., de Menezes, R., Delfino, M., Delgado, J., Mendez, C. Delgado, Di Pierro, F., Di Tria, R., Di Venere, L., Dinesh, A., Prester, D. Dominis, Donini, A., Dorner, D., Doro, M., Eisenberger, L., Elsaesser, D., Escudero, J., Fariña, L., Foffano, L., Font, L., Fröse, S., Fukazawa, Y., López, R. J. García, Garczarczyk, M., Gasparyan, S., Gaug, M., Paiva, J. G. Giesbrecht, Giglietto, N., Giordano, F., Gliwny, P., Godinović, N., Gradetzke, T., Grau, R., Green, D., Green, J. G., Günther, P., Hadasch, D., Hahn, A., Hassan, T., Heckmann, L., Llorente, J. Herrera, Hrupec, D., Imazawa, R., Israyelyan, D., Itokawa, T., Martínez, I. Jiménez, Quiles, J. Jiménez, Jormanainen, J., Kankkunen, S., Kayanoki, T., Kerszberg, D., Khachatryan, M., Kluge, G. W., Kobayashi, Y., Konrad, J., Kouch, P. M., Kubo, H., Kushida, J., Láinez, M., Lamastra, A., Lindfors, E., Lombardi, S., Longo, F., López-Coto, R., López-Moya, M., López-Oramas, A., Loporchio, S., Lorini, A., Lyard, E., Majumdar, P., Makariev, M., Maneva, G., Manganaro, M., Mangano, S., Mannheim, K., Mariotti, M., Martínez, M., Maruševec, P., Mas-Aguilar, A., Mazin, D., Menchiari, S., Mender, S., Miceli, D., Miranda, J. M., Mirzoyan, R., González, M. Molero, Molina, E., Mondal, H. A., Moralejo, A., Nakamori, T., Nanci, C., Neustroev, V., Nickel, L., Rosillo, M. Nievas, Nigro, C., Nikolić, L., Nilsson, K., Nishijima, K., Ekoume, T. Njoh, Noda, K., Nozaki, S., Okumura, A., Paiano, S., Paneque, D., Paoletti, R., Paredes, J. M., Peresano, M., Persic, M., Pihet, M., Pirola, G., Podobnik, F., Moroni, P. G. Prada, Prandini, E., Principe, G., Rhode, W., Ribó, M., Rico, J., Righi, C., Sahakyan, N., Saito, T., Saturni, F. G., Schmuckermaier, F., Schubert, J. L., Sciaccaluga, A., Silvestri, G., Sitarek, J., Sliusar, V., Sobczynska, D., Stamerra, A., Strišković, J., Strom, D., Strzys, M., Suda, Y., Tajima, H., Takahashi, M., Takeishi, R., Temnikov, P., Terauchi, K., Terzić, T., Teshima, M., Truzzi, S., Tutone, A., Ubach, S., van Scherpenberg, J., Ventura, S., Verna, G., Viale, I., Vigliano, A., Vigorito, C. F., Vitale, V., Vovk, I., Walter, R., Wersig, F., Will, M., Yamamoto, T., Yeung, P. K. H., Liodakis, I., Middei, R., Kiehlmann, S., Gesu, L. D., Kim, D. E., Ehlert, S. R., Saade, M. L., Kaaret, P., Maksym, W. P., Chen, C. T., Pérez, I. De La Calle, Perri, M., Verrecchia, F., Domann, O., Dürr, S., Feige, M., Heidemann, M., Koppitz, O., Manhalter, G., Reinhart, D., Steineke, R., Lorey, C., McCall, C., Jermak, H. E., Steele, I. A., Ramazani, V. Fallah, Otero-Santos, J., Morcuende, D., Aceituno, F. J., Casanova, V., Sota, A., Jorstad, S. G., Marscher, A. P., Pauley, C., Sasada, M., Kawabata, K. S., Uemura, M., Mizuno, T., Nakaoka, T., Akitaya, H., Myserlis, I., Gurwell, M., Keating, G. K., Rao, R., Angelakis, E., and Kraus, A.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We study a flaring activity of the HSP Mrk421 that was characterized from radio to very-high-energy (VHE; E $>0.1$TeV) gamma rays with MAGIC, Fermi-LAT, Swift, XMM-Newton and several optical and radio telescopes. These observations included, for the first time for a gamma-ray flare of a blazar, simultaneous X-ray polarization measurements with IXPE. We find substantial variability in both X-rays and VHE gamma rays throughout the campaign, with the highest VHE flux above 0.2 TeV occurring during the IXPE observing window, and exceeding twice the flux of the Crab Nebula. However, the VHE and X-ray spectra are on average softer, and the correlation between these two bands weaker that those reported in previous flares of Mrk421. IXPE reveals an X-ray polarization degree significantly higher than that at radio and optical frequencies. The X-ray polarization angle varies by $\sim$100$^\circ$ on timescales of days, and the polarization degree changes by more than a factor 4. The highest X-ray polarization degree reaches 26%, around which a X-ray counter-clockwise hysteresis loop is measured with XMM-Newton. It suggests that the X-ray emission comes from particles close to the high-energy cutoff, hence possibly probing an extreme case of the Turbulent Extreme Multi-Zone model. We model the broadband emission with a simplified stratified jet model throughout the flare. The polarization measurements imply an electron distribution in the X-ray emitting region with a very high minimum Lorentz factor, which is expected in electron-ion plasma, as well as a variation of the emitting region size up to a factor of three during the flaring activity. We find no correlation between the fluxes and the evolution of the model parameters, which indicates a stochastic nature of the underlying physical mechanism. Such behaviour would be expected in a highly turbulent electron-ion plasma crossing a shock front., Comment: Submitted to Astronomy and Astrophysics. Corresponding authors: Axel Arbet-Engels, Lea Heckmann, David Paneque
- Published
- 2024
22. Learned RESESOP for solving inverse problems with inexact forward operator
- Author
-
Feinler, Mathias S. and Hahn, Bernadette N.
- Subjects
Mathematics - Numerical Analysis ,68T07 - Abstract
When solving inverse problems, one has to deal with numerous potential sources of model inexactnesses, like object motion, calibration errors, or simplified data models. Regularized Sequential Subspace Optimization (ReSeSOp) allows to compensate for such inaccuracies within the reconstruction step by employing consecutive projections onto suitably defined subspaces. However, this approach relies on a priori estimates for the model inexactness levels which are typically unknown. In dynamic imaging applications, where inaccuracies arise from the unpredictable dynamics of the object, these estimates are particularly challenging to determine in advance. To overcome this limitation, we propose a learned version of ReSeSOp which allows to approximate inexactness levels on the fly. The proposed framework generalizes established unrolled iterative reconstruction schemes to inexact forward operators and is particularly tailored to the structure of dynamic problems. We also present a comprehensive mathematical analysis regarding the effect of dependencies within the forward problem, clarifying when and why dividing the overall problem into subproblems is essential. The proposed method is evaluated on various examples from dynamic imaging, including datasets from a rheological CT experiment, brain MRI, and real-time cardiac MRI. The respective results emphasize improvements in reconstruction quality while ensuring adequate data consistency., Comment: 21 pages, 7 figures, 4 tables
- Published
- 2024
23. Towards Population Scale Testis Volume Segmentation in DIXON MRI
- Author
-
Ernsting, Jan, Beeken, Phillip Nikolas, Ogoniak, Lynn, Kockwelp, Jacqueline, Hahn, Tim, Busch, Alexander Siegfried, and Risse, Benjamin
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing ,Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Machine Learning - Abstract
Testis size is known to be one of the main predictors of male fertility, usually assessed in clinical workup via palpation or imaging. Despite its potential, population-level evaluation of testicular volume using imaging remains underexplored. Previous studies, limited by small and biased datasets, have demonstrated the feasibility of machine learning for testis volume segmentation. This paper presents an evaluation of segmentation methods for testicular volume using Magnet Resonance Imaging data from the UKBiobank. The best model achieves a median dice score of $0.87$, compared to median dice score of $0.83$ for human interrater reliability on the same dataset, enabling large-scale annotation on a population scale for the first time. Our overall aim is to provide a trained model, comparative baseline methods, and annotated training data to enhance accessibility and reproducibility in testis MRI segmentation research.
- Published
- 2024
24. Winding Number Statistics for Chiral Random Matrices: Universal Correlations and Statistical Moments in the Unitary Case
- Author
-
Hahn, Nico, Kieburg, Mario, Gat, Omri, and Guhr, Thomas
- Subjects
Mathematical Physics ,Condensed Matter - Disordered Systems and Neural Networks - Abstract
The winding number is the topological invariant that classifies chiral symmetric Hamiltonians with one-dimensional parametric dependence. In this work we complete our study of the winding number statistics in a random matrix model belonging to the chiral unitary class AIII. We show that in the limit of large matrix dimensions the winding number distribution becomes Gaussian. Our results include expressions for the statistical moments of the winding number and for the k-point correlation function of the winding number density.
- Published
- 2024
25. Capivara: A Spectral-based Segmentation Method for IFU Data Cubes
- Author
-
de Souza, Rafael S., Dahmer-Hahn, Luis G., Shen, Shiyin, Chies-Santos, Ana L., Chen, Mi, Rahna, P. T., Ye, Renhao, and Tahmasebzade, Behzad
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We present capivara, a fast and scalable multi-decomposition package designed to study astrophysical properties within distinct structural components of galaxies. Our spectro-decomposition code for analyzing integral field unit (IFU) data enables a more holistic approach, moving beyond conventional radial gradients and the bulge-plus-disk dichotomy. It facilitates comprehensive comparisons of integrated stellar ages and metallicities across various galactic structures. Our classification method naturally identifies outliers and organizes the different pixels based on their dominant spectral features. The algorithm leverages the scalability and GPU acceleration of Torch, outputting both a one-dimensional spectrum and a full data cube for each galaxy component, without relying on Voronoi binning. We demonstrate the capabilities of our approach using a sample of galaxies from the MaNGA survey, processing the resulting data cubes with the starlight spectral fitting code to derive both stellar population and ionized gas properties of the galaxy components. Our method effectively groups regions with similar spectral properties in both the continuum and emission lines. By aggregating the spectra of these regions, we enhance the signal-to-noise ratio of our analysis while significantly speeding up computations by reducing the number of spectra processed simultaneously. capivara will be freely available on GitHub., Comment: Submitted to MNRAS. Comments and suggestions are very welcome
- Published
- 2024
26. Single cells can resolve graded stimuli
- Author
-
Kramar, Mirna, Hahn, Lauritz, Walczak, Aleksandra M, Mora, Thierry, and Coppey, Mathieu
- Subjects
Quantitative Biology - Cell Behavior ,Physics - Biological Physics - Abstract
Cells use signalling pathways as windows into the environment to gather information, transduce it into their interior, and use it to drive behaviours. MAPK (ERK) is a highly conserved signalling pathway in eukaryotes, directing multiple fundamental cellular behaviours such as proliferation, migration, and differentiation, making it of few central hubs in the signalling circuitry of cells. Despite this versatility of behaviors, population-level measurements have reported low information content (\textless 1 bit) relayed through the ERK pathway, rendering the population barely able to distinguish the presence or absence of stimuli. Here, we contrast the information transmitted by a single cell and a population of cells. Using a combination of optogenetic experiments, data analysis based on information theory framework, and numerical simulations we quantify the amount of information transduced from the receptor to ERK, from responses to singular, brief and sparse input pulses. We show that single cells are indeed able to resolve between graded stimuli, yielding over 2 bit of information, however showing a large population heterogeneity., Comment: 13 pages, 5 figures, 10 pages of supplemental material
- Published
- 2024
27. Multi-wavelength study of OT 081: broadband modelling of a transitional blazar
- Author
-
MAGIC Collaboration, Abe, H., Abe, S., Acciari, V. A., Agudo, I., Aniello, T., Ansoldi, S., Antonelli, L. A., Engels, A. Arbet, Arcaro, C., Artero, M., Asano, K., Baack, D., Babić, A., Baquero, A., de Almeida, U. Barres, Batković, I., Baxter, J., Bernardini, E., Bernardos, M., Bernete, J., Berti, A., Bigongiari, C., Biland, A., Blanch, O., Bonnoli, G., Bošnjak, Ž., Burelli, I., Busetto, G., Campoy-Ordaz, A., Carosi, A., Carosi, R., Carretero-Castrillo, M., Castro-Tirado, A. J., Chai, Y., Cifuentes, A., Cikota, S., Colombo, E., Contreras, J. L., Cortina, J., Covino, S., D'Amico, G., D'Elia, V., Da Vela, P., Dazzi, F., De Angelis, A., De Lotto, B., Del Popolo, A., Delfino, M., Delgado, J., Mendez, C. Delgado, Depaoli, D., Di Pierro, F., Di Venere, L., Prester, D. Dominis, Donini, A., Dorner, D., Doro, M., Elsaesser, D., Emery, G., Escudero, J., Fariña, L., Fattorini, A., Foffano, L., Font, L., Fukami, S., Fukazawa, Y., López, R. J. García, Gasparyan, S., Gaug, M., Paiva, J. G. Giesbrecht, Giglietto, N., Giordano, F., Gliwny, P., Grau, R., Green, J. G., Hadasch, D., Hahn, A., Heckmann, L., Herrera, J., Hrupec, D., Hütten, M., Imazawa, R., Inada, T., Iotov, R., Ishio, K., Martínez, I. Jiménez, Jormanainen, J., Kerszberg, D., Kluge, G. W., Kobayashi, Y., Kubo, H., Kushida, J., Lezáun, M. Láinez, Lamastra, A., Leone, F., Lindfors, E., Linhoff, L., Lombardi, S., Longo, F., López-Moya, M., López-Oramas, A., Loporchio, S., Lorini, A., Fraga, B. Machado de Oliveira, Majumdar, P., Makariev, M., Maneva, G., Mang, N., Manganaro, M., Mangano, S., Mannheim, K., Mariotti, M., Martínez, M., Mas-Aguilar, A., Mazin, D., Menchiari, S., Mender, S., Mićanović, S., Miceli, D., Miranda, J. M., Mirzoyan, R., Molina, E., Mondal, H. A., Morcuende, D., Nanci, C., Neustroev, V., Nigro, C., Nishijima, K., Ekoume, T. Njoh, Noda, K., Nozaki, S., Ohtani, Y., Otero-Santos, J., Paiano, S., Palatiello, M., Paneque, D., Paoletti, R., Paredes, J. M., Pavletić, L., Persic, M., Pihet, M., Pirola, G., Podobnik, F., Moroni, P. G. Prada, Prandini, E., Principe, G., Priyadarshi, C., Rhode, W., Ribó, M., Rico, J., Righi, C., Sahakyan, N., Saito, T., Satalecka, K., Saturni, F. G., Schleicher, B., Schmidt, K., Schmuckermaier, F., Schubert, J. L., Schweizer, T., Sitarek, J., Spolon, A., Stamerra, A., Strišković, J., Strom, D., Suda, Y., Surić, T., Suutarinen, S., Tajima, H., Takahashi, M., Takeishi, R., Tavecchio, F., Temnikov, P., Terzić, T., Teshima, M., Tosti, L., Truzzi, S., Ubach, S., van Scherpenberg, J., Ventura, S., Verguilov, V., Viale, I., Vigorito, C. F., Vitale, V., Walter, R., Yamamoto, T., Collaborators, Benkhali, F. Ait, Becherini, Y., Bi, B., Böttcher, M., Bolmont, J., Brown, A., Bulik, T., Casanova, S., Chand, T., Chandra, S., Chibueze, J., Chibueze, O., Egberts, K., Einecke, S., Ernenwein, J. -P., Fontaine, G., Gabici, S., Goswami, P., Holler, M., Jamrozy, M., Joshi, V., Kasai, E., Katarzyński, K., Khatoon, R., Khélifi, B., Kluzniak, W., Kosack, K., Stum, S. Le, Lemière, A., Marx, R., Moderski, R., Moghadam, M. O., de Naurois, M., Niemiec, J., O'Brien, P., Ostrowski, M., Peron, G., Pita, S., Pühlhofer, G., Quirrenbach, A., Rudak, B., Sahakian, V., Sanchez, D. A., Santangelo, A., Sasaki, M., Schutte, H. M., Seglar-Arroyo, M., Shapopi, J. N. S., Steenkamp, R., Steppa, C., Suzuki, H., Tanaka, T., Tluczykont, M., Venter, C., Wagner, S. J., Wierzcholska, A., Zdziarski, A. A., Żywucka, N., Collaboration, Fermi-LAT, González, J. Becerra, Ciprini, S., Venters, T. M., collaborators, MWL, D'Ammando, F., Esteban-Gutiérrez, A., Ramazani, V. Fallah, Filippenko, A. V., Hovatta, T., Jermak, H., Jorstad, S., Kiehlmann, S., Lähteenmäki, A., Larionov, V. M., Larionova, E., Marscher, A. P., Morozova, D., Max-Moerbeck, W., Readhead, A. C. S., Reeves, R., Steele, I. A., Tornikoski, M., Verrecchia, F., Xiao, H., and Zheng, W.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
OT 081 is a well-known, luminous blazar that is remarkably variable in many energy bands. We present the first broadband study of the source which includes very-high-energy (VHE, $E>$100\,GeV) $\gamma$-ray data taken by the MAGIC and H.E.S.S. imaging Cherenkov telescopes. The discovery of VHE $\gamma$-ray emission happened during a high state of $\gamma$-ray activity in July 2016, observed by many instruments from radio to VHE $\gamma$-rays. We identify four states of activity of the source, one of which includes VHE $\gamma$-ray emission. Variability in the VHE domain is found on daily timescales. The intrinsic VHE spectrum can be described by a power-law with index $3.27\pm0.44_{\rm stat}\pm0.15_{\rm sys}$ (MAGIC) and $3.39\pm0.58_{\rm stat}\pm0.64_{\rm sys}$ (H.E.S.S.) in the energy range of 55--300\,GeV and 120--500\,GeV, respectively. The broadband emission cannot be sucessfully reproduced by a simple one-zone synchrotron self-Compton model. Instead, an additional external Compton component is required. We test a lepto-hadronic model that reproduces the dataset well and a proton-synchrotron dominated model that requires an extreme proton luminosity. Emission models that are able to successfully represent the data place the emitting region well outside of the Broad Line Region (BLR) to a location at which the radiative environment is dominated by the infrared thermal radiation field of the dusty torus. In the scenario described by this flaring activity, the source appears to be an FSRQ, in contrast with past categorizations. This suggests that the source can be considered to be a transitional blazar, intermediate between BL~Lac and FSRQ objects., Comment: Accepted on MNRAS Corresponding authors: M. Manganaro, J. Becerra Gonz\'alez, M. Seglar-Arroyo, D. A. Sanchez
- Published
- 2024
28. Scalable physics-guided data-driven component model reduction for steady Navier-Stokes flow
- Author
-
Chung, Seung Whan, Choi, Youngsoo, Roy, Pratanu, Roy, Thomas, Lin, Tiras Y., Nguyen, Du T., Hahn, Christopher, Duoss, Eric B., and Baker, Sarah E.
- Subjects
Mathematics - Numerical Analysis ,Physics - Computational Physics ,Physics - Fluid Dynamics - Abstract
Computational physics simulation can be a powerful tool to accelerate industry deployment of new scientific technologies. However, it must address the challenge of computationally tractable, moderately accurate prediction at large industry scales, and training a model without data at such large scales. A recently proposed component reduced order modeling (CROM) tackles this challenge by combining reduced order modeling (ROM) with discontinuous Galerkin domain decomposition (DG-DD). While it can build a component ROM at small scales that can be assembled into a large scale system, its application is limited to linear physics equations. In this work, we extend CROM to nonlinear steady Navier-Stokes flow equation. Nonlinear advection term is evaluated via tensorial approach or empirical quadrature procedure. Application to flow past an array of objects at moderate Reynolds number demonstrates $\sim23.7$ times faster solutions with a relative error of $\sim 2.3\%$, even at scales $256$ times larger than the original problem., Comment: 6 pages, 1 figure
- Published
- 2024
29. Scaled-up prediction of steady Navier-Stokes equation with component reduced order modeling
- Author
-
Chung, Seung Whan, Choi, Youngsoo, Roy, Pratanu, Roy, Thomas, Lin, Tiras Y., Nguyen, Du T., Hahn, Christopher, Duoss, Eric B., and Baker, Sarah E.
- Subjects
Mathematics - Numerical Analysis ,Mathematical Physics ,Physics - Computational Physics - Abstract
Scaling up new scientific technologies from laboratory to industry often involves demonstrating performance on a larger scale. Computer simulations can accelerate design and predictions in the deployment process, though traditional numerical methods are computationally intractable even for intermediate pilot plant scales. Recently, component reduced order modeling method is developed to tackle this challenge by combining projection reduced order modeling and discontinuous Galerkin domain decomposition. However, while many scientific or engineering applications involve nonlinear physics, this method has been only demonstrated for various linear systems. In this work, the component reduced order modeling method is extended to steady Navier-Stokes flow, with application to general nonlinear physics in view. Large-scale, global domain is decomposed into combination of small-scale unit component. Linear subspaces for flow velocity and pressure are identified via proper orthogonal decomposition over sample snapshots collected at small scale unit component. Velocity bases are augmented with pressure supremizer, in order to satisfy inf-sup condition for stable pressure prediction. Two different nonlinear reduced order modeling methods are employed and compared for efficient evaluation of nonlinear advection: 3rd-order tensor projection operator and empirical quadrature procedure. The proposed method is demonstrated on flow over arrays of five different unit objects, achieving $23$ times faster prediction with less than $4\%$ relative error up to $256$ times larger scale domain than unit components. Furthermore, a numerical experiment with pressure supremizer strongly indicates the need of supremizer for stable pressure prediction. A comparison between tensorial approach and empirical quadrature procedure is performed, which suggests a slight advantage for empirical quadrature procedure., Comment: 34 pages, 7 figures
- Published
- 2024
30. A new method of reconstructing images of gamma-ray telescopes applied to the LST-1 of CTAO
- Author
-
Project, CTA-LST, Abe, K., Abe, S., Abhishek, A., Acero, F., Aguasca-Cabot, A., Agudo, I., Alispach, C., Crespo, N. Alvarez, Ambrosino, D., Antonelli, L. A., Aramo, C., Arbet-Engels, A., Arcaro, C., Asano, K., Aubert, P., Baktash, A., Balbo, M., Bamba, A., Larriva, A. Baquero, de Almeida, U. Barres, Barrio, J. A., Jiménez, L. Barrios, Batkovic, I., Baxter, J., González, J. Becerra, Bernardini, E., Medrano, J. Bernete, Berti, A., Bezshyiko, I., Bhattacharjee, P., Bigongiari, C., Bissaldi, E., Blanch, O., Bonnoli, G., Bordas, P., Borkowski, G., Brunelli, G., Bulgarelli, A., Burelli, I., Burmistrov, L., Buscemi, M., Cardillo, M., Caroff, S., Carosi, A., Carrasco, M. S., Cassol, F., Castrejón, N., Cauz, D., Cerasole, D., Ceribella, G., Chai, Y., Cheng, K., Chiavassa, A., Chikawa, M., Chon, G., Chytka, L., Cicciari, G. M., Cifuentes, A., Contreras, J. L., Cortina, J., Costantini, H., Da Vela, P., Dalchenko, M., Dazzi, F., De Angelis, A., de Lavergne, M. de Bony, De Lotto, B., de Menezes, R., Del Burgo, R., Del Peral, L., Delgado, C., Mengual, J. Delgado, della Volpe, D., Dellaiera, M., Di Piano, A., Di Pierro, F., Di Tria, R., Di Venere, L., Díaz, C., Dominik, R. M., Prester, D. Dominis, Donini, A., Dorner, D., Doro, M., Eisenberger, L., Elsässer, D., Emery, G., Escudero, J., Ramazani, V. Fallah, Ferrarotto, F., Fiasson, A., Foffano, L., Coromina, L. Freixas, Fröse, S., Fukazawa, Y., López, R. Garcia, Gasbarra, C., Gasparrini, D., Geyer, D., Paiva, J. Giesbrecht, Giglietto, N., Giordano, F., Gliwny, P., Godinovic, N., Grau, R., Green, D., Green, J., Gunji, S., Günther, P., Hackfeld, J., Hadasch, D., Hahn, A., Hassan, T., Hayashi, K., Heckmann, L., Heller, M., Llorente, J. Herrera, Hirotani, K., Hoffmann, D., Horns, D., Houles, J., Hrabovsky, M., Hrupec, D., Hui, D., Iarlori, M., Imazawa, R., Inada, T., Inome, Y., Inoue, S., Ioka, K., Iori, M., Iuliano, A., Martinez, I. Jimenez, Quiles, J. Jimenez, Jurysek, J., Kagaya, M., Kalashev, O., Karas, V., Katagiri, H., Kataoka, J., Kerszberg, D., Kobayashi, Y., Kohri, K., Kong, A., Kubo, H., Kushida, J., Lainez, M., Lamanna, G., Lamastra, A., Lemoigne, L., Linhoff, M., Longo, F., López-Coto, R., López-Oramas, A., Loporchio, S., Lorini, A., Bahilo, J. Lozano, Luciani, H., Luque-Escamilla, P. L., Majumdar, P., Makariev, M., Mallamaci, M., Mandat, D., Manganaro, M., Manicò, G., Mannheim, K., Marchesi, S., Mariotti, M., Marquez, P., Marsella, G., Martí, J., Martinez, O., Martínez, G., Martínez, M., Mas-Aguilar, A., Maurin, G., Mazin, D., Méndez-Gallego, J., Guillen, E. Mestre, Micanovic, S., Miceli, D., Miener, T., Miranda, J. M., Mirzoyan, R., Mizuno, T., Gonzalez, M. Molero, Molina, E., Montaruli, T., Moralejo, A., Morcuende, D., Morselli, A., Moya, V., Muraishi, H., Nagataki, S., Nakamori, T., Neronov, A., Nickel, L., Rosillo, M. Nievas, Nikolic, L., Nishijima, K., Noda, K., Nosek, D., Novotny, V., Nozaki, S., Ohishi, M., Ohtani, Y., Oka, T., Okumura, A., Orito, R., Otero-Santos, J., Ottanelli, P., Owen, E., Palatiello, M., Paneque, D., Pantaleo, F. R., Paoletti, R., Paredes, J. M., Pech, M., Pecimotika, M., Peresano, M., Pfeifle, F., Pietropaolo, E., Pihet, M., Pirola, G., Plard, C., Podobnik, F., Pons, E., Prandini, E., Priyadarshi, C., Prouza, M., Rainò, S., Rando, R., Rhode, W., Ribó, M., Righi, C., Rizi, V., Fernandez, G. Rodriguez, Frías, M. D. Rodríguez, Ruina, A., Ruiz-Velasco, E., Saito, T., Sakurai, S., Sanchez, D. A., Sano, H., Šarić, T., Sato, Y., Saturni, F. G., Savchenko, V., Schiavone, F., Schleicher, B., Schmuckermaier, F., Schubert, J. L., Schussler, F., Schweizer, T., Arroyo, M. Seglar, Siegert, T., Sitarek, J., Sliusar, V., Strišković, J., Strzys, M., Suda, Y., Tajima, H., Takahashi, H., Takahashi, M., Takata, J., Takeishi, R., Tam, P. H. T., Tanaka, S. J., Tateishi, D., Tavernier, T., Temnikov, P., Terada, Y., Terauchi, K., Terzic, T., Teshima, M., Tluczykont, M., Tokanai, F., Torres, D. F., Travnicek, P., Tutone, A., Vacula, M., Vallania, P., van Scherpenberg, J., Acosta, M. Vázquez, Ventura, S., Verna, G., Viale, I., Vigliano, A., Vigorito, C. F., Visentin, E., Vitale, V., Voitsekhovskyi, V., Voutsinas, G., Vovk, I., Vuillaume, T., Walter, R., Wan, L., Will, M., Wójtowicz, J., Yamamoto, T., Yamazaki, R., Yeung, P. K. H., Yoshida, T., Yoshikoshi, T., Zhang, W., and Zywucka, N.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
Imaging atmospheric Cherenkov telescopes (IACTs) are used to observe very high-energy photons from the ground. Gamma rays are indirectly detected through the Cherenkov light emitted by the air showers they induce. The new generation of experiments, in particular the Cherenkov Telescope Array Observatory (CTAO), sets ambitious goals for discoveries of new gamma-ray sources and precise measurements of the already discovered ones. To achieve these goals, both hardware and data analysis must employ cutting-edge techniques. This also applies to the LST-1, the first IACT built for the CTAO, which is currently taking data on the Canary island of La Palma. This paper introduces a new event reconstruction technique for IACT data, aiming to improve the image reconstruction quality and the discrimination between the signal and the background from misidentified hadrons and electrons. The technique models the development of the extensive air shower signal, recorded as a waveform per pixel, seen by CTAO telescopes' cameras. Model parameters are subsequently passed to random forest regressors and classifiers to extract information on the primary particle. The new reconstruction was applied to simulated data and to data from observations of the Crab Nebula performed by the LST-1. The event reconstruction method presented here shows promising performance improvements. The angular and energy resolution, and the sensitivity, are improved by 10 to 20% over most of the energy range. At low energy, improvements reach up to 22%, 47%, and 50%, respectively. A future extension of the method to stereoscopic analysis for telescope arrays will be the next important step., Comment: Accepted in A&A
- Published
- 2024
31. Revised Point-Spread Functions for the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory
- Author
-
Hofmeister, Stefan, Savin, Daniel Wolf, and Hahn, Michael
- Subjects
Astrophysics - Solar and Stellar Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We present revised point-spread functions (PSFs) for the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). These PSFs provide a robust estimate of the light diffracted by the meshes holding the entrance and focal plane filters and the light that is diffusely scattered over medium- to long-distance by the micro-roughness of the mirrors. We first calibrate the diffracted light using flare images. Our modeling of the diffracted light provides reliable determinations of the mesh parameters and finds that about 24 to 33% of the collected light is diffracted, depending on the AIA channel. Then, we fit for the diffuse scattered light using partially lunar occulted images. We find that the diffuse scattered light can be modeled as a superposition of two power law functions that scatter light over the entire length of the detector. The amount of diffuse scattered light ranges from 10 to 35 %, depending on the AIA channel. In total, AIA diffracts and scatters about 40 to 60 % of the collected light over medium to long distances. When correcting for this, bright image regions increase in intensity by about 30 %, dark image regions decrease in intensity by up to 90 %, and the associated differential emission measure analysis of solar features are affected accordingly. Finally, we compare the image reconstructions using our new PSFs to those using the AIA team PSFs and the PSFs of Poduval et al. (2013). We find that our PSFs outperform the others; our PSFs correct well for the flare diffraction pattern and predict accurately the long-distance scattered light in lunar occultations.
- Published
- 2024
32. Data Processing for the OpenGPT-X Model Family
- Author
-
Brandizzi, Nicolo', Abdelwahab, Hammam, Bhowmick, Anirban, Helmer, Lennard, Stein, Benny Jörg, Denisov, Pavel, Saleem, Qasid, Fromm, Michael, Ali, Mehdi, Rutmann, Richard, Naderi, Farzad, Agy, Mohamad Saif, Schwirjow, Alexander, Küch, Fabian, Hahn, Luzian, Ostendorff, Malte, Suarez, Pedro Ortiz, Rehm, Georg, Wegener, Dennis, Flores-Herr, Nicolas, Köhler, Joachim, and Leveling, Johannes
- Subjects
Computer Science - Computation and Language ,H.3.1 ,I.2.7 - Abstract
This paper presents a comprehensive overview of the data preparation pipeline developed for the OpenGPT-X project, a large-scale initiative aimed at creating open and high-performance multilingual large language models (LLMs). The project goal is to deliver models that cover all major European languages, with a particular focus on real-world applications within the European Union. We explain all data processing steps, starting with the data selection and requirement definition to the preparation of the final datasets for model training. We distinguish between curated data and web data, as each of these categories is handled by distinct pipelines, with curated data undergoing minimal filtering and web data requiring extensive filtering and deduplication. This distinction guided the development of specialized algorithmic solutions for both pipelines. In addition to describing the processing methodologies, we provide an in-depth analysis of the datasets, increasing transparency and alignment with European data regulations. Finally, we share key insights and challenges faced during the project, offering recommendations for future endeavors in large-scale multilingual data preparation for LLMs.
- Published
- 2024
33. Autonomous Vehicles Path Planning under Temporal Logic Specifications
- Author
-
Dhonthi, Akshay, Schischka, Nicolas, Hahn, Ernst Moritz, and Hashemi, Vahid
- Subjects
Computer Science - Robotics ,Computer Science - Logic in Computer Science - Abstract
Path planning is an essential component of autonomous driving. A global planner is responsible for the high-level planning. It basically performs a shortest-path search on a known map, thereby defining waypoints used to control the local (low-level) planner. Local planning is a runtime verification method which is repeatedly run on the vehicle itself in real-time, so as to find the optimal short-horizon path which leads to the desired waypoint in a way which is both efficient and safe. The challenge is that the local planner has to take into account repeatedly incoming updates about the information available of the environment. In addition, it performs a complex task, as it has to take into account a large variety of requirements, originating from the necessity of collision avoidance with obstacles, respecting traffic rules, sticking to regulatory requirements, and lastly to reach the next waypoint efficiently. In this paper, we describe a logic-based specification mechanism which fulfills all these requirements., Comment: 10 pages, 5 Figures, 1 Table, Accepted as a short paper at 27th Brazilian Symposium on Formal Methods (SBMF 2024)
- Published
- 2024
34. Syntomic cohomology of Morava K-theory
- Author
-
Angelini-Knoll, Gabriel, Hahn, Jeremy, and Wilson, Dylan
- Subjects
Mathematics - K-Theory and Homology ,Mathematics - Algebraic Topology ,19D55, 55Q51, 55P43, 14F30, 19D50 (Primary) 13D03, 19E20, 55N15, 55T15, 55T25 (Secondary) - Abstract
We compute the MU-based syntomic cohomologies, mod $(p,v_1,\cdots,v_{n+1})$, of all $\mathbb{E}_1$-MU-algebra forms of connective Morava K-theory k(n). As qualitative consequences, we deduce the Lichtenbaum--Quillen conjecture, telescope conjecture, and redshift conjecture for the algebraic K-theories of all $\mathbb{E}_{1}$-$\mathbb{S}$-algebra forms of $(2p^n-2)$-periodic Morava K-theory. Notably, the motivic spectral sequence computing $\pi_*TC(k(n))_p$ is concentrated on at most three lines, independently of $n$., Comment: 63 pages, 5 figures, Comments welcome!
- Published
- 2024
35. Lower Bounds for the Trotter Error
- Author
-
Hahn, Alexander, Hartung, Paul, Burgarth, Daniel, Facchi, Paolo, and Yuasa, Kazuya
- Subjects
Quantum Physics - Abstract
In analog and digital simulations of practically relevant quantum systems, the target dynamics can only be implemented approximately. The Trotter product formula is the most common approximation scheme as it is a generic method which allows tuning accuracy. The Trotter simulation precision will always be inexact for non-commuting operators, but it is currently unknown what the minimum possible error is. This is an important quantity because upper bounds for the Trotter error are known to often be vast overestimates. Here, we present explicit lower bounds on the error, in norm and on states, allowing to derive minimum resource requirements. Numerical comparison with the true error shows that our bounds offer accurate and tight estimates., Comment: 18 pages, 3 figures
- Published
- 2024
36. A Formal Framework for Understanding Length Generalization in Transformers
- Author
-
Huang, Xinting, Yang, Andy, Bhattamishra, Satwik, Sarrof, Yash, Krebs, Andreas, Zhou, Hattie, Nakkiran, Preetum, and Hahn, Michael
- Subjects
Computer Science - Machine Learning - Abstract
A major challenge for transformers is generalizing to sequences longer than those observed during training. While previous works have empirically shown that transformers can either succeed or fail at length generalization depending on the task, theoretical understanding of this phenomenon remains limited. In this work, we introduce a rigorous theoretical framework to analyze length generalization in causal transformers with learnable absolute positional encodings. In particular, we characterize those functions that are identifiable in the limit from sufficiently long inputs with absolute positional encodings under an idealized inference scheme using a norm-based regularizer. This enables us to prove the possibility of length generalization for a rich family of problems. We experimentally validate the theory as a predictor of success and failure of length generalization across a range of algorithmic and formal language tasks. Our theory not only explains a broad set of empirical observations but also opens the way to provably predicting length generalization capabilities in transformers.
- Published
- 2024
37. Crystallinity for reduced syntomic cohomology and the mod $(p,v_1^{p^{n-2}})$ $K$-theory of $\mathbb{Z}/p^{n}$
- Author
-
Hahn, Jeremy, Levy, Ishan, and Senger, Andrew
- Subjects
Mathematics - K-Theory and Homology ,Mathematics - Algebraic Geometry ,Mathematics - Algebraic Topology ,Mathematics - Number Theory - Abstract
We prove that the functor taking an animated ring $R$ to its mod $(p,v_1^{p^n})$ derived syntomic cohomology factors through the functor $R \mapsto R/p^{n+2}$. We then use this to completely and explicitly compute the mod $(p,v_1 ^{p^{n}})$ syntomic cohomology of $\mathbb{Z}/p^{k}$ whenever $k \geq n+2$., Comment: 45 pages
- Published
- 2024
38. Spatially-resolved gas-phase metallicity in Seyfert galaxies
- Author
-
Armah, Mark, Riffel, Rogério, Dahmer-Hahn, L. G., Davies, R. I., Dors, O. L., Kakkad, Darshan, Riffel, Rogemar A., Rodríguez-Ardila, A., Ruschel-Dutra, D., and Storchi-Bergmann, T.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We explore the relations between the gas-phase metallicity radial profiles (few hundred inner parsec) and multiple galaxy properties for 15 Seyfert galaxies from the AGNIFS (Active Galactic Nuclei Integral Field Spectroscopy) sample using optical Integral Field Unit (IFU) observations from Gemini Multi-Object Spectrographs (GMOS) and Multi Unit Spectroscopic Explorer (MUSE) processed archival data. The data were selected at $z \lesssim 0.013$ within black hole mass range $\left[6<\log \left(M_{\rm BH}/{\rm M_\odot} \right)<9\right]$ with moderate 14--150\,keV X-ray luminosities $\left[42\,\lesssim\,\log L_X (\rm erg\,s^{-1})\,\lesssim\,44\right]$. We estimated the gas-phase metallicity using the strong-line methods and found mean values for the oxygen dependent ($Z \sim 0.75Z_\odot$) and nitrogen dependent ($Z \sim 1.14Z_\odot$) calibrations. These estimates show excellent agreement with $\Delta Z \approx 0.19$ dex and $\Delta Z \approx 0.18$ dex between the mean values from the two strong-line calibrations for GMOS and MUSE respectively, consistent with the order of metallicity uncertainty via the strong-line methods. We contend that our findings align with a scenario wherein local Seyferts have undergone seamless gas accretion histories, resulting in positive metallicity profile over an extended period of time, thereby providing insights into galaxy evolution and the chemical enrichment or depletion of the universe. Additionally, we argue that metal-poor gas inflow from the local interstellar medium (ISM) and accreted through the circumgalactic medium (CGM) onto the galaxy systems regulates the star formation processes by diluting their central metallicity and inverting their metallicity gradients, producing a more prominent anti-correlation between gas-phase metallicity and Eddington ratio., Comment: Accepted for publication in MNRAS; doi: 10.1093/mnras/stae2263
- Published
- 2024
39. Generating peak-aware pseudo-measurements for low-voltage feeders using metadata of distribution system operators
- Author
-
Treutlein, Manuel, Schmidt, Marc, Hahn, Roman, Hertel, Matthias, Heidrich, Benedikt, Mikut, Ralf, and Hagenmeyer, Veit
- Subjects
Computer Science - Machine Learning ,Electrical Engineering and Systems Science - Systems and Control - Abstract
Distribution system operators (DSOs) must cope with new challenges such as the reconstruction of distribution grids along climate neutrality pathways or the ability to manage and control consumption and generation in the grid. In order to meet the challenges, measurements within the distribution grid often form the basis for DSOs. Hence, it is an urgent problem that measurement devices are not installed in many low-voltage (LV) grids. In order to overcome this problem, we present an approach to estimate pseudo-measurements for non-measured LV feeders based on the metadata of the respective feeder using regression models. The feeder metadata comprise information about the number of grid connection points, the installed power of consumers and producers, and billing data in the downstream LV grid. Additionally, we use weather data, calendar data and timestamp information as model features. The existing measurements are used as model target. We extensively evaluate the estimated pseudo-measurements on a large real-world dataset with 2,323 LV feeders characterized by both consumption and feed-in. For this purpose, we introduce peak metrics inspired by the BigDEAL challenge for the peak magnitude, timing and shape for both consumption and feed-in. As regression models, we use XGBoost, a multilayer perceptron (MLP) and a linear regression (LR). We observe that XGBoost and MLP outperform the LR. Furthermore, the results show that the approach adapts to different weather, calendar and timestamp conditions and produces realistic load curves based on the feeder metadata. In the future, the approach can be adapted to other grid levels like substation transformers and can supplement research fields like load modeling, state estimation and LV load forecasting., Comment: 17 pages, 9 figures, 8 tables
- Published
- 2024
40. Symmetry Preservation in Swarms of Oblivious Robots with Limited Visibility
- Author
-
Gerlach, Raphael, von der Gracht, Sören, Hahn, Christopher, Harbig, Jonas, and Kling, Peter
- Subjects
Computer Science - Robotics ,Computer Science - Data Structures and Algorithms - Abstract
In the general pattern formation (GPF) problem, a swarm of simple autonomous, disoriented robots must form a given pattern. The robots' simplicity imply a strong limitation: When the initial configuration is rotationally symmetric, only patterns with a similar symmetry can be formed [Yamashita, Suzyuki; TCS 2010]. The only known algorithm to form large patterns with limited visibility and without memory requires the robots to start in a near-gathering (a swarm of constant diameter) [Hahn et al.; SAND 2024]. However, not only do we not know any near-gathering algorithm guaranteed to preserve symmetry but most natural gathering strategies trivially increase symmetries [Castenow et al.; OPODIS 2022]. Thus, we study near-gathering without changing the swarm's rotational symmetry for disoriented, oblivious robots with limited visibility (the OBLOT-model, see [Flocchini et al.; 2019]). We introduce a technique based on the theory of dynamical systems to analyze how a given algorithm affects symmetry and provide sufficient conditions for symmetry preservation. Until now, it was unknown whether the considered OBLOT-model allows for any non-trivial algorithm that always preserves symmetry. Our first result shows that a variant of Go-to-the-Average always preserves symmetry but may sometimes lead to multiple, unconnected near-gathering clusters. Our second result is a symmetry-preserving near-gathering algorithm that works on swarms with a convex boundary (the outer boundary of the unit disc graph) and without holes (circles of diameter 1 inside the boundary without any robots).
- Published
- 2024
41. Inhomogeneous Dust Biases Photometric Redshifts and Stellar Masses for LSST
- Author
-
Hahn, ChangHoon and Melchior, Peter
- Subjects
Astrophysics - Astrophysics of Galaxies ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Spectral energy distribution (SED) modeling is one of the main methods to estimate galaxy properties, such as photometric redshifts, $z$, and stellar masses, $M_*$, for extragalactic imaging surveys. SEDs are currently modeled as light from a composite stellar population attenuated by a uniform foreground dust screen, despite evidence from simulations and observations that find large spatial variations in dust attenuation due to the detailed geometry of stars and gas within galaxies. In this work, we examine the impact of this simplistic dust assumption on inferred $z$ and $M_*$ for Rubin LSST. We first construct synthetic LSST-like observations ($ugrizy$ magnitudes) from the NIHAO-SKIRT catalog, which provides SEDs from high-resolution hydrodynamic simulations using 3D Monte Carlo radiative transfer. We then infer $z$ and $M_*$ from the synthetic observations using the PROVABGS Bayesian SED modeling framework. Overall, the uniform dust screen assumption biases both $z$ and $M_*$ in galaxies, consistently and significantly for galaxies with dust attenuation $A_V \gtrsim 0.5$, and likely below. The biases depend on the orientation in which the galaxies are observed. At $z=0.4$, $z$ is overestimated by $\sim$0.02 for face-on galaxies and $M_*$ is underestimated by $\sim$0.4 dex for edge-on galaxies. The bias in photo-$z$ is equivalent to the desired redshift precision level of LSST "gold sample" and will be larger at higher redshifts. Our results underscore the need for SED models with additional flexibility in the dust parameterization to mitigate significant systematic biases in cosmological analyses with LSST., Comment: 10 pages, 3 figures; submitted to ApJL; comments welcome
- Published
- 2024
42. BullFrog: Multi-step perturbation theory as a time integrator for cosmological simulations
- Author
-
Rampf, Cornelius, List, Florian, and Hahn, Oliver
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics ,Physics - Computational Physics ,85-08 (Primary), 85A40 (Secondary) - Abstract
Modelling the cosmic large-scale structure can be done through numerical N-body simulations or by using perturbation theory. Here, we present an N-body approach that effectively implements a multi-step forward model based on Lagrangian Perturbation Theory (LPT) in a $\Lambda$CDM Universe. This is achieved by introducing the second-order accurate BullFrog integrator, which performs 2LPT time steps (before shell-crossing) to second order without requiring the explicit computation of 2LPT displacements, while the higher-order terms rapidly approach the exact solution as the number of time steps increases. As a validation test, we compare BullFrog against other N-body integrators and high-order LPT, both for a realistic $\Lambda$CDM cosmology and for simulations with a sharp UV cutoff in the initial conditions. The latter scenario enables controlled experiments against LPT and, in practice, is particularly relevant for modelling coarse-grained fluids arising in the context of effective field theory. We demonstrate that BullFrog significantly improves upon other LPT-inspired integrators, such as FastPM and COLA, without incurring any computational overhead compared to standard N-body integrators. Implementing BullFrog in any existing N-body code is straightforward, particularly if FastPM is already integrated., Comment: 30 pages plus appendices+references, 14 figures, to be submitted to JCAP
- Published
- 2024
43. Standardised formats and open-source analysis tools for the MAGIC telescopes data
- Author
-
Abe, S., Abhir, J., Abhishek, A., Acciari, V. A., Aguasca-Cabot, A., Agudo, I., Aniello, T., Ansoldi, S., Antonelli, L. A., Engels, A. Arbet, Arcaro, C., Artero, M., Asano, K., Babić, A., de Almeida, U. Barres, Barrio, J. A., Batković, I., Bautista, A., Baxter, J., González, J. Becerra, Bednarek, W., Bernardini, E., Bernete, J., Berti, A., Besenrieder, J., Bigongiari, C., Biland, A., Blanch, O., Bonnoli, G., Bošnjak, Ž., Bronzini, E., Burelli, I., Busetto, G., Campoy-Ordaz, A., Carosi, A., Carosi, R., Carretero-Castrillo, M., Castro-Tirado, A. J., Cerasole, D., Ceribella, G., Chai, Y., Cifuentes, A., Colombo, E., Contreras, J. L., Cortina, J., Covino, S., D'Amico, G., D'Elia, V., Da Vela, P., Dazzi, F., De Angelis, A., De Lotto, B., de Menezes, R., Delfino, M., Delgado, J., Di Pierro, F., Di Tria, R., Di Venere, L., Prester, D. Dominis, Donini, A., Dorner, D., Doro, M., Elsaesser, D., Escudero, J., Fariña, L., Fattorini, A., Foffano, L., Font, L., Fröse, S., Fukami, S., Fukazawa, Y., López, R. J. García, Garczarczyk, M., Gasparyan, S., Gaug, M., Paiva, J. G. Giesbrecht, Giglietto, N., Giordano, F., Gliwny, P., Gradetzke, T., Grau, R., Green, D., Green, J. G., Günther, P., Hadasch, D., Hahn, A., Hassan, T., Heckmann, L., Llorente, J. Herrera, Hrupec, D., Hütten, M., Imazawa, R., Ishio, K., Martínez, I. Jiménez, Jormanainen, J., Kayanoki, T., Kerszberg, D., Kluge, G. W., Kobayashi, Y., Kouch, P. M., Kubo, H., Kushida, J., Láinez, M., Lamastra, A., Leone, F., Lindfors, E., Lombardi, S., Longo, F., López-Coto, R., López-Moya, M., López-Oramas, A., Loporchio, S., Lorini, A., Lyard, E., Fraga, B. Machado de Oliveira, Majumdar, P., Makariev, M., Maneva, G., Manganaro, M., Mangano, S., Mannheim, K., Mariotti, M., Martínez, M., Martínez-Chicharro, M., Mas-Aguilar, A., Mazin, D., Menchiari, S., Mender, S., Miceli, D., Miener, T., Miranda, J. M., Mirzoyan, R., González, M. Molero, Molina, E., Mondal, H. A., Moralejo, A., Morcuende, D., Nakamori, T., Nanci, C., Neustroev, V., Nickel, L., Rosillo, M. Nievas, Nigro, C., Nikolić, L., Nishijima, K., Ekoume, T. Njoh, Noda, K., Nozaki, S., Ohtani, Y., Okumura, A., Otero-Santos, J., Paiano, S., Paneque, D., Paoletti, R., Paredes, J. M., Peresano, M., Persic, M., Pihet, M., Pirola, G., Podobnik, F., Moroni, P. G. Prada, Prandini, E., Principe, G., Priyadarshi, C., Rhode, W., Ribó, M., Rico, J., Righi, C., Sahakyan, N., Saito, T., Saturni, F. G., Schmidt, K., Schmuckermaier, F., Schubert, J. L., Schweizer, T., Sciaccaluga, A., Silvestri, G., Sitarek, J., Sliusar, V., Sobczynska, D., Spolon, A., Stamerra, A., Strišković, J., Strom, D., Strzys, M., Suda, Y., Suutarinen, S., Tajima, H., Takahashi, M., Takeishi, R., Temnikov, P., Terauchi, K., Terzić, T., Teshima, M., Truzzi, S., Tutone, A., Ubach, S., van Scherpenberg, J., Acosta, M. Vazquez, Ventura, S., Viale, I., Vigorito, C. F., Vitale, V., Vovk, I., Walter, R., Will, M., Wunderlich, C., Yamamoto, T., Jouvin, L., Linhoff, L., and Linhoff, M.
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Instruments for gamma-ray astronomy at Very High Energies ($E>100\,{\rm GeV}$) have traditionally derived their scientific results through proprietary data and software. Data standardisation has become a prominent issue in this field both as a requirement for the dissemination of data from the next generation of gamma-ray observatories and as an effective solution to realise public data legacies of current-generation instruments. Specifications for a standardised gamma-ray data format have been proposed as a community effort and have already been successfully adopted by several instruments. We present the first production of standardised data from the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes. We converted $166\,{\rm h}$ of observations from different sources and validated their analysis with the open-source software Gammapy. We consider six data sets representing different scientific and technical analysis cases and compare the results obtained analysing the standardised data with open-source software against those produced with the MAGIC proprietary data and software. Aiming at a systematic production of MAGIC data in this standardised format, we also present the implementation of a database-driven pipeline automatically performing the MAGIC data reduction from the calibrated down to the standardised data level. In all the cases selected for the validation, we obtain results compatible with the MAGIC proprietary software, both for the manual and for the automatic data productions. Part of the validation data set is also made publicly available, thus representing the first large public release of MAGIC data. This effort and this first data release represent a technical milestone toward the realisation of a public MAGIC data legacy., Comment: Accepted for publication in the Journal of High Energy Astrophysics
- Published
- 2024
44. Bath Dynamical Decoupling with a Quantum Channel
- Author
-
Hahn, Alexander, Yuasa, Kazuya, and Burgarth, Daniel
- Subjects
Quantum Physics ,Mathematical Physics - Abstract
Bang-bang dynamical decoupling protects an open quantum system from decoherence due to its interaction with the surrounding bath/environment. In its standard form, this is achieved by strongly kicking the system with cycles of unitary operations, which average out the interaction Hamiltonian. In this paper, we generalize the notion of dynamical decoupling to repeated kicks with a quantum channel. This procedure is physically motivated by applying these CPTP kicks to the bath. We derive necessary and sufficient conditions on the employed quantum channel and find that bath dynamical decoupling works if and only if the kick is ergodic. Furthermore, we study in which circumstances CPTP kicks on a mono-partite quantum system induce quantum Zeno dynamics with its Hamiltonian cancelled out. This does not require the ergodicity of the kicks, and the absence of decoherence-free subsystems is both necessary and sufficient. While the standard unitary dynamical decoupling is essentially the same as the quantum Zeno dynamics, our investigation implies that this is not true any more in the case of CPTP kicks. To derive our results, we prove some spectral properties of ergodic quantum channels, that might be of independent interest. Our approach establishes an enhanced and unified mathematical understanding of several recent experimental demonstrations and might form the basis of new dynamical decoupling schemes that harness environmental noise degrees of freedom., Comment: 25 pages, 3 figures, 1 table
- Published
- 2024
45. The hypothetical track-length fitting algorithm for energy measurement in liquid argon TPCs
- Author
-
DUNE Collaboration, Abud, A. Abed, Abi, B., Acciarri, R., Acero, M. A., Adames, M. R., Adamov, G., Adamowski, M., Adams, D., Adinolfi, M., Adriano, C., Aduszkiewicz, A., Aguilar, J., Akbar, F., Alex, N. S., Allison, K., Monsalve, S. Alonso, Alrashed, M., Alton, A., Alvarez, R., Alves, T., Amar, H., Amedo, P., Anderson, J., Andreopoulos, C., Andreotti, M., Andrews, M. P., Andrianala, F., Andringa, S., Anfimov, N., Ankowski, A., Antic, D., Antoniassi, M., Antonova, M., Antoshkin, A., Aranda-Fernandez, A., Arellano, L., Diaz, E. Arrieta, Arroyave, M. A., Asaadi, J., Ashkenazi, A., Asner, D., Asquith, L., Atkin, E., Auguste, D., Aurisano, A., Aushev, V., Autiero, D., Azam, M. B., Azfar, F., Back, A., Back, H., Back, J. J., Bagaturia, I., Bagby, L., Balashov, N., Balasubramanian, S., Baldi, P., Baldini, W., Baldonedo, J., Baller, B., Bambah, B., Banerjee, R., Barao, F., Barbu, D., Barenboim, G., Alzás, P. Barham, Barker, G. J., Barkhouse, W., Barr, G., Monarca, J. Barranco, Barros, A., Barros, N., Barrow, D., Barrow, J. L., Basharina-Freshville, A., Bashyal, A., Basque, V., Batchelor, C., Bathe-Peters, L., Battat, J. B. R., Battisti, F., Bay, F., Bazetto, M. C. Q., Alba, J. L. L. Bazo, Beacom, J. F., Bechetoille, E., Behera, B., Belchior, E., Bell, G., Bellantoni, L., Bellettini, G., Bellini, V., Beltramello, O., Benekos, N., Montiel, C. Benitez, Benjamin, D., Neves, F. Bento, Berger, J., Berkman, S., Bernal, J., Bernardini, P., Bersani, A., Bertolucci, S., Betancourt, M., Rodríguez, A. Betancur, Bevan, A., Bezawada, Y., Bezerra, A. T., Bezerra, T. J., Bhat, A., Bhatnagar, V., Bhatt, J., Bhattacharjee, M., Bhattacharya, M., Bhuller, S., Bhuyan, B., Biagi, S., Bian, J., Biery, K., Bilki, B., Bishai, M., Bitadze, A., Blake, A., Blaszczyk, F. D., Blazey, G. C., Blucher, E., Bodek, A., Bogenschuetz, J., Boissevain, J., Bolognesi, S., Bolton, T., Bomben, L., Bonesini, M., Bonilla-Diaz, C., Bonini, F., Booth, A., Boran, F., Bordoni, S., Merlo, R. Borges, Borkum, A., Bostan, N., Bouet, R., Boza, J., Bracinik, J., Brahma, B., Brailsford, D., Bramati, F., Branca, A., Brandt, A., Bremer, J., Brew, C., Brice, S. J., Brio, V., Brizzolari, C., Bromberg, C., Brooke, J., Bross, A., Brunetti, G., Brunetti, M., Buchanan, N., Budd, H., Buergi, J., Bundock, A., Burgardt, D., Butchart, S., V., G. Caceres, Cagnoli, I., Cai, T., Calabrese, R., Calcutt, J., Calivers, L., Calvo, E., Caminata, A., Camino, A. F., Campanelli, W., Campani, A., Benitez, A. Campos, Canci, N., Capó, J., Caracas, I., Caratelli, D., Carber, D., Carceller, J. M., Carini, G., Carlus, B., Carneiro, M. F., Carniti, P., Terrazas, I. Caro, Carranza, H., Carrara, N., Carroll, L., Carroll, T., Carter, A., Casarejos, E., Casazza, D., Forero, J. F. Castaño, Castaño, F. A., Castillo, A., Castromonte, C., Catano-Mur, E., Cattadori, C., Cavalier, F., Cavanna, F., Centro, S., Cerati, G., Cerna, C., Cervelli, A., Villanueva, A. Cervera, Chakraborty, K., Chalifour, M., Chappell, A., Charitonidis, N., Chatterjee, A., Chen, H., Chen, M., Chen, W. C., Chen, Y., Chen-Wishart, Z., Cherdack, D., Chi, C., Chiapponi, F., Chirco, R., Chitirasreemadam, N., Cho, K., Choate, S., Choi, G., Chokheli, D., Chong, P. S., Chowdhury, B., Christian, D., Chukanov, A., Chung, M., Church, E., Cicala, M. F., Cicerchia, M., Cicero, V., Ciolini, R., Clarke, P., Cline, G., Coan, T. E., Cocco, A. G., Coelho, J. A. B., Cohen, A., Collazo, J., Collot, J., Conley, E., Conrad, J. M., Convery, M., Copello, S., Cova, P., Cox, C., Cremaldi, L., Cremonesi, L., Crespo-Anadón, J. I., Crisler, M., Cristaldo, E., Crnkovic, J., Crone, G., Cross, R., Cudd, A., Cuesta, C., Cui, Y., Curciarello, F., Cussans, D., Dai, J., Dalager, O., Dallavalle, R., Dallaway, W., D'Amico, R., da Motta, H., Dar, Z. A., Darby, R., Peres, L. Da Silva, David, Q., Davies, G. S., Davini, S., Dawson, J., De Aguiar, R., De Almeida, P., Debbins, P., De Bonis, I., Decowski, M. P., de Gouvêa, A., De Holanda, P. C., Astiz, I. L. De Icaza, De Jong, P., Sanchez, P. Del Amo, De la Torre, A., De Lauretis, G., Delbart, A., Delepine, D., Delgado, M., Dell'Acqua, A., Monache, G. Delle, Delmonte, N., De Lurgio, P., Demario, R., De Matteis, G., Neto, J. R. T. de Mello, DeMuth, D. M., Dennis, S., Densham, C., Denton, P., Deptuch, G. W., De Roeck, A., De Romeri, V., Detje, J. P., Devine, J., Dharmapalan, R., Dias, M., Diaz, A., Díaz, J. S., Díaz, F., Di Capua, F., Di Domenico, A., Di Domizio, S., Di Falco, S., Di Giulio, L., Ding, P., Di Noto, L., Diociaiuti, E., Distefano, C., Diurba, R., Diwan, M., Djurcic, Z., Doering, D., Dolan, S., Dolek, F., Dolinski, M. J., Domenici, D., Domine, L., Donati, S., Donon, Y., Doran, S., Douglas, D., Doyle, T. A., Dragone, A., Drielsma, F., Duarte, L., Duchesneau, D., Duffy, K., Dugas, K., Dunne, P., Dutta, B., Duyang, H., Dwyer, D. A., Dyshkant, A. S., Dytman, S., Eads, M., Earle, A., Edayath, S., Edmunds, D., Eisch, J., Englezos, P., Ereditato, A., Erjavec, T., Escobar, C. O., Evans, J. J., Ewart, E., Ezeribe, A. C., Fahey, K., Fajt, L., Falcone, A., Fani', M., Farnese, C., Farrell, S., Farzan, Y., Fedoseev, D., Felix, J., Feng, Y., Fernandez-Martinez, E., Ferry, G., Fialova, E., Fields, L., Filip, P., Filkins, A., Filthaut, F., Fine, R., Fiorillo, G., Fiorini, M., Fogarty, S., Foreman, W., Fowler, J., Franc, J., Francis, K., Franco, D., Franklin, J., Freeman, J., Fried, J., Friedland, A., Fuess, S., Furic, I. K., Furman, K., Furmanski, A. P., Gaba, R., Gabrielli, A., Gago, A. M., Galizzi, F., Gallagher, H., Gallice, N., Galymov, V., Gamberini, E., Gamble, T., Ganacim, F., Gandhi, R., Ganguly, S., Gao, F., Gao, S., Garcia-Gamez, D., García-Peris, M. Á., Gardim, F., Gardiner, S., Gastler, D., Gauch, A., Gauvreau, J., Gauzzi, P., Gazzana, S., Ge, G., Geffroy, N., Gelli, B., Gent, S., Gerlach, L., Ghorbani-Moghaddam, Z., Giammaria, T., Gibin, D., Gil-Botella, I., Gilligan, S., Gioiosa, A., Giovannella, S., Girerd, C., Giri, A. K., Giugliano, C., Giusti, V., Gnani, D., Gogota, O., Gollapinni, S., Gollwitzer, K., Gomes, R. A., Bermeo, L. V. Gomez, Fajardo, L. S. Gomez, Gonnella, F., Gonzalez-Diaz, D., Gonzalez-Lopez, M., Goodman, M. C., Goswami, S., Gotti, C., Goudeau, J., Goudzovski, E., Grace, C., Gramellini, E., Gran, R., Granados, E., Granger, P., Grant, C., Gratieri, D. R., Grauso, G., Green, P., Greenberg, S., Greer, J., Griffith, W. C., Groetschla, F. T., Grzelak, K., Gu, L., Gu, W., Guarino, V., Guarise, M., Guenette, R., Guerzoni, M., Guffanti, D., Guglielmi, A., Guo, B., Guo, F. Y., Gupta, A., Gupta, V., Gurung, G., Gutierrez, D., Guzowski, P., Guzzo, M. M., Gwon, S., Habig, A., Hadavand, H., Haegel, L., Haenni, R., Hagaman, L., Hahn, A., Haiston, J., Hakenmüller, J., Hamernik, T., Hamilton, P., Hancock, J., Happacher, F., Harris, D. A., Hart, A. L., Hartnell, J., Hartnett, T., Harton, J., Hasegawa, T., Hasnip, C. M., Hatcher, R., Hayrapetyan, K., Hays, J., Hazen, E., He, M., Heavey, A., Heeger, K. M., Heise, J., Hellmuth, P., Henry, S., Herner, K., Hewes, V., Higuera, A., Hilgenberg, C., Hillier, S. J., Himmel, A., Hinkle, E., Hirsch, L. R., Ho, J., Hoff, J., Holin, A., Holvey, T., Hoppe, E., Horiuchi, S., Horton-Smith, G. A., Houdy, T., Howard, B., Howell, R., Hristova, I., Hronek, M. S., Huang, J., Huang, R. G., Hulcher, Z., Ibrahim, M., Iles, G., Ilic, N., Iliescu, A. M., Illingworth, R., Ingratta, G., Ioannisian, A., Irwin, B., Isenhower, L., Oliveira, M. Ismerio, Itay, R., Jackson, C. M., Jain, V., James, E., Jang, W., Jargowsky, B., Jena, D., Jentz, I., Ji, X., Jiang, C., Jiang, J., Jiang, L., Jipa, A., Jo, J. H., Joaquim, F. R., Johnson, W., Jollet, C., Jones, B., Jones, R., Jovancevic, N., Judah, M., Jung, C. K., Jung, K. Y., Junk, T., Jwa, Y., Kabirnezhad, M., Kaboth, A. C., Kadenko, I., Kakorin, I., Kalitkina, A., Kalra, D., Kandemir, M., Kaplan, D. M., Karagiorgi, G., Karaman, G., Karcher, A., Karyotakis, Y., Kasai, S., Kasetti, S. P., Kashur, L., Katsioulas, I., Kauther, A., Kazaryan, N., Ke, L., Kearns, E., Keener, P. T., Kelly, K. J., Kemp, E., Kemularia, O., Kermaidic, Y., Ketchum, W., Kettell, S. H., Khabibullin, M., Khan, N., Khvedelidze, A., Kim, D., Kim, J., Kim, M. J., King, B., Kirby, B., Kirby, M., Kish, A., Klein, J., Kleykamp, J., Klustova, A., Kobilarcik, T., Koch, L., Koehler, K., Koerner, L. W., Koh, D. H., Kolupaeva, L., Korablev, D., Kordosky, M., Kosc, T., Kose, U., Kostelecký, V. A., Kothekar, K., Kotler, I., Kovalcuk, M., Kozhukalov, V., Krah, W., Kralik, R., Kramer, M., Kreczko, L., Krennrich, F., Kreslo, I., Kroupova, T., Kubota, S., Kubu, M., Kudenko, Y., Kudryavtsev, V. A., Kufatty, G., Kuhlmann, S., Kulagin, S., Kumar, J., Kumar, P., Kumaran, S., Kunzmann, J., Kuravi, R., Kurita, N., Kuruppu, C., Kus, V., Kutter, T., Kvasnicka, J., Labree, T., Lackey, T., Lalău, I., Lambert, A., Land, B. J., Lane, C. E., Lane, N., Lang, K., Langford, T., Langstaff, M., Lanni, F., Lantwin, O., Larkin, J., Lasorak, P., Last, D., Laudrain, A., Laundrie, A., Laurenti, G., Lavaut, E., Laycock, P., Lazanu, I., LaZur, R., Lazzaroni, M., Le, T., Leardini, S., Learned, J., LeCompte, T., Legin, V., Miotto, G. Lehmann, Lehnert, R., de Oliveira, M. A. Leigui, Leitner, M., Silverio, D. Leon, Lepin, L. M., Li, J. -Y, Li, S. W., Li, Y., Liao, H., Lin, C. S., Lindebaum, D., Linden, S., Lineros, R. A., Lister, A., Littlejohn, B. R., Liu, H., Liu, J., Liu, Y., Lockwitz, S., Lokajicek, M., Lomidze, I., Long, K., Lopes, T. V., Lopez, J., de Rego, I. López, López-March, N., Lord, T., LoSecco, J. M., Louis, W. C., Sanchez, A. Lozano, Lu, X. -G., Luk, K. B., Lunday, B., Luo, X., Luppi, E., MacFarlane, D., Machado, A. A., Machado, P., Macias, C. T., Macier, J. R., MacMahon, M., Maddalena, A., Madera, A., Madigan, P., Magill, S., Magueur, C., Mahn, K., Maio, A., Major, A., Majumdar, K., Mameli, S., Man, M., Mandujano, R. C., Maneira, J., Manly, S., Mann, A., Manolopoulos, K., Plata, M. Manrique, Corchado, S. Manthey, Manyam, V. N., Marchan, M., Marchionni, A., Marciano, W., Marfatia, D., Mariani, C., Maricic, J., Marinho, F., Marino, A. D., Markiewicz, T., Marques, F. Das Chagas, Marquet, C., Marshak, M., Marshall, C. M., Marshall, J., Martina, L., Martín-Albo, J., Martinez, N., Caicedo, D. A. Martinez, López, F. Martínez, Miravé, P. Martínez, Martynenko, S., Mascagna, V., Massari, C., Mastbaum, A., Matichard, F., Matsuno, S., Matteucci, G., Matthews, J., Mauger, C., Mauri, N., Mavrokoridis, K., Mawby, I., Mazza, R., McAskill, T., McConkey, N., McFarland, K. S., McGrew, C., McNab, A., Meazza, L., Meddage, V. C. N., Mefodiev, A., Mehta, B., Mehta, P., Melas, P., Mena, O., Mendez, H., Mendez, P., Méndez, D. P., Menegolli, A., Meng, G., Mercuri, A. C. E. A., Meregaglia, A., Messier, M. D., Metallo, S., Metcalf, W., Mewes, M., Meyer, H., Miao, T., Micallef, J., Miccoli, A., Michna, G., Milincic, R., Miller, F., Miller, G., Miller, W., Mineev, O., Minotti, A., Miralles, L., Mironov, C., Miryala, S., Miscetti, S., Mishra, C. S., Mishra, P., Mishra, S. R., Mislivec, A., Mitchell, M., Mladenov, D., Mocioiu, I., Mogan, A., Moggi, N., Mohanta, R., Mohayai, T. A., Mokhov, N., Molina, J., Bueno, L. Molina, Montagna, E., Montanari, A., Montanari, C., Montanari, D., Montanino, D., Zetina, L. M. Montaño, Mooney, M., Moor, A. F., Moore, Z., Moreno, D., Moreno-Palacios, O., Morescalchi, L., Moretti, D., Moretti, R., Morris, C., Mossey, C., Moura, C. A., Mouster, G., Mu, W., Mualem, L., Mueller, J., Muether, M., Muheim, F., Muir, A., Mukhamejanov, Y., Mulhearn, M., Munford, D., Munteanu, L. J., Muramatsu, H., Muraz, J., Murphy, M., Murphy, T., Muse, J., Mytilinaki, A., Nachtman, J., Nagai, Y., Nagu, S., Nandakumar, R., Naples, D., Narita, S., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nehm, A., Nelson, J. K., Neogi, O., Nesbit, J., Nessi, M., Newbold, D., Newcomer, M., Nichol, R., Nicolas-Arnaldos, F., Nikolica, A., Nikolov, J., Niner, E., Nishimura, K., Norman, A., Norrick, A., Novella, P., Nowak, A., Nowak, J. A., Oberling, M., Ochoa-Ricoux, J. P., Oh, S., Oh, S. B., Olivier, A., Olshevskiy, A., Olson, T., Onel, Y., Onishchuk, Y., Oranday, A., Osbiston, M., Vélez, J. A. Osorio, O'Sullivan, L., Ormachea, L. Otiniano, Ott, J., Pagani, L., Palacio, G., Palamara, O., Palestini, S., Paley, J. M., Pallavicini, M., Palomares, C., Pan, S., Panda, P., Vazquez, W. Panduro, Pantic, E., Paolone, V., Papaleo, R., Papanestis, A., Papoulias, D., Paramesvaran, S., Paris, A., Parke, S., Parozzi, E., Parsa, S., Parsa, Z., Parveen, S., Parvu, M., Pasciuto, D., Pascoli, S., Pasqualini, L., Pasternak, J., Patrick, C., Patrizii, L., Patterson, R. B., Patzak, T., Paudel, A., Paulucci, L., Pavlovic, Z., Pawloski, G., Payne, D., Pec, V., Pedreschi, E., Peeters, S. J. M., Pellico, W., Perez, A. Pena, Pennacchio, E., Penzo, A., Peres, O. L. G., Gonzalez, Y. F. Perez, Pérez-Molina, L., Pernas, C., Perry, J., Pershey, D., Pessina, G., Petrillo, G., Petta, C., Petti, R., Pfaff, M., Pia, V., Pickering, L., Pietropaolo, F., Pimentel, V. L., Pinaroli, G., Pincha, S., Pinchault, J., Pitts, K., Plows, K., Pollack, C., Pollman, T., Pompa, F., Pons, X., Poonthottathil, N., Popov, V., Poppi, F., Porter, J., Paixão, L. G. Porto, Potekhin, M., Potenza, R., Pozzato, M., Prakash, T., Pratt, C., Prest, M., Psihas, F., Pugnere, D., Qian, X., Queen, J., Raaf, J. L., Radeka, V., Rademacker, J., Radics, B., Raffaelli, F., Rafique, A., Raguzin, E., Rahaman, U., Rai, M., Rajagopalan, S., Rajaoalisoa, M., Rakhno, I., Rakotondravohitra, L., Ralte, L., Delgado, M. A. Ramirez, Ramson, B., Rappoldi, A., Raselli, G., Ratoff, P., Ray, R., Razafinime, H., Razakamiandra, R. F., Rea, E. M., Real, J. S., Rebel, B., Rechenmacher, R., Reichenbacher, J., Reitzner, S. D., Sfar, H. Rejeb, Renner, E., Renshaw, A., Rescia, S., Resnati, F., Restrepo, Diego, Reynolds, C., Ribas, M., Riboldi, S., Riccio, C., Riccobene, G., Ricol, J. S., Rigan, M., Rincón, E. V., Ritchie-Yates, A., Ritter, S., Rivera, D., Rivera, R., Robert, A., Rocha, J. L. Rocabado, Rochester, L., Roda, M., Rodrigues, P., Alonso, M. J. Rodriguez, Rondon, J. Rodriguez, Rosauro-Alcaraz, S., Rosier, P., Ross, D., Rossella, M., Rossi, M., Ross-Lonergan, M., Roy, N., Roy, P., Rubbia, C., Ruggeri, A., Ferreira, G. Ruiz, Russell, B., Ruterbories, D., Rybnikov, A., Sacerdoti, S., Saha, S., Sahoo, S. K., Sahu, N., Sala, P., Samios, N., Samoylov, O., Sanchez, M. C., Bravo, A. Sánchez, Sánchez-Castillo, A., Sanchez-Lucas, P., Sandberg, V., Sanders, D. A., Sanfilippo, S., Sankey, D., Santoro, D., Saoulidou, N., Sapienza, P., Sarasty, C., Sarcevic, I., Sarra, I., Savage, G., Savinov, V., Scanavini, G., Scaramelli, A., Scarff, A., Schefke, T., Schellman, H., Schifano, S., Schlabach, P., Schmitz, D., Schneider, A. W., Scholberg, K., Schukraft, A., Schuld, B., Segade, A., Segreto, E., Selyunin, A., Senadheera, D., Senise, C. R., Sensenig, J., Shaevitz, M. H., Shanahan, P., Sharma, P., Kumar, R., Poudel, S. Sharma, Shaw, K., Shaw, T., Shchablo, K., Shen, J., Shepherd-Themistocleous, C., Sheshukov, A., Shi, J., Shi, W., Shin, S., Shivakoti, S., Shoemaker, I., Shooltz, D., Shrock, R., Siddi, B., Siden, M., Silber, J., Simard, L., Sinclair, J., Sinev, G., Singh, Jaydip, Singh, J., Singh, L., Singh, P., Singh, V., Chauhan, S. Singh, Sipos, R., Sironneau, C., Sirri, G., Siyeon, K., Skarpaas, K., Smedley, J., Smith, E., Smith, J., Smith, P., Smolik, J., Smy, M., Snape, M., Snider, E. L., Snopok, P., Snowden-Ifft, D., Nunes, M. Soares, Sobel, H., Soderberg, M., Sokolov, S., Salinas, C. J. Solano, Söldner-Rembold, S., Solomey, N., Solovov, V., Sondheim, W. E., Sorel, M., Sotnikov, A., Soto-Oton, J., Sousa, A., Soustruznik, K., Spinella, F., Spitz, J., Spooner, N. J. C., Spurgeon, K., Stalder, D., Stancari, M., Stanco, L., Steenis, J., Stein, R., Steiner, H. M., Lisbôa, A. F. Steklain, Stepanova, A., Stewart, J., Stillwell, B., Stock, J., Stocker, F., Stokes, T., Strait, M., Strauss, T., Strigari, L., Stuart, A., Suarez, J. G., Subash, J., Surdo, A., Suter, L., Sutera, C. M., Sutton, K., Suvorov, Y., Svoboda, R., Swain, S. K., Szczerbinska, B., Szelc, A. M., Sztuc, A., Taffara, A., Talukdar, N., Tamara, J., Tanaka, H. A., Tang, S., Taniuchi, N., Casanova, A. M. Tapia, Oregui, B. Tapia, Tapper, A., Tariq, S., Tarpara, E., Tatar, E., Tayloe, R., Tedeschi, D., Teklu, A. M., Vidal, J. Tena, Tennessen, P., Tenti, M., Terao, K., Terranova, F., Testera, G., Thakore, T., Thea, A., Thomas, S., Thompson, A., Thorn, C., Timm, S. C., Tiras, E., Tishchenko, V., Tiwari, S., Todorović, N., Tomassetti, L., Tonazzo, A., Torbunov, D., Torti, M., Tortola, M., Tortorici, F., Tosi, N., Totani, D., Toups, M., Touramanis, C., Tran, D., Travaglini, R., Trevor, J., Triller, E., Trilov, S., Truchon, J., Truncali, D., Trzaska, W. H., Tsai, Y., Tsai, Y. -T., Tsamalaidze, Z., Tsang, K. V., Tsverava, N., Tu, S. Z., Tufanli, S., Tunnell, C., Turnberg, S., Turner, J., Tuzi, M., Tyler, J., Tyley, E., Tzanov, M., Uchida, M. A., González, J. Ureña, Urheim, J., Usher, T., Utaegbulam, H., Uzunyan, S., Vagins, M. R., Vahle, P., Valder, S., Valdiviesso, G. A., Valencia, E., Valentim, R., Vallari, Z., Vallazza, E., Valle, J. W. F., Van Berg, R., Van de Water, R. G., Forero, D. V., Vannozzi, A., Van Nuland-Troost, M., Varanini, F., Oliva, D. Vargas, Vasina, S., Vaughan, N., Vaziri, K., Vázquez-Ramos, A., Vega, J., Ventura, S., Verdugo, A., Vergani, S., Verzocchi, M., Vetter, K., Vicenzi, M., de Souza, H. Vieira, Vignoli, C., Vilela, C., Villa, E., Viola, S., Viren, B., Vizarreta, R., Hernandez, A. P. Vizcaya, Vuong, Q., Waldron, A. V., Wallbank, M., Walsh, J., Walton, T., Wang, H., Wang, J., Wang, L., Wang, M. H. L. S., Wang, X., Wang, Y., Warburton, K., Warner, D., Warsame, L., Wascko, M. O., Waters, D., Watson, A., Wawrowska, K., Weber, A., Weber, C. M., Weber, M., Wei, H., Weinstein, A., Westerdale, S., Wetstein, M., Whalen, K., White, A., Whitehead, L. H., Whittington, D., Wilhlemi, J., Wilking, M. J., Wilkinson, A., Wilkinson, C., Wilson, F., Wilson, R. J., Winter, P., Wisniewski, W., Wolcott, J., Wolfs, J., Wongjirad, T., Wood, A., Wood, K., Worcester, E., Worcester, M., Wospakrik, M., Wresilo, K., Wret, C., Wu, S., Wu, W., Wurm, M., Wyenberg, J., Xiao, Y., Xiotidis, I., Yaeggy, B., Yahlali, N., Yandel, E., Yang, J., Yang, K., Yang, T., Yankelevich, A., Yershov, N., Yonehara, K., Young, T., Yu, B., Yu, H., Yu, J., Yu, Y., Yuan, W., Zaki, R., Zalesak, J., Zambelli, L., Zamorano, B., Zani, A., Zapata, O., Zazueta, L., Zeller, G. P., Zennamo, J., Zeug, K., Zhang, C., Zhang, S., Zhao, M., Zhivun, E., Zimmerman, E. D., Zucchelli, S., Zuklin, J., Zutshi, V., and Zwaska, R.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
This paper introduces the hypothetical track-length fitting algorithm, a novel method for measuring the kinetic energies of ionizing particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm's energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions.
- Published
- 2024
46. Investigating Privacy Attacks in the Gray-Box Setting to Enhance Collaborative Learning Schemes
- Author
-
Mazzone, Federico, Badawi, Ahmad Al, Polyakov, Yuriy, Everts, Maarten, Hahn, Florian, and Peter, Andreas
- Subjects
Computer Science - Cryptography and Security - Abstract
The notion that collaborative machine learning can ensure privacy by just withholding the raw data is widely acknowledged to be flawed. Over the past seven years, the literature has revealed several privacy attacks that enable adversaries to extract information about a model's training dataset by exploiting access to model parameters during or after training. In this work, we study privacy attacks in the gray-box setting, where the attacker has only limited access - in terms of view and actions - to the model. The findings of our investigation provide new insights for the development of privacy-preserving collaborative learning solutions. We deploy SmartCryptNN, a framework that tailors homomorphic encryption to protect the portions of the model posing higher privacy risks. Our solution offers a trade-off between privacy and efficiency, which varies based on the extent and selection of the model components we choose to protect. We explore it on dense neural networks, where through extensive evaluation of diverse datasets and architectures, we uncover instances where a favorable sweet spot in the trade-off can be achieved by safeguarding only a single layer of the network. In one of such instances, our approach trains ~4 times faster compared to fully encrypted solutions, while reducing membership leakage by 17.8 times compared to plaintext solutions., Comment: 19 pages, 7 figures, in submission
- Published
- 2024
47. Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model
- Author
-
Hahn, Alexander, Burgarth, Daniel, and Lonigro, Davide
- Subjects
Quantum Physics ,Mathematical Physics - Abstract
Dynamical decoupling is a technique aimed at suppressing the interaction between a quantum system and its environment by applying frequent unitary operations on the system alone. In the present paper, we analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment initially prepared in a thermal state. We find sufficient conditions under which dynamical decoupling works for such systems, and, most importantly, we find bounds for the convergence speed of the procedure. Our analysis is based on a new Trotter theorem for multiple Hamiltonians and involves a rigorous treatment of the evolution of mixed quantum states via unbounded Hamiltonians. A comparison with numerical experiments shows that our bounds reproduce the correct scaling in various relevant system parameters. Furthermore, our analytical treatment allows for quantifying the decoupling efficiency for boson baths with infinitely many modes, in which case a numerical treatment is unavailable., Comment: 46 pages, 8 figures, 1 table
- Published
- 2024
48. Detailed Analysis of Local Climate at the CTAO-North Site on La Palma from 20 Years of MAGIC Weather Station Data
- Author
-
Gaug, Markus, Longo, Alessandro, Bianchi, Stefano, Font, Lluís, Almirante, Sofia, Kornmayer, Harald, Doro, Michele, Hahn, Alexander, Blanch, Oscar, Plastino, Wolfango, and Dorner, Daniela
- Subjects
Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The Observatorio del Roque de los Muchachos will host the northern site of the Cherenkov Telescope Array Observatory (CTAO), in an area about 200 m below the mountain rim, where the optical telescopes are located. The site currently hosts the MAGIC Telescopes, which have gathered a unique series of 20 years of weather data. We use advanced profile likelihood methods to determine seasonal cycles, the occurrence of weather extremes, weather downtime, and long-term trends correctly taking into account data gaps. The fractality of the weather data is investigated by means of multifractal detrended fluctuation analysis. The data are published according to the Findable, Accessible, Interoperable, and Reusable (FAIR) principles. We find that the behaviour of wind and relative humidity show significant differences compared to the mountain rim. We observe an increase in temperature of $0.55\pm0.07\mathrm{(stat.)}\pm0.07\mathrm{(syst.)}^\circ C$/decade, the diurnal temperature range of $0.13\pm0.04\mathrm{(stat.)}\pm0.02\mathrm{(syst.)}^\circ C$/decade (accompanied by an increase of seasonal oscillation amplitude of $\Delta C_m=0.29\pm0.10\mathrm{(stat.)}\pm0.04\mathrm{(syst.)}^\circ C$/decade) and relative humidity of $4.0\pm0.4\mathrm{(stat.)}\pm1.1\mathrm{(syst.)}$%/decade, and a decrease in trade wind speeds of $0.85\pm0.12\mathrm{(stat.)}\pm0.07\mathrm{(syst.)}$(km/h)/decade. The occurrence of extreme weather, such as tropical storms and long rains, remains constant over time. We find a significant correlation of temperature with the North Atlantic Oscillation Index and multifractal behaviour of the data. The site shows a weather-related downtime of 18.5%-20.5%, depending on the wind gust limits employed. No hints are found of a degradation of weather downtime under the assumption of a linear evolution of environmental parameters over time., Comment: accepted for publication in MNRAS. For associated data, see https://dx.doi.org/10.5281/zenodo.11279074 , for associated analysis code, see https://github.com/mgaug/WS-Analysis
- Published
- 2024
- Full Text
- View/download PDF
49. COSINE-100 Full Dataset Challenges the Annual Modulation Signal of DAMA/LIBRA
- Author
-
Carlin, N., Cho, J. Y., Choi, J. J., Choi, S., Ezeribe, A. C., Franca, L. E., Ha, C., Hahn, I. S., Hollick, S. J., Jeon, E. J., Joo, H. W., Kang, W. G., Kauer, M., Kim, B. H., Kim, H. J., Kim, J., Kim, K. W., Kim, S. H., Kim, S. K., Kim, W. K., Kim, Y. D., Kim, Y. H., Ko, Y. J., Lee, D. H., Lee, E. K., Lee, H., Lee, H. S., Lee, H. Y., Lee, I. S., Lee, J., Lee, J. Y., Lee, M. H., Lee, S. H., Lee, S. M., Lee, Y. J., Leonard, D. S., Luan, N. T., Machado, V. H. A., Manzato, B. B., Maruyama, R. H., Neal, R. J., Olsen, S. L., Park, B. J., Park, H. K., Park, H. S., Park, J. C., Park, K. S., Park, S. D., Pitta, R. L. C., Prihtiadi, H., Ra, S. J., Rott, C., Shin, K. A., Cavalcante, D. F. F. S., Son, M. K., Spooner, N. J. C., Truc, L. T., Yang, L., and Yu, G. H.
- Subjects
High Energy Physics - Experiment - Abstract
For over 25 years, the DAMA/LIBRA collaboration has claimed to observe an annual modulation signal, suggesting the existence of dark matter interactions. However, no other experiments have replicated their result using different detector materials. To address this puzzle, the COSINE-100 collaboration conducted a model-independent test using 106 kg of sodium iodide as detectors, the same target material as DAMA/LIBRA. Analyzing data collected over 6.4 years, with improved energy calibration and time-dependent background description, we found no evidence of an annual modulation signal, challenging the DAMA/LIBRA result with a confidence level greater than 3$\sigma$. This finding represents a significant step toward resolving the long-standing debate surrounding DAMA/LIBRA's dark matter claim, indicating that the observed modulation is unlikely to be caused by dark matter interactions.
- Published
- 2024
50. Measurement of elliptic flow of J$/\psi$ in $\sqrt{s_{_{NN}}}=200$ GeV Au$+$Au collisions at forward rapidity
- Author
-
PHENIX Collaboration, Abdulameer, N. J., Acharya, U., Adare, A., Aidala, C., Ajitanand, N. N., Akiba, Y., Alfred, M., Antsupov, S., Aoki, K., Apadula, N., Asano, H., Ayuso, C., Azmoun, B., Babintsev, V., Bai, M., Bandara, N. S., Bannier, B., Bannikov, E., Barish, K. N., Bathe, S., Bazilevsky, A., Beaumier, M., Beckman, S., Belmont, R., Berdnikov, A., Berdnikov, Y., Bichon, L., Blankenship, B., Blau, D. S., Boer, M., Bok, J. S., Borisov, V., Boyle, K., Brooks, M. L., Bryslawskyj, J., Bumazhnov, V., Butler, C., Campbell, S., Roman, V. Canoa, Chen, C. -H., Chen, D., Chiu, M., Chi, C. Y., Choi, I. J., Choi, J. B., Chujo, T., Citron, Z., Connors, M., Corliss, R., Csanád, M., Csörgő, T., Liu, L. D., Danley, T. W., Datta, A., Daugherity, M. S., David, G., DeBlasio, K., Dehmelt, K., Denisov, A., Deshpande, A., Desmond, E. J., Dion, A., Diss, P. B., Doomra, V., Do, J. H., Drees, A., Drees, K. A., Dumancic, M., Durham, J. M., Durum, A., Elder, T., Enokizono, A., Esha, R., Fadem, B., Fan, W., Feege, N., Fields, D. E., Finger, Jr., M., Finger, M., Firak, D., Fitzgerald, D., Fokin, S. L., Frantz, J. E., Franz, A., Frawley, A. D., Fukuda, Y., Gallus, P., Gal, C., Garg, P., Ge, H., Giordano, F., Glenn, A., Goto, Y., Grau, N., Greene, S. V., Perdekamp, M. Grosse, Gunji, T., Guo, T., Hachiya, T., Haggerty, J. S., Hahn, K. I., Hamagaki, H., Hamilton, H. F., Hanks, J., Han, S. Y., Hasegawa, S., Haseler, T. O. S., Hashimoto, K., Hemmick, T. K., He, X., Hill, J. C., Hill, K., Hodges, A., Hollis, R. S., Homma, K., Hong, B., Hoshino, T., Hotvedt, N., Huang, J., Imai, K., Imrek, J., Inaba, M., Iordanova, A., Isenhower, D., Ito, Y., Ivanishchev, D., Jacak, B., Jezghani, M., Jiang, X., Ji, Z., Johnson, B. M., Jorjadze, V., Jouan, D., Jumper, D. S., Kanda, S., Kang, J. H., Kapukchyan, D., Karthas, S., Kawall, D., Kazantsev, A. V., Key, J. A., Khachatryan, V., Khanzadeev, A., Kimelman, B., Kim, C., Kim, D. J., Kim, E. -J., Kim, G. W., Kim, M., Kim, M. H., Kincses, D., Kistenev, E., Kitamura, R., Klatsky, J., Kleinjan, D., Kline, P., Koblesky, T., Komkov, B., Kotov, D., Kovacs, L., Kudo, S., Kurita, K., Kurosawa, M., Kwon, Y., Lajoie, J. G., Lallow, E. O., Lebedev, A., Lee, S., Lee, S. H., Leitch, M. J., Leung, Y. H., Lewis, N. A., Lim, S. H., Liu, M. X., Li, X., Loggins, V. -R., Lökös, S., Loomis, D. A., Lynch, D., Majoros, T., Makdisi, Y. I., Makek, M., Malaev, M., Manion, A., Manko, V. I., Mannel, E., Masuda, H., McCumber, M., McGaughey, P. L., McGlinchey, D., McKinney, C., Meles, A., Mendoza, M., Mignerey, A. C., Mihalik, D. E., Milov, A., Mishra, D. K., Mitchell, J. T., Mitrankova, M., Mitrankov, Iu., Mitsuka, G., Miyasaka, S., Mizuno, S., Mohanty, A. K., Montuenga, P., Moon, T., Morrison, D. P., Morrow, S. I., Moukhanova, T. V., Mulilo, B., Murakami, T., Murata, J., Mwai, A., Nagai, K., Nagashima, K., Nagashima, T., Nagle, J. L., Nagy, M. I., Nakagawa, I., Nakagomi, H., Nakano, K., Nattrass, C., Netrakanti, P. K., Niida, T., Nishimura, S., Nouicer, R., Novitzky, N., Novotny, R., Novák, T., Nukazuka, G., Nyanin, A. S., O'Brien, E., Ogilvie, C. A., Koop, J. D. Orjuela, Orosz, M., Osborn, J. D., Oskarsson, A., Ozawa, K., Pak, R., Pantuev, V., Papavassiliou, V., Park, J. S., Park, S., Patel, M., Pate, S. F., Peng, J. -C., Peng, W., Perepelitsa, D. V., Perera, G. D. N., Peressounko, D. Yu., PerezLara, C. E., Perry, J., Petti, R., Phipps, M., Pinkenburg, C., Pinson, R., Pisani, R. P., Potekhin, M., Pun, A., Purschke, M. L., Rak, J., Ramson, B. J., Ravinovich, I., Read, K. F., Reynolds, D., Riabov, V., Riabov, Y., Richford, D., Rinn, T., Rolnick, S. D., Rosati, M., Rowan, Z., Rubin, J. G., Runchey, J., Sahlmueller, B., Saito, N., Sakaguchi, T., Sako, H., Samsonov, V., Sarsour, M., Sato, K., Sato, S., Schaefer, B., Schmoll, B. K., Sedgwick, K., Seidl, R., Seleznev, A., Sen, A., Seto, R., Sett, P., Sexton, A., Sharma, D., Shein, I., Shibata, T. -A., Shigaki, K., Shimomura, M., Shukla, P., Sickles, A., Silva, C. L., Silvermyr, D., Singh, B. K., Singh, C. P., Singh, V., Slunečka, M., Smith, K. L., Snowball, M., Soltz, R. A., Sondheim, W. E., Sorensen, S. P., Sourikova, I. V., Stankus, P. W., Stepanov, M., Stoll, S. P., Sugitate, T., Sukhanov, A., Sumita, T., Sun, J., Sun, Z., Syed, S., Sziklai, J., Takeda, A., Taketani, A., Tanida, K., Tannenbaum, M. J., Tarafdar, S., Taranenko, A., Tarnai, G., Tieulent, R., Timilsina, A., Todoroki, T., Tomášek, M., Towell, C. L., Towell, R., Towell, R. S., Tserruya, I., Ueda, Y., Ujvari, B., van Hecke, H. W., Vazquez-Carson, S., Velkovska, J., Virius, M., Vrba, V., Wang, X. R., Wang, Z., Watanabe, Y., Watanabe, Y. S., Wei, F., White, A. S., Wong, C. P., Woody, C. L., Wysocki, M., Xia, B., Xue, L., Xu, C., Xu, Q., Yalcin, S., Yamaguchi, Y. L., Yanovich, A., Yin, P., Yoon, I., Yoo, J. H., Yushmanov, I. E., Yu, H., Zajc, W. A., Zelenski, A., Zhou, S., and Zou, L.
- Subjects
Nuclear Experiment - Abstract
We report the first measurement of the azimuthal anisotropy of J$/\psi$ at forward rapidity ($1.2<|\eta|<2.2$) in Au$+$Au collisions at $\sqrt{s_{_{NN}}}=200$ GeV at the Relativistic Heavy Ion Collider. The data were collected by the PHENIX experiment in 2014 and 2016 with integrated luminosity of 14.5~nb$^{-1}$. The second Fourier coefficient ($v_2$) of the azimuthal distribution of $J/\psi$ is determined as a function of the transverse momentum ($p_T$) using the event-plane method. The measurements were performed for several selections of collision centrality: 0\%--50\%, 10\%--60\%, and 10\%-40\%. We find that in all cases the values of $v_2(p_T)$, which quantify the elliptic flow of J$/\psi$, are consistent with zero. The results are consistent with measurements at midrapidity, indicating no significant elliptic flow of the J$/\psi$ within the quark-gluon-plasma medium at collision energies of $\sqrt{s_{_{NN}}}=200$ GeV., Comment: 369 authors from 72 institutions, 12 pages, 7 figures, 5 tables. v1 is version submitted to Physical Review C. HEPdata tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.html
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.