de Crombrugghe, Pauline, Santos, Cristiane Nascimento, Hong, Yuanzhuo, Mohapatra, Sambit, K., Watanabe, T., Taniguchi, Lampin, Jean-Francois, Ribeiro, Rebeca, Nysten, Bernard, Hackens, Benoit, Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), National Institute for Materials Science (NIMS), Photonique THz - IEMN (PHOTONIQUE THZ - IEMN), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Department of Computer Science [York] (CS-YORK), University of York [York, UK], Laboratoire national des champs magnétiques intenses - Toulouse (LNCMI-T), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Institut de la matière condensée et des nanosciences / Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain = Catholic University of Louvain (UCL), no information, and PCMP CHOP
poster; International audience; Twisting graphene-based heterostructures results in local atomic reconstructions which have large consequences in terms of local and global electronic and optical properties [1]. At small twist angle, the moiré superstructure relaxes by forming domains with homogeneous atomic ordering, separated by domain walls (DWs), which play a major role in the observed local and global properties. In addition, other DWs can be observed, called solitons, analogous to dislocations in the crystal [2-4]. Topologically protected edge channels in the valley quantum Hall regime have been observed at the edge of such DWs in bilayer graphene [2]. In this study, we have characterized the DWs superlattices in twisted double bilayer graphene at very small twist angle by piezoresponse force microscopy (PFM) and scattering-type scanning near-field optical microscopy (s- SNOM) in the mid-infrared range (9 µm - 10.6 µm). These two techniques provide complementary information. PFM imaging (Fig. 1a) mainly reveals a contrast related to DWs, via flexoelectric effects, bond tensions and atomic orbital alterations. SNOM imaging (Fig. 1b) provides information on local optical conductivity changes within the domains (corresponding to different local stacking) and to the generation of plasmons launched by the tip and reflected at the walls. We also observe solitons that can be manipulated (moved, wiped out) via the action of the tip.