210 results on '"Haagmans, B.L."'
Search Results
2. SARS-CoV-2 (B1.1.529) Omicron variant: what has changed in the nose?
- Author
-
Ciurkiewicz, M., primary, Armando, F., additional, Beythien, G., additional, Allnoch, L., additional, Heydemann, L., additional, Rosiak, M., additional, Becker, S., additional, Kaiser, F.K., additional, Gonzalez-Hernandez, M., additional, Lamers, M.M., additional, Haagmans, B.L., additional, Guilfoyle, K., additional, van Amerongen, G., additional, Osterhaus, A.D.M.E., additional, and Baumgärtner, W., additional
- Published
- 2023
- Full Text
- View/download PDF
3. The impact of BNT162b2 mRNA vaccine on adaptive and innate immune responses
- Author
-
Föhse, F.K., Geckin, B., Zoodsma, M., Kilic, G., Liu, Zhaoli, Röring, R.J., Overheul, G.J., Maat, J.S. van de, Bulut, Ö, Hoogerwerf, J.J., Oever, J. ten, Simonetti, E.R., Schaal, H., Adams, O., Muller, L., Ostermann, P.N., Veerdonk, F.L. van de, Joosten, L.A.B., Haagmans, B.L., Crevel, R. van, Rij, R.P. van, GeurtsvanKessel, Corine H., Jonge, M.I. de, Li, Y., Dominguez Andres, J., Netea, M.G., Föhse, F.K., Geckin, B., Zoodsma, M., Kilic, G., Liu, Zhaoli, Röring, R.J., Overheul, G.J., Maat, J.S. van de, Bulut, Ö, Hoogerwerf, J.J., Oever, J. ten, Simonetti, E.R., Schaal, H., Adams, O., Muller, L., Ostermann, P.N., Veerdonk, F.L. van de, Joosten, L.A.B., Haagmans, B.L., Crevel, R. van, Rij, R.P. van, GeurtsvanKessel, Corine H., Jonge, M.I. de, Li, Y., Dominguez Andres, J., and Netea, M.G.
- Abstract
Contains fulltext : 297155.pdf (Publisher’s version ) (Open Access)
- Published
- 2023
4. The Pathology and Pathogenesis of Experimental Severe Acute Respiratory Syndrome and Influenza in Animal Models
- Author
-
van den Brand, J.M.A., Haagmans, B.L., van Riel, D., Osterhaus, A.D.M.E., and Kuiken, T.
- Published
- 2014
- Full Text
- View/download PDF
5. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2
- Author
-
Gorbalenya, A.E., Baker, S.C., Baric, R.S., Groot, R.J. de, Drosten, C., Gulyaeva, A.A., Haagmans, B.L., Lauber, C., Leontovich, A.M., Neuman, B.W., Penzar, D., Perlman, S., Poon, L.L.M., Samborskiy, D.V., Sidorov, I.A., Sola, I., Ziebuhr, J., Coronaviridae Study Grp, European Commission, German Research Foundation, and Virology
- Subjects
Microbiology (medical) ,Coronaviridae ,Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ,viruses ,Immunology ,Diseases ,Nidovirales ,medicine.disease_cause ,Applied Microbiology and Biotechnology ,Microbiology ,Applied microbiology ,03 medical and health sciences ,0302 clinical medicine ,Virology ,medicine ,Genetics ,Respiratory system ,Taxonomy ,030304 developmental biology ,Coronavirus ,0303 health sciences ,biology ,fungi ,virus diseases ,Biodiversity ,Cell Biology ,biology.organism_classification ,3. Good health ,030220 oncology & carcinogenesis ,Viruses - Abstract
Versión preprint diponible en BioRxiv (doi: 10.1101/2020.02.07.937862) http://hdl.handle.net/10261/212994, The present outbreak of a coronavirus-associated acute respiratory disease called coronavirus disease 19 (COVID-19) is the third documented spillover of an animal coronavirus to humans in only two decades that has resulted in a major epidemic. The Coronaviridae Study Group (CSG) of the International Committee on Taxonomy of Viruses, which is responsible for developing the classification of viruses and taxon nomenclature of the family Coronaviridae, has assessed the placement of the human pathogen, tentatively named 2019-nCoV, within the Coronaviridae. Based on phylogeny, taxonomy and established practice, the CSG recognizes this virus as forming a sister clade to the prototype human and bat severe acute respiratory syndrome coronaviruses (SARS-CoVs) of the species Severe acute respiratory syndrome-related coronavirus, and designates it as SARS-CoV-2. In order to facilitate communication, the CSG proposes to use the following naming convention for individual isolates: SARS-CoV-2/host/location/isolate/date. While the full spectrum of clinical manifestations associated with SARS-CoV-2 infections in humans remains to be determined, the independent zoonotic transmission of SARS-CoV and SARS-CoV-2 highlights the need for studying viruses at the species level to complement research focused on individual pathogenic viruses of immediate significance. This will improve our understanding of virus–host interactions in an ever-changing environment and enhance our preparedness for future outbreaks., Work on DEmARC advancement and coronavirus and nidovirus taxonomies was supported by the EU Horizon 2020 EVAg 653316 project and the LUMC MoBiLe program (to A.E.G.), and on coronavirus and nidovirus taxonomies by a Mercator Fellowship by the Deutsche Forschungsgemeinschaft (to A.E.G.) in the context of the SFB1021 (A01 to J.Z.).
- Published
- 2020
- Full Text
- View/download PDF
6. Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection
- Author
-
Brouwer, P.J.M. (Philip J.M.), Brinkkemper, M. (Mitch), Maisonnasse, P. (Pauline), Dereuddre-Bosquet, N. (Nathalie), Grobben, M. (Marloes), Claireaux, M. (Mathieu), de Gast, M. (Marlon), Marlin, R. (Romain), Chesnais, V. (Virginie), Diry, S. (Ségolène), Allen, J.D. (Joel D.), Watanabe, Y. (Yasunori), Giezen, J.M. (Julia M.), Kerster, G. (Gius), Turner, H.L. (Hannah L.), van der Straten, K. (Karlijn), van der Linden, C.A. (Cynthia A.), Aldon, Y. (Yoann), Naninck, T. (Thibaut), Bontjer, I. (Ilja), Burger, J.A. (Judith A.), Poniman, M. (Meliawati), Mykytyn, A.Z. (Anna Z.), Okba, N.M.A. (Nisreen), Schermer, E.E. (Edith E.), Breemen, M.J. (Mariëlle) van, Ravichandran, R. (Rashmi), Caniels, T.G. (Tom G.), van Schooten, J. (Jelle), Kahlaoui, N. (Nidhal), Contreras, V. (Vanessa), Lemaître, J. (Julien), Chapon, C. (Catherine), Fang, R.H.T. (Raphaël Ho Tsong), Villaudy, J. (Julien), Sliepen, K. (Kwinten), van der Velden, Y.U. (Yme U.), Haagmans, B.L. (Bart), de Bree, G.J. (Godelieve J.), Ginoux, E. (Eric), Ward, A.B. (Andrew B.), Crispin, M. (Max), King, N.P. (Neil P.), Werf, S. (Sylvie) van der, van Gils, M.J. (Marit J.), Le Grand, R. (Roger), Sanders, R.W. (Rogier W.), Brouwer, P.J.M. (Philip J.M.), Brinkkemper, M. (Mitch), Maisonnasse, P. (Pauline), Dereuddre-Bosquet, N. (Nathalie), Grobben, M. (Marloes), Claireaux, M. (Mathieu), de Gast, M. (Marlon), Marlin, R. (Romain), Chesnais, V. (Virginie), Diry, S. (Ségolène), Allen, J.D. (Joel D.), Watanabe, Y. (Yasunori), Giezen, J.M. (Julia M.), Kerster, G. (Gius), Turner, H.L. (Hannah L.), van der Straten, K. (Karlijn), van der Linden, C.A. (Cynthia A.), Aldon, Y. (Yoann), Naninck, T. (Thibaut), Bontjer, I. (Ilja), Burger, J.A. (Judith A.), Poniman, M. (Meliawati), Mykytyn, A.Z. (Anna Z.), Okba, N.M.A. (Nisreen), Schermer, E.E. (Edith E.), Breemen, M.J. (Mariëlle) van, Ravichandran, R. (Rashmi), Caniels, T.G. (Tom G.), van Schooten, J. (Jelle), Kahlaoui, N. (Nidhal), Contreras, V. (Vanessa), Lemaître, J. (Julien), Chapon, C. (Catherine), Fang, R.H.T. (Raphaël Ho Tsong), Villaudy, J. (Julien), Sliepen, K. (Kwinten), van der Velden, Y.U. (Yme U.), Haagmans, B.L. (Bart), de Bree, G.J. (Godelieve J.), Ginoux, E. (Eric), Ward, A.B. (Andrew B.), Crispin, M. (Max), King, N.P. (Neil P.), Werf, S. (Sylvie) van der, van Gils, M.J. (Marit J.), Le Grand, R. (Roger), and Sanders, R.W. (Rogier W.)
- Abstract
Brouwer et al. present preclinical evidence in support of a COVID-19 vaccine candidate, designed as a self-assembling two-component protein nanoparticle displaying multiple copies of the SARS-CoV-2 spike protein, which induces strong neutralizing antibody responses and protects from high-dose SARS-CoV-2 challenge.The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is continuing to disrupt personal lives, global healthcare systems, and economies. Hence, there is an urgent need for a vaccine that prevents viral infection, transmission, and disease. Here, we present a two-component protein-based nanoparticle vaccine that displays multiple copies of the SARS-CoV-2 spike protein. Immunization studies show that this vaccine induces potent neutralizing antibody responses in mice, rabbits, and cynomolgus macaques. The vaccine-induced immunity protects macaques against a high-dose challenge, resulting in strongly reduced viral infection and replication in
- Published
- 2021
- Full Text
- View/download PDF
7. Sars-cov-2 entry into human airway organoids is serine protease-mediated and facilitated by the multibasic cleavage site
- Author
-
Mykytyn, A.Z. (Anna Z.), Breugem, T.I. (Tim I.), Riesebosch, S. (Samra), Schipper, D. (Debby), Doel, P. (Petra) van den, Rottier, R.J. (Robbert), Lamers, M.M. (Mart M.), Haagmans, B.L. (Bart), Mykytyn, A.Z. (Anna Z.), Breugem, T.I. (Tim I.), Riesebosch, S. (Samra), Schipper, D. (Debby), Doel, P. (Petra) van den, Rottier, R.J. (Robbert), Lamers, M.M. (Mart M.), and Haagmans, B.L. (Bart)
- Abstract
Coronavirus entry is mediated by the spike protein that binds the receptor and mediates fusion after cleavage by host proteases. The proteases that mediate entry differ between cell lines, and it is currently unclear which proteases are relevant in vivo. A remarkable feature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is the presence of a multibasic cleavage site (MBCS), which is absent in the SARS-CoV spike. Here, we report that the SARS-CoV-2 spike MBCS increases infectivity on human airway organoids (hAOs). Compared with SARS-CoV, SARS-CoV-2 entered faster into Calu-3 cells and, more frequently, formed syncytia in hAOs. Moreover, the MBCS increased entry speed and plasma membrane serine protease usage relative to cathepsin-mediated endosomal entry. Blocking serine proteases, but not cathepsins, effectively inhibited SARS-CoV-2 entry and replication in hAOs. Our findings demonstrate that SARS-CoV-2 enters relevant airway cells using serine proteases, and suggest that the MBCS is an adaptation to this viral entry strategy.
- Published
- 2021
- Full Text
- View/download PDF
8. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19)
- Author
-
Kampen, J.J.A. (Jeroen) van, Vijver, D.A.M.C. (David) van de, Fraaij, P.L.A. (Pieter), Haagmans, B.L. (Bart), Lamers, M.M. (Mart M.), Okba, N.M.A. (Nisreen), Van Den Akker, J.P.C., Endeman, H. (Henrik), Gommers, D.A.M.P.J. (Diederik), Cornelissen, J.J. (Jan), Hoek, R.A.S. (Rogier), Eerden, M. (Menno) van der, Hesselink, D.A. (Dennis), Metselaar, H.J. (Herold), Verbon, A. (Annelies), Steenwinkel, J.E.M. (Jurriaan) de, Aron, G.I. (Georgina), Gorp, E.C.M. (Eric) van, Boheemen, S. (Sander) van, Voermans, J. (Jolanda), Boucher, C.A.B. (Charles), Molenkamp, R. (Richard), Koopmans D.V.M., M.P.G. (Marion), Geurts van Kessel, C.H. (Corine), Eijck, A.A. (Annemiek), Kampen, J.J.A. (Jeroen) van, Vijver, D.A.M.C. (David) van de, Fraaij, P.L.A. (Pieter), Haagmans, B.L. (Bart), Lamers, M.M. (Mart M.), Okba, N.M.A. (Nisreen), Van Den Akker, J.P.C., Endeman, H. (Henrik), Gommers, D.A.M.P.J. (Diederik), Cornelissen, J.J. (Jan), Hoek, R.A.S. (Rogier), Eerden, M. (Menno) van der, Hesselink, D.A. (Dennis), Metselaar, H.J. (Herold), Verbon, A. (Annelies), Steenwinkel, J.E.M. (Jurriaan) de, Aron, G.I. (Georgina), Gorp, E.C.M. (Eric) van, Boheemen, S. (Sander) van, Voermans, J. (Jolanda), Boucher, C.A.B. (Charles), Molenkamp, R. (Richard), Koopmans D.V.M., M.P.G. (Marion), Geurts van Kessel, C.H. (Corine), and Eijck, A.A. (Annemiek)
- Abstract
Key questions in COVID-19 are the duration and determinants of infectious virus shedding. Here, we report that infectious virus shedding is detected by virus cultures in 23 of the 129 patients (17.8%) hospitalized with COVID-19. The median duration of shedding infectious virus is 8 days post onset of symptoms (IQR 5–11) and drops below 5% after 15.2 days post onset of symptoms (95% confidence interval (CI) 13.4–17.2). Multivariate analyses identify viral loads above 7 log10 RNA copies/mL (odds ratio [OR] of 14.7 (CI 3.57-58.1; p < 0.001) as independently associated with isolation of infectious SARS-CoV-2 from the respiratory tract. A serum neutralizing antibody titre of at least 1:20 (OR of 0.01 (CI 0.003-0.08; p < 0.001) is independently associated with non-infectious SARS-CoV-2. We conclude that quantitative viral RNA load assays and serological assays could be used in test-based strategies to discontinue or de-escalate infection prevention and control precautions.
- Published
- 2021
- Full Text
- View/download PDF
9. An organoid-derived bronchioalveolar model for SARS-CoV-2 infection of human alveolar type II-like cells
- Author
-
Lamers, M.M. (Mart M.), van der Vaart, J. (Jelte), Knoops, K. (Kèvin), Riesebosch, S. (Samra), Breugem, T.I. (Tim I), Mykytyn, A.Z. (Anna Z), Beumer, J. (Joep), Schipper, D. (Debby), Bezstarosti, K. (Karel), Koopman, C.D. (Charlotte D), Groen, N. (Nathalie), Ravelli, R.B.G. (Raimond B.), Duimel, H.Q. (Hans Q), Demmers, J.A.A. (Jeroen), Verjans, G.M.G.M. (George), Koopmans D.V.M., M.P.G. (Marion), Muraro, M.J. (Mauro J), Peters, P.J. (Peter J), Clevers, H.C. (Hans), Haagmans, B.L. (Bart), Lamers, M.M. (Mart M.), van der Vaart, J. (Jelte), Knoops, K. (Kèvin), Riesebosch, S. (Samra), Breugem, T.I. (Tim I), Mykytyn, A.Z. (Anna Z), Beumer, J. (Joep), Schipper, D. (Debby), Bezstarosti, K. (Karel), Koopman, C.D. (Charlotte D), Groen, N. (Nathalie), Ravelli, R.B.G. (Raimond B.), Duimel, H.Q. (Hans Q), Demmers, J.A.A. (Jeroen), Verjans, G.M.G.M. (George), Koopmans D.V.M., M.P.G. (Marion), Muraro, M.J. (Mauro J), Peters, P.J. (Peter J), Clevers, H.C. (Hans), and Haagmans, B.L. (Bart)
- Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which may result in acute respiratory distress syndrome (ARDS), multiorga
- Published
- 2021
- Full Text
- View/download PDF
10. ALT and viral load decline during PEG-IFN alpha-2b treatment for HBeAg-positive chronic hepatitis B
- Author
-
ter Borg, M.J., Hansen, B.E., Bigot, G., Haagmans, B.L., and Janssen, H.L.A.
- Published
- 2008
- Full Text
- View/download PDF
11. Development of immunohistochemistry and in situ hybridisation for the detection of SARS-CoV and SARS-CoV-2 in formalin-fixed paraffin-embedded specimens
- Author
-
Lean, F.Z.X. (Fabian Z X), Lamers, M.M. (Mart M.), Smith, S.P. (Samuel P.), Shipley, R. (Rebecca), Schipper, D. (Debby), Temperton, N. (Nigel), Haagmans, B.L. (Bart), Banyard, A. (Ashley), Bewley, K.R. (Kevin R.), Carroll, M.W. (Miles W.), Brookes, S.M. (Sharon M.), Brown, I.H. (Ian), Nuñez, A. (Alejandro), Lean, F.Z.X. (Fabian Z X), Lamers, M.M. (Mart M.), Smith, S.P. (Samuel P.), Shipley, R. (Rebecca), Schipper, D. (Debby), Temperton, N. (Nigel), Haagmans, B.L. (Bart), Banyard, A. (Ashley), Bewley, K.R. (Kevin R.), Carroll, M.W. (Miles W.), Brookes, S.M. (Sharon M.), Brown, I.H. (Ian), and Nuñez, A. (Alejandro)
- Abstract
The rapid emergence of SARS-CoV-2, the causative agent of COVID-19, and its dissemination globally has caused an unprecedented strain on public health. Animal models are urgently being developed for SARS-CoV-2 to aid rational design of vaccines and therapeutics. Immunohistochemistry and in situ hybridisation techniques that facilitate reliable and reproducible detection of SARS-CoV and SARS-CoV-2 viral products in formalin-fixed paraffin-embedded (FFPE) specimens
- Published
- 2020
- Full Text
- View/download PDF
12. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome
- Author
-
Weiskopf, D., Schmitz, K.S., Raadsen, M.P., Grifoni, A., Okba, N.M.A. (Nisreen), Endeman, H., Akker, J.P. (Johannes) van den, Molenkamp, R., Koopmans D.V.M., M.P.G. (Marion), Gorp, E.C.M. (Eric) van, Haagmans, B.L. (Bart), Swart, R.L. (Rik) de, Sette, A. (Alessandro), Vries, R. (René) de, Weiskopf, D., Schmitz, K.S., Raadsen, M.P., Grifoni, A., Okba, N.M.A. (Nisreen), Endeman, H., Akker, J.P. (Johannes) van den, Molenkamp, R., Koopmans D.V.M., M.P.G. (Marion), Gorp, E.C.M. (Eric) van, Haagmans, B.L. (Bart), Swart, R.L. (Rik) de, Sette, A. (Alessandro), and Vries, R. (René) de
- Published
- 2020
- Full Text
- View/download PDF
13. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2
- Author
-
Gorbalenya, A.E. (Alexander), Baker, S.C. (Susan), Baric, RS, Groot, R. (Raoul) de, Drosten, C. (Christian), Gulyaeva, A.A., Haagmans, B.L. (Bart), Lauber, C. (Chris), Leontovich, A.M., Neuman, B.W., Penzar, D., Perlman, S. (Stanley), Poon, L.L.M. (Leo), Samborskiy, D.V., Sidorov, I.A., Sola, I., Ziebuhr, J. (John), Gorbalenya, A.E. (Alexander), Baker, S.C. (Susan), Baric, RS, Groot, R. (Raoul) de, Drosten, C. (Christian), Gulyaeva, A.A., Haagmans, B.L. (Bart), Lauber, C. (Chris), Leontovich, A.M., Neuman, B.W., Penzar, D., Perlman, S. (Stanley), Poon, L.L.M. (Leo), Samborskiy, D.V., Sidorov, I.A., Sola, I., and Ziebuhr, J. (John)
- Published
- 2020
- Full Text
- View/download PDF
14. SARS-CoV-2 productively infects human gut enterocytes
- Author
-
Lamers, M.M. (Mart M.), Beumer, J. (Joep), van der Vaart, J. (Jelte), Knoops, K. (Kèvin), Puschhof, J. (Jens), Breugem, T.I. (Tim I.), Ravelli, R.B.G. (Raimond B.), Paul van Schayck, J. (J.), Mykytyn, A.Z. (Anna Z.), Duimel, H.Q. (Hans Q.), van Donselaar, E. (Elly), Riesebosch, S. (Samra), Kuijpers, H.J.H. (Helma J H), Schipper, D. (Debby), van de Wetering, W.J. (Willine J.), Graaf, M. (Miranda) de, Koopmans D.V.M., M.P.G. (Marion), Cuppen, E. (Edwin), Peters, P.J. (Peter J.), Haagmans, B.L. (Bart), Clevers, H.C. (Hans), Lamers, M.M. (Mart M.), Beumer, J. (Joep), van der Vaart, J. (Jelte), Knoops, K. (Kèvin), Puschhof, J. (Jens), Breugem, T.I. (Tim I.), Ravelli, R.B.G. (Raimond B.), Paul van Schayck, J. (J.), Mykytyn, A.Z. (Anna Z.), Duimel, H.Q. (Hans Q.), van Donselaar, E. (Elly), Riesebosch, S. (Samra), Kuijpers, H.J.H. (Helma J H), Schipper, D. (Debby), van de Wetering, W.J. (Willine J.), Graaf, M. (Miranda) de, Koopmans D.V.M., M.P.G. (Marion), Cuppen, E. (Edwin), Peters, P.J. (Peter J.), Haagmans, B.L. (Bart), and Clevers, H.C. (Hans)
- Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause coronavirus disease 2019 (COVID-19), an influenza-like disease that is primarily thought to infect the lungs with transmission through the respiratory route. However, clinical evidence suggests that the intestine may present another viral target organ. Indeed, the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) is highly expressed on differentiated enterocytes. In human small intestinal organoids (hSIOs), enterocytes were readily infected by SARS-CoV and SARS-CoV-2, as demonstrated by confocal and electron microscopy. Enterocytes produced infectious viral particles, whereas messenger RNA expression analysis of hSIOs revealed induction of a generic viral response program. Therefore, the intestinal epithelium supports SARS-CoV-2 replication, and hSIOs serve as an experimental model for coronavirus infection and biology.
- Published
- 2020
- Full Text
- View/download PDF
15. Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model
- Author
-
Rockx, B. (Barry), Kuiken, T. (Thijs), Herfst, S. (Sander), Bestebroer, T.M. (Theo), Lamers, MM, Munnink, BBO, Meulder, D. (Dennis) de, Amerongen, G. (Geert) van, Brand, J.M.A. (Judith) van den, Okba, N.M.A. (Nisreen), Schipper, D. (Debby), Run, P.R.W.A. (Peter) van, Leijten, L.M.E. (Lonneke), Sikkema, R., Verschoor, E., Verstrepen, B., Bogers, W., Langermans, J, Drosten, C. (Christian), van Vlissingen, M.F., Fouchier, R.A.M. (Ron), Swart, R.L. (Rik) de, Koopmans D.V.M., M.P.G. (Marion), Haagmans, B.L. (Bart), Rockx, B. (Barry), Kuiken, T. (Thijs), Herfst, S. (Sander), Bestebroer, T.M. (Theo), Lamers, MM, Munnink, BBO, Meulder, D. (Dennis) de, Amerongen, G. (Geert) van, Brand, J.M.A. (Judith) van den, Okba, N.M.A. (Nisreen), Schipper, D. (Debby), Run, P.R.W.A. (Peter) van, Leijten, L.M.E. (Lonneke), Sikkema, R., Verschoor, E., Verstrepen, B., Bogers, W., Langermans, J, Drosten, C. (Christian), van Vlissingen, M.F., Fouchier, R.A.M. (Ron), Swart, R.L. (Rik) de, Koopmans D.V.M., M.P.G. (Marion), and Haagmans, B.L. (Bart)
- Published
- 2020
- Full Text
- View/download PDF
16. An evaluation of COVID-19 serological assays informs future diagnostics and exposure assessment
- Author
-
Geurts van Kessel, C.H. (Corine), Okba, N.M.A. (Nisreen), Igloi, Z. (Zsofia), Bogers, S. (Susanne), Embregts, C.W.E. (Carmen W. E.), Laksono, B.M. (Brigitta), Leijten, L.M.E. (Lonneke), Rokx, C. (Casper), Rijnders, B.J.A. (Bart), Rahamat-Langendoen, J. (Janette), Van Den Akker, J.P.C., Kampen, J.J.A. (Jeroen) van, Eijck, A.A. (Annemiek), Binnendijk, R.S. (Rob) van, Haagmans, B.L. (Bart), Koopmans D.V.M., M.P.G. (Marion), Geurts van Kessel, C.H. (Corine), Okba, N.M.A. (Nisreen), Igloi, Z. (Zsofia), Bogers, S. (Susanne), Embregts, C.W.E. (Carmen W. E.), Laksono, B.M. (Brigitta), Leijten, L.M.E. (Lonneke), Rokx, C. (Casper), Rijnders, B.J.A. (Bart), Rahamat-Langendoen, J. (Janette), Van Den Akker, J.P.C., Kampen, J.J.A. (Jeroen) van, Eijck, A.A. (Annemiek), Binnendijk, R.S. (Rob) van, Haagmans, B.L. (Bart), and Koopmans D.V.M., M.P.G. (Marion)
- Abstract
The world is entering a new era of the COVID-19 pandemic in which there is an increasing call for reliable antibody testing. To support decision making on the deployment of serology for either population screening or diagnostics, we present a detailed comparison of serological COVID-19 assays. We show that among the selected assays there is a wide diversity in assay performance in different scenarios and when correlated to virus neutralizing antibodies. The Wantai ELISA detecting total immunoglobulins against the receptor binding domain of SARS CoV-2, has the best overall characteristics to detect functional antibodies in different stages and severity of disease, including the potential to set a cut-off indicating the presence of protective antibodies. The large variety of available serological assays requires proper assay validation before deciding on deployment of assays for specific applications.
- Published
- 2020
- Full Text
- View/download PDF
17. SARS-CoV-2 is transmitted via contact and via the air between ferrets
- Author
-
Richard, M. (Mathilde), Kok, A. (Adinda), Meulder, D. (Dennis) de, Bestebroer, T.M. (Theo), Lamers, M.M. (Mart M.), Okba, N.M.A. (Nisreen), Fentener van Vlissingen, M. (Martje), Rockx, B. (Barry), Haagmans, B.L. (Bart), Koopmans D.V.M., M.P.G. (Marion), Fouchier, R.A.M. (Ron), Herfst, S. (Sander), Richard, M. (Mathilde), Kok, A. (Adinda), Meulder, D. (Dennis) de, Bestebroer, T.M. (Theo), Lamers, M.M. (Mart M.), Okba, N.M.A. (Nisreen), Fentener van Vlissingen, M. (Martje), Rockx, B. (Barry), Haagmans, B.L. (Bart), Koopmans D.V.M., M.P.G. (Marion), Fouchier, R.A.M. (Ron), and Herfst, S. (Sander)
- Abstract
SARS-CoV-2, a coronavirus that emerged in late 2019, has spread rapidly worldwide, and information about the modes of transmission of SARS-CoV-2 among humans is critical to apply appropriate infection control measures and to slow its spread. Here we show that SARS-CoV-2 is transmitted efficiently via direct contact and via the air (via respiratory droplets and/or aerosols) between ferrets, 1 to 3 days and 3 to 7 days after exposure respectively. The pattern of virus shedding in the direct contact and indirect recipient ferrets is similar to that of the inoculated ferrets and infectious virus is isolated from all positive animals, showing that ferrets are productively infected via either route. This study provides experimental evidence of robust transmission of SARS-CoV-2 via the air, supporting the implementation of community-level social distancing measures currently applied in many countries in the world and informing decisions on infection control measures in healthcare settings.
- Published
- 2020
- Full Text
- View/download PDF
18. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development
- Author
-
Kim, E. (Eun), Erdos, G. (Geza), Huang, S. (Shaohua), Kenniston, T. (Tom), Balmert, S.C. (Stephen C.), Carey, C.D. (Cara Donahue), Raj, V.S. (V. Stalin), Epperly, M.W. (Michael W.), Klimstra, W.B. (William B.), Haagmans, B.L. (Bart), Korkmaz, E. (Emrullah), Falo, L.D. (Louis D.), Gambotto, A. (Andrea), Kim, E. (Eun), Erdos, G. (Geza), Huang, S. (Shaohua), Kenniston, T. (Tom), Balmert, S.C. (Stephen C.), Carey, C.D. (Cara Donahue), Raj, V.S. (V. Stalin), Epperly, M.W. (Michael W.), Klimstra, W.B. (William B.), Haagmans, B.L. (Bart), Korkmaz, E. (Emrullah), Falo, L.D. (Louis D.), and Gambotto, A. (Andrea)
- Abstract
Background: Coronaviruses pose a serious threat to global health as evidenced by Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and COVID-19. SARS Coronavirus (SARS-CoV), MERS Coronavirus (MERS-CoV), and the novel coronavirus, previously dubbed 2019-nCoV, and now officially named SARS-CoV-2, are the causative agents of the SARS, MERS, and COVID-19 disease outbreaks, respectively. Safe vaccines that rapidly induce potent and long-lasting virus-specific immune responses against these infectious agents are urgently needed.
- Published
- 2020
- Full Text
- View/download PDF
19. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Seropositive Camel Handlers in Kenya
- Author
-
Kiyong'a, A.N. (Alice N.), Cook, E.A.J. (Elizabeth A J), Okba, N.M.A. (Nisreen), Kivali, V. (Velma), Reusken, C.B.E.M. (Chantal), Haagmans, B.L. (Bart), Fèvre, E.M. (Eric), Kiyong'a, A.N. (Alice N.), Cook, E.A.J. (Elizabeth A J), Okba, N.M.A. (Nisreen), Kivali, V. (Velma), Reusken, C.B.E.M. (Chantal), Haagmans, B.L. (Bart), and Fèvre, E.M. (Eric)
- Abstract
Middle East respiratory syndrome (MERS) is a respiratory disease caused by a zoonotic coronavirus (MERS-CoV). Camel handlers, including slaughterhouse workers and herders, are at risk of acquiring MERS-CoV infections. However, there is limited evidence of infections among camel handlers in Africa. The purpose of this study was to determine the presence of antibodies to MERS-CoV in high-risk groups in Kenya. Sera collected from 93 camel handlers, 58 slaughterhouse workers and 35 camel herders, were screened for MERS-CoV antibodies using ELISA and PRNT. We found four seropositive slaughterhouse workers by PRNT. Risk factors amongst the slaughterhouse workers included being the slaughterman (the person who cuts the throat of the camel) and drinking camel blood. Further research is required to understand the epidemiology of MERS-CoV in Africa in relation to occupational risk, with a need for additional studies on the transmission of MERS-CoV from dromedary camels to humans, seroprevalence and associated risk factors.
- Published
- 2020
- Full Text
- View/download PDF
20. A human monoclonal antibody blocking SARS-CoV-2 infection
- Author
-
Wang, C. (Chunyan), Li, W. (Wentao), Drabek, D.D. (Dubravka), Okba, N.M.A. (Nisreen), Haperen, M.J. (Rien) van, Osterhaus, A.D.M.E. (Albert), Kuppeveld, F.J.M. (Frank ) van, Haagmans, B.L. (Bart), Grosveld, F.G. (Frank), Bosch, B.J. (Berend Jan), Wang, C. (Chunyan), Li, W. (Wentao), Drabek, D.D. (Dubravka), Okba, N.M.A. (Nisreen), Haperen, M.J. (Rien) van, Osterhaus, A.D.M.E. (Albert), Kuppeveld, F.J.M. (Frank ) van, Haagmans, B.L. (Bart), Grosveld, F.G. (Frank), and Bosch, B.J. (Berend Jan)
- Abstract
The emergence of the novel human coronavirus SARS-CoV-2 in Wuhan, China has caused a worldwide epidemic of respiratory disease (COVID-19). Vaccines and targeted therapeutics for treatment of this disease are currently lacking. Here we report a human monoclonal antibody that neutralizes SARS-CoV-2 (and SARS-CoV) in cell culture. This cross-neutralizing antibody targets a communal epitope on these viruses and may offer potential for prevention and treatment of COVID-19.
- Published
- 2020
- Full Text
- View/download PDF
21. Publisher Correction: A human monoclonal antibody blocking SARS-CoV-2 infection (Nature Communications, (2020), 11, 1, (2251), 10.1038/s41467-020-16256-y)
- Author
-
Wang, C. (Chunyan), Li, W. (Wentao), Drabek, D.D. (Dubravka), Okba, N.M.A. (Nisreen), Haperen, M.J. (Rien) van, Osterhaus, A.D.M.E. (Albert), Kuppeveld, F.J.M. (Frank ) van, Haagmans, B.L. (Bart), Grosveld, F.G. (Frank), Bosch, B.J. (Berend Jan), Wang, C. (Chunyan), Li, W. (Wentao), Drabek, D.D. (Dubravka), Okba, N.M.A. (Nisreen), Haperen, M.J. (Rien) van, Osterhaus, A.D.M.E. (Albert), Kuppeveld, F.J.M. (Frank ) van, Haagmans, B.L. (Bart), Grosveld, F.G. (Frank), and Bosch, B.J. (Berend Jan)
- Abstract
The competing interests section of the original article contained an error. In the sentence “A patent application has been filed on 12 March 2020 on monoclonal antibodies targeting SARS-CoV-2 (United Kingdom patent application no. 2003632.3”, the number 2003632 was hyperlinked in error to an irrelevant page. The link has been removed both from the PDF and the HTML version of the article.
- Published
- 2020
- Full Text
- View/download PDF
22. Authors' response: Plenty of coronaviruses but no SARS-CoV-2
- Author
-
Reusken, C.B.E.M. (Chantal), Haagmans, B.L. (Bart), Meijer, A. (Adam), Corman, V.M. (Victor), Papa, A. (Anna), Charrel, R. (Remi), Drosten, C. (Christian), Koopmans D.V.M., M.P.G. (Marion), Reusken, C.B.E.M. (Chantal), Haagmans, B.L. (Bart), Meijer, A. (Adam), Corman, V.M. (Victor), Papa, A. (Anna), Charrel, R. (Remi), Drosten, C. (Christian), and Koopmans D.V.M., M.P.G. (Marion)
- Published
- 2020
- Full Text
- View/download PDF
23. Laboratory readiness and response for novel coronavirus (2019-nCoV) in expert laboratories in 30 EU/EEA countries, January 2020
- Author
-
Reusken, C.B.E.M. (Chantal), Broberg, E. (Eeva), Haagmans, B.L. (Bart), Meijer, A. (Adam), Corman, V.M. (Victor), Papa, A. (Anna), Charrel, R. (Remi), Drosten, C. (Christian), Koopmans, M. (Marion), Leitmeyer, K. (Katrin), On Behalf Of Evd-LabNet And Erli-Net, (), Reusken, C.B.E.M. (Chantal), Broberg, E. (Eeva), Haagmans, B.L. (Bart), Meijer, A. (Adam), Corman, V.M. (Victor), Papa, A. (Anna), Charrel, R. (Remi), Drosten, C. (Christian), Koopmans, M. (Marion), Leitmeyer, K. (Katrin), and On Behalf Of Evd-LabNet And Erli-Net, ()
- Abstract
Timely detection of novel coronavirus (2019-nCoV) infection cases is crucial to interrupt the spread of this virus. We assessed the required expertise and capacity for molecular detection of 2019-nCoV in specialised laboratories in 30 European Union/European Economic Area (EU/EEA) countries. Thirty-eight laboratories in 24 EU/EEA countries had diagnostic tests available by 29 January 2020. A coverage of all EU/EEA countries was expected by mid-February. Availability of primers/probes, positive controls and personnel were main implementation barriers.
- Published
- 2020
- Full Text
- View/download PDF
24. Nieuw van de markt? Coronavirusuitbraak in Wuhan
- Author
-
Haagmans, B.L. (Bart), Timen, A. (Aura), Koopmans D.V.M., M.P.G. (Marion), Haagmans, B.L. (Bart), Timen, A. (Aura), and Koopmans D.V.M., M.P.G. (Marion)
- Published
- 2020
25. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR
- Author
-
Corman, V.M. (Victor), Landt, O., Kaiser, M. (Marco), Molenkamp, R. (Richard), Meijer, A. (Adam), Chu, D.K. (Daniel Kw), Bleicker, T., Brunink, S. (Sebastian), Schneider, J. (Julia), Schmidt, M.L. (Marie Luisa), Mulders, D.G. (Daphne Gjc), Haagmans, B.L. (Bart), Veer, B. (Bas) van der, van den Brink, S. (Sharon), Wijsman, L. (Lisa), Goderski, G. (Gabriel), Romette, J.-L. (Jean-Louis), Ellis, J. (Joanna), Zambon, M.C. (Maria), Peiris, M. (Malik), Goossens, H., Reusken, C.B.E.M. (Chantal), Koopmans D.V.M., M.P.G. (Marion), Drosten, C. (Christian), Corman, V.M. (Victor), Landt, O., Kaiser, M. (Marco), Molenkamp, R. (Richard), Meijer, A. (Adam), Chu, D.K. (Daniel Kw), Bleicker, T., Brunink, S. (Sebastian), Schneider, J. (Julia), Schmidt, M.L. (Marie Luisa), Mulders, D.G. (Daphne Gjc), Haagmans, B.L. (Bart), Veer, B. (Bas) van der, van den Brink, S. (Sharon), Wijsman, L. (Lisa), Goderski, G. (Gabriel), Romette, J.-L. (Jean-Louis), Ellis, J. (Joanna), Zambon, M.C. (Maria), Peiris, M. (Malik), Goossens, H., Reusken, C.B.E.M. (Chantal), Koopmans D.V.M., M.P.G. (Marion), and Drosten, C. (Christian)
- Abstract
BackgroundThe ongoing outbreak of the recently emerged novel coronavirus (2019-nCoV) poses a challenge for public health laboratories as virus isolates are unavailable while there is growing evidence that the outbreak is more widespread than initially thought, and international spread through travellers does already occur.AimWe aimed to develop and deploy robust diagnostic methodology for use in public health laboratory settings without having virus material available.MethodsHere we present a validated diagnostic workflow for 2019-nCoV, its design relying on close genetic relatedness of 2019-nCoV with SARS coronavirus, making use of synthetic nucleic acid technology.ResultsThe workflow reliably detects 2019-nCoV, and further discriminates 2019-nCoV from SARS-CoV. Through coordination between academic and public laboratories, we confirmed assay exclusivity based on 297 original clinical specimens containing a full spectrum of human respiratory viruses. Control material is made available through European Virus Archive - Global (EVAg), a European Union infrastructure project.ConclusionThe present study demonstrates the enormous response capacity achieved through coordination of academic and public laboratories in national and European research networks.
- Published
- 2020
- Full Text
- View/download PDF
26. Virus Specific Immune Responses after Human Neoadjuvant Adenovirus-mediated Suicide Gene Therapy for Prostate Cancer
- Author
-
van der Linden, R.R.M., Haagmans, B.L., Mongiat-Artus, P., van Doornum, G.J., Kraaij, R., Kadmon, D., Aguilar-Cordova, E., Osterhaus, A.D.M.E., van der Kwast, T.H., and Bangma, C.H.
- Published
- 2005
- Full Text
- View/download PDF
27. Machine-learning based patient classification using Hepatitis B virus full-length genome quasispecies from Asian and European cohorts
- Author
-
Mueller-Breckenridge, A.J. (Alan J.), Garcia-Alcalde, F. (Fernando), Wildum, S. (Steffen), Smits, S.L. (Saskia), Man, R.A. (Robert) de, Campenhout, M.J.H. (Margo) van, Brouwer, W.P. (Willem), Niu, J. (Jianjun), Young, J.A.T. (John A T), Najera, I. (Isabel), Zhu, L. (Lina), Wu, D. (Daitze), Racek, T. (Tomas), Hundie, G.B. (Gadissa Bedada), Lin, Y. (Yong), Boucher, C.A.B. (Charles), Vijver, D.A.M.C. (David) van de, Haagmans, B.L. (Bart), Mueller-Breckenridge, A.J. (Alan J.), Garcia-Alcalde, F. (Fernando), Wildum, S. (Steffen), Smits, S.L. (Saskia), Man, R.A. (Robert) de, Campenhout, M.J.H. (Margo) van, Brouwer, W.P. (Willem), Niu, J. (Jianjun), Young, J.A.T. (John A T), Najera, I. (Isabel), Zhu, L. (Lina), Wu, D. (Daitze), Racek, T. (Tomas), Hundie, G.B. (Gadissa Bedada), Lin, Y. (Yong), Boucher, C.A.B. (Charles), Vijver, D.A.M.C. (David) van de, and Haagmans, B.L. (Bart)
- Abstract
Chronic infection with Hepatitis B virus (HBV) is a major risk factor for the development of advanced liver disease including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The relative contribution of virological factors to disease progression has not been fully defined and tools aiding the deconvolution of complex patient virus profiles is an unmet clinical need. Varia
- Published
- 2019
- Full Text
- View/download PDF
28. Blocking transmission of Middle East respiratory syndrome coronavirus (MERS-CoV) in llamas by vaccination with a recombinant spike protein
- Author
-
Rodon, J. (Jordi), Okba, N.M.A. (Nisreen), Te, N. (Nigeer), van Dieren, B. (Brenda), Bosch, B.J. (Berend Jan), Bensaid, A. (Albert), Segalés, J. (Joaquim), Haagmans, B.L. (Bart), Vergara-Alert, J. (Júlia), Rodon, J. (Jordi), Okba, N.M.A. (Nisreen), Te, N. (Nigeer), van Dieren, B. (Brenda), Bosch, B.J. (Berend Jan), Bensaid, A. (Albert), Segalés, J. (Joaquim), Haagmans, B.L. (Bart), and Vergara-Alert, J. (Júlia)
- Abstract
The ongoing Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks pose a worldwide public health threat. Blocking MERS-CoV zoonotic transmission from dromedary camels, the animal reservoir, could potentially reduce the number of primary human cases. Here we report MERS-CoV transmission from experimentally infected llamas to naïve animals. Directly inoculated llamas shed virus for at least 6 days and could infect all in-contact naïve animals 4-5 days after exposure. With the aim to block virus transmission, we examined the efficacy of a recombinant spike S1-protein vaccine. In contrast to naïve animals, in-contact vaccinated llamas did not shed infectious virus upon exposure to directly inoculated llamas, consistent with the induction of strong virus neutralizing antibody responses. Our data provide further evidence that vaccination of the reservoir host may impede MERS-CoV zoonotic transmission to humans.
- Published
- 2019
- Full Text
- View/download PDF
29. ADAR1: 'Editor-in-Chief' of Cytoplasmic Innate Immunity
- Author
-
Lamers, M.M., Hoogen, B.G. (Bernadette) van den, Haagmans, B.L. (Bart), Lamers, M.M., Hoogen, B.G. (Bernadette) van den, and Haagmans, B.L. (Bart)
- Abstract
Specialized receptors that recognize molecular patterns such as double stranded RNA duplexes—indicative of viral replication—are potent triggers of the innate immune system. Although their activation is beneficial during viral infection, RNA transcribed from endogenous mobile genetic elements may also act as ligands potentially causing autoimmunity. Recent advances indicate that the adenosine deaminase ADAR1 through RNA editing is involved in dampening the canonical antiviral RIG-I-like receptor-, PKR-, and OAS-RNAse L pathways to prevent autoimmunity. However, this inhibitory effect must be overcome during viral infections. In this review we discuss ADAR1’s critical role in balancing immune activation and self-tolerance.
- Published
- 2019
- Full Text
- View/download PDF
30. Lack of Middle East Respiratory Syndrome Coronavirus Transmission in Rabbits
- Author
-
Widagdo, W. (Widagdo), Okba, N.M.A., Richard, M., Meulder, D. (Dennis) de, Bestebroer, T.M. (Theo), Lexmond, P. (Pascal), Farag, E, Al-Hajri, M., Stittelaar, K.J. (Koert), de Waal, L., Amerongen, G. (Geert) van, Brand, J.M.A. (Judith) van den, Haagmans, B.L. (Bart), Herfst, S. (Sander), Widagdo, W. (Widagdo), Okba, N.M.A., Richard, M., Meulder, D. (Dennis) de, Bestebroer, T.M. (Theo), Lexmond, P. (Pascal), Farag, E, Al-Hajri, M., Stittelaar, K.J. (Koert), de Waal, L., Amerongen, G. (Geert) van, Brand, J.M.A. (Judith) van den, Haagmans, B.L. (Bart), and Herfst, S. (Sander)
- Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) transmission from dromedaries to humans has resulted in major outbreaks in the Middle East. Although some other livestock animal species have been shown to be susceptible to MERS-CoV, it is not fully understood why the spread of the virus in these animal species has not been observed in the field. In this study, we used rabbits to further characterize the transmission potential of MERS-CoV. In line with the presence of MERS-CoV receptor in the rabbit nasal epithelium, high levels of viral RNA were shed from the nose following virus inoculation. However, unlike MERS-CoV-infected dromedaries, these rabbits did not develop clinical manifestations including nasal discharge and did shed only limited amounts of infectious virus from the nose. Consistently, no transmission by contact or airborne routes was observed in rabbits. Our data indicate that despite relatively high viral RNA levels produced, low levels of infectious virus are excreted in the upper respiratory tract of rabbits as compared to dromedary came
- Published
- 2019
- Full Text
- View/download PDF
31. Host Determinants of MERS-CoV Transmission and Pathogenesis
- Author
-
Widagdo, W., Ayudhya, S.S.N., Hundie, G.B. (Gadissa Bedada), Haagmans, B.L. (Bart), Widagdo, W., Ayudhya, S.S.N., Hundie, G.B. (Gadissa Bedada), and Haagmans, B.L. (Bart)
- Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic pathogen that causes respiratory infection in humans, ranging from asymptomatic to severe pneumonia. In dromedary camels, the virus only causes a mild infection but it spreads efficiently between animals. Differences in the behavior of the virus observed between individuals, as well as between humans and dromedary camels, highlight the role of host factors in MERS-CoV pathogenesis and transmission. One of these host factors, the MERS-CoV receptor dipeptidyl peptidase-4 (DPP4), may be a critical determinant because it is variably expressed in MERS-CoV-susceptible species as well as in humans. This could partially explain inter- and intraspecies differences in the tropism, pathogenesis, and transmissibility of MERS-CoV. In this review, we explore the role of DPP4 and other host factors in MERS-CoV transmission and pathogenesis—such as sialic acids, host proteases, and interferons. Further characterization of these host determinants may potentially offer novel insights to develop intervention strategies to tackle ongoing outbreaks.
- Published
- 2019
- Full Text
- View/download PDF
32. Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein
- Author
-
Widjaja, I., Wang, CY, Haperen, M.J. (Rien) van, Gutierrez-Alvarez, J., van Dieren, B., Okba, N.M.A., Raj, V.S. (Stalin), Li, W.T., Fernandez-Delgado, R., Grosveld, F.G. (Frank), Kuppeveld, F.J.M. (Frank ) van, Haagmans, B.L. (Bart), Enjuanes, L. (Luis), Drabek, D.D. (Dubravka), Bosch, BJ, Widjaja, I., Wang, CY, Haperen, M.J. (Rien) van, Gutierrez-Alvarez, J., van Dieren, B., Okba, N.M.A., Raj, V.S. (Stalin), Li, W.T., Fernandez-Delgado, R., Grosveld, F.G. (Frank), Kuppeveld, F.J.M. (Frank ) van, Haagmans, B.L. (Bart), Enjuanes, L. (Luis), Drabek, D.D. (Dubravka), and Bosch, BJ
- Abstract
The Middle-East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus that causes severe and often fatal respiratory disease in humans. Efforts to develop antibody-based therapies have focused on neutralizing antibodies that target the receptor binding domain of the viral spike protein thereby blocking receptor binding. Here, we developed a set of human monoclonal antibodies that target functionally distinct domains of the MERS-CoV spike protein. These antibodies belong to six distinct epitope groups and interfere with the three critical entry functions of the MERS-CoV spike protein: sialic acid binding, receptor binding and membrane fusion. Passive immunization with potently as well as with poorly neutralizing antibodies protected mice from lethal MERS-CoV challenge. Collectively, these antibodies offer new ways to gain humoral protection in humans against the emerging MERS-CoV by targeting different spike protein epitopes and functions.
- Published
- 2019
- Full Text
- View/download PDF
33. Multihospital Outbreak of a Middle East Respiratory Syndrome Coronavirus Deletion Variant, Jordan: A Molecular, Serologic, and Epidemiologic Investigation
- Author
-
Payne, D.C. (Daniel), Biggs, H.M. (Holly), Al-Abdallat, M.M. (Mohammed Mousa), Alqasrawi, S. (Sultan), Lu, X. (Xiaoyan), Abedi, G.R. (Glen), Haddadin, A. (Aktham), Iblan, I. (Ibrahim), Alsanouri, T. (Tarek), Nsour, M. (Mohannad) al, Sheikh Ali, S. (Sami), Rha, B. (Brian), Trivedi, S.U. (Suvang), Rasheed, M.A. (Mohammed Ata) ur, Tamin, A. (Azaibi), Lamers, M.M. (Mart M.), Haagmans, B.L. (Bart), Erdman, D.D. (Dean), Thornburg, N.J. (Nathalie), Gerber, S.I. (Susan), Payne, D.C. (Daniel), Biggs, H.M. (Holly), Al-Abdallat, M.M. (Mohammed Mousa), Alqasrawi, S. (Sultan), Lu, X. (Xiaoyan), Abedi, G.R. (Glen), Haddadin, A. (Aktham), Iblan, I. (Ibrahim), Alsanouri, T. (Tarek), Nsour, M. (Mohannad) al, Sheikh Ali, S. (Sami), Rha, B. (Brian), Trivedi, S.U. (Suvang), Rasheed, M.A. (Mohammed Ata) ur, Tamin, A. (Azaibi), Lamers, M.M. (Mart M.), Haagmans, B.L. (Bart), Erdman, D.D. (Dean), Thornburg, N.J. (Nathalie), and Gerber, S.I. (Susan)
- Abstract
Background An outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) in Jordan in 2015 involved a variant virus that acquired distinctive deletions in the accessory open reading frames. We conducted a molecular and seroepidemiologic investigation to describe the deletion variant’s transmission patterns and epidemiology. Methods We reviewed epidemiologic and medical chart data and analyzed viral genome sequences from respiratory specimens of MERS-CoV cases. In early 2016, sera and standardized interviews were obtained from MERS-CoV cases and their contacts. Sera were evaluated by nucleocapsid and spike protein enzyme immunoassays and microneutralization. Results Among 16 cases, 11 (69%) had health care exposure and 5 (31%) were relatives of a known case; 13 (81%) were symptomatic, and 7 (44%) died. Genome sequencing of MERS-CoV from 13 cases revealed 3 transmissible deletions associated with clinical illness during the outbreak. Deletion variant sequences were epidemiologically clustered and linked to a common transmission chain. Interviews and sera were collected from 2 surviving cases, 23 household contacts, and 278 health care contacts; 1 (50%) case, 2 (9%) household contacts, and 3 (1%) health care contacts tested seropositive. Conclusions The MERS-CoV deletion variants retained human-to-human transmissibility and caused clinical illness in infected persons despite accumulated mutations. Serology suggested limited transmission beyond that detected during the initial outbreak investigation.
- Published
- 2018
34. Co-localization of Middle East respiratory syndrome coronavirus (MERS-CoV) and dipeptidyl peptidase-4 in the respiratory tract and lymphoid tissues of pigs and llamas
- Author
-
Te, N. (Nigeer), Vergara-Alert, J. (Júlia), Lehmbecker, A. (Annika), Pérez, M. (Mónica), Haagmans, B.L. (Bart), Baumgärtner, V. (Volkmar), Bensaid, A. (Albert), Segalés, J. (Joaquim), Te, N. (Nigeer), Vergara-Alert, J. (Júlia), Lehmbecker, A. (Annika), Pérez, M. (Mónica), Haagmans, B.L. (Bart), Baumgärtner, V. (Volkmar), Bensaid, A. (Albert), and Segalés, J. (Joaquim)
- Abstract
This study investigated the co-localization of the Middle East respiratory syndrome coronavirus (MERS-CoV) and its receptor dipeptidyl peptidase-4 (DPP4) by immunohistochemistry (IHC) across respiratory and lymphoid organs of experimentally MERS-CoV infected pigs and llamas. Also, scanning electron microscopy was performed to assess the ciliary integrity of respiratory epithelial cells in both species. In pigs, on day 2 post-inoculation (p.i.), DPP4-MERS-CoV co-localization was detected in medial turbinate epithelium. On day 4 p.i., the virus/receptor co-localized in frontal and medial turbinate epithelial cells in pigs, and epithelial cells distributed unevenly through the whole nasal cavity and in the cervical lymph node in llamas. MERS-CoV viral nucleocapsid was mainly detected in upper respiratory tract sites on days 2 and 4 p.i. in pigs and day 4 p.i. in llamas. No MERS-CoV was detected on day 24 p.i. in any tissue by IHC. While pigs showed severe ciliary loss in the nasal mucosa both on days 2 and 4 p.i. and moderate loss in the trachea on days 4 and 24 p.i., ciliation of respiratory organs in llamas was not significantly affected. Obtained data confirm the role of DPP4 for MERS-CoV entry in respiratory epithelial cells of llamas. Notably, several nasal epithelial cells in pigs were found to express viral antigen but not DPP4, suggesting the possible existence of other molecule/s facilitating virus entry or down regulation of DPP4 upon infection.
- Published
- 2018
- Full Text
- View/download PDF
35. Experimental infection of dromedaries with Middle East respiratory syndrome-Coronavirus is accompanied by massive ciliary loss and depletion of the cell surface receptor dipeptidyl peptidase
- Author
-
Haverkamp, A.-K. (Ann-Kathrin), Lehmbecker, A. (Annika), Spitzbarth, I. (Ingo), Widagdo, W. (Widagdo), Haagmans, B.L. (Bart), Segalés, J. (Joaquim), Vergara-Alert, J. (Julia), Bensaid, A. (Albert), Brand, J.M.A. (Judith) van den, Osterhaus, A.D.M.E. (Albert), Baumgärtner, V. (Volkmar), Haverkamp, A.-K. (Ann-Kathrin), Lehmbecker, A. (Annika), Spitzbarth, I. (Ingo), Widagdo, W. (Widagdo), Haagmans, B.L. (Bart), Segalés, J. (Joaquim), Vergara-Alert, J. (Julia), Bensaid, A. (Albert), Brand, J.M.A. (Judith) van den, Osterhaus, A.D.M.E. (Albert), and Baumgärtner, V. (Volkmar)
- Abstract
Middle East respiratory syndrome (MERS) represents an important respiratory disease accompanied by lethal outcome in one-third of human patients. Recent data indicate that dromedaries represent an important source of infection, although information regarding viral cell tropism and pathogenesis is sparse. In the current study, tissues of eight dromedaries receiving inoculation of MERS-Coronavirus (MERS-CoV) after recombinant Modified-Vaccinia-Virus-Ankara (MVA-S)-vaccination (n = 4), MVA-vaccination (mock vaccination, n = 2) and PBS application (mock vaccination, n = 2), respectively, were investigated. Tissues were analyzed by histology, immunohistochemistry, immunofluorescence, and scanning electron microscopy. MERS-CoV infection in mock-vaccinated dromedaries revealed high numbers of MERS-CoV-nucleocapsid positive cells, T cells, and macrophages within nasal turbinates and trachea at day four post infection. Double immunolabeling demonstrated cytokeratin (CK) 18 expressing epithelial cells to be the prevailing target cell of MERS-CoV, while CK5/6 and CK14 expressing cells did not co-localize with virus. In addition, virus was occasionally detected in macrophages. The acute disease was further accompanied by ciliary loss along with a lack of dipeptidyl peptidase 4 (DPP4), known to mediate virus entry. DPP4 was mainly expressed by human lymphocytes and dromedary monocytes, but overall the expression level was lower in dromedaries. The present study underlines significant species-specific manifestations of MERS and highlights ciliary loss as an important finding in dromedaries. The obtained results promote a better understanding of coronavirus infections, which pose major health challenges.
- Published
- 2018
- Full Text
- View/download PDF
36. Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels
- Author
-
David, D. (Dan), Rotenberg, D. (Ditza), Khinich, E. (Evgeny), Erster, O. (Oran), Bardenstein, S. (Svetlana), van Straten, M. (Michael), Okba, N.M.A. (Nisreen), Raj, S.V. (Stalin V.), Haagmans, B.L. (Bart), Miculitzki, M. (Marcelo), Davidson, I. (Irit), David, D. (Dan), Rotenberg, D. (Ditza), Khinich, E. (Evgeny), Erster, O. (Oran), Bardenstein, S. (Svetlana), van Straten, M. (Michael), Okba, N.M.A. (Nisreen), Raj, S.V. (Stalin V.), Haagmans, B.L. (Bart), Miculitzki, M. (Marcelo), and Davidson, I. (Irit)
- Abstract
Thus far, no human MERS-CoV infections have been reported from Israel. Evidence for the circulation of MERS-CoV in dromedaries has been reported from almost all the countries of the Middle East, except Israel. Therefore, we aimed to analyze MERS-CoV infection in Israeli camelids, sampled between 2012 and 2017. A total of 411 camels, 102 alpacas and 19 llamas' sera were tested for the presence of antibodies to MERS-CoV. Our findings indicate a lower MERS-CoV seropositivity among Israeli dromedaries than in the surrounding countries, and for the first time naturally infected llamas were identified. In addition, nasal swabs of 661 camels, alpacas and lamas, obtained from January 2015 to December 2017, were tested for the presence of MERS-CoV RNA. All nasal swabs were negative, indicating no evidence for MERS-CoV active circulation in these camelids during that time period.
- Published
- 2018
- Full Text
- View/download PDF
37. Tissue Distribution of the Mers-Coronavirus Receptor in Bats
- Author
-
Widagdo, A., primary, Begeman, L., additional, Schipper, D., additional, van Run, P.R., additional, Cunningham, A.A., additional, Kley, N., additional, Reusken, C.B., additional, Haagmans, B.L., additional, and van den Brand, J.M.A., additional
- Published
- 2018
- Full Text
- View/download PDF
38. Cell Tropism of Middle East Respiratory Syndrome Coronavirus in Experimentally Infected Dromedaries
- Author
-
Lehmbecker, A., primary, Uhde, A.-K., additional, Spitzbarth, I., additional, Wohlsein, P., additional, van den Brand, J., additional, Raj, V., additional, Smits, S.L., additional, Schippers, D., additional, Bestebroer, T.M., additional, Okba, N., additional, Kuiken, T., additional, Bensaid, A., additional, Foz, D. Solanes, additional, Segales, J., additional, Volz, A., additional, Sutter, G., additional, Osterhaus, A.D.M.E., additional, Haagmans, B.L., additional, and Baumgärtner, W., additional
- Published
- 2018
- Full Text
- View/download PDF
39. The Receptor Binding Domain of the New Middle East Respiratory Syndrome Coronavirus Maps to a 231-Residue Region in the Spike Protein That Efficiently Elicits Neutralizing Antibodies
- Author
-
Mou, H., Stalin Raj, V., van Kuppeveld, F.J.M., Rottier, P.J.M., Haagmans, B.L., Bosch, B.J., Strategic Infection Biology, Dep Infectieziekten Immunologie, Faculteit Diergeneeskunde, I&I SIB1, Strategic Infection Biology, Dep Infectieziekten Immunologie, Faculteit Diergeneeskunde, I&I SIB1, Virology, and Medical Oncology
- Subjects
Middle East respiratory syndrome coronavirus ,Dipeptidyl Peptidase 4 ,Immunology ,Coronacrisis-Taverne ,Virus Attachment ,Antibodies, Viral ,medicine.disease_cause ,Microbiology ,Antibodies ,Epitope ,Cell Line ,Epitopes ,03 medical and health sciences ,Viral Envelope Proteins ,Virology ,Receptors ,medicine ,Humans ,Viral ,Binding site ,Receptor ,Neutralizing ,Dipeptidyl peptidase-4 ,030304 developmental biology ,Coronavirus ,0303 health sciences ,Binding Sites ,Membrane Glycoproteins ,biology ,030306 microbiology ,B-Lymphocyte ,Antibodies, Neutralizing ,Molecular biology ,Spike Glycoprotein ,Virus ,Virus-Cell Interactions ,3. Good health ,Cell culture ,Insect Science ,Spike Glycoprotein, Coronavirus ,biology.protein ,Epitopes, B-Lymphocyte ,Receptors, Virus ,Antibody - Abstract
The spike (S) protein of the recently emerged human Middle East respiratory syndrome coronavirus (MERS-CoV) mediates infection by binding to the cellular receptor dipeptidyl peptidase 4 (DPP4). Here we mapped the receptor binding domain in the S protein to a 231-amino-acid fragment (residues 358 to 588) by evaluating the interaction of spike truncation variants with receptor-expressing cells and soluble DPP4. Antibodies to this domain—much less so those to the preceding N-terminal region—efficiently neutralize MERS-CoV infection.
- Published
- 2013
- Full Text
- View/download PDF
40. Phenotypic differences between Asian and African lineage Zika viruses in human neural progenitor cells
- Author
-
Anfasa, F. (Fatih), Siegers, J.Y. (Jurre), Kroeg, M. (Mark) van der, Mumtaz, N. (Noreen), Stalin Raj, V., Vrij, F.M.S. (Femke), Widagdo, W. (Widagdo), Gabriel, G. (Gülsah), Salinas, S. (Sara), Simonin, Y. (Yannick), Reusken, C.B.E.M. (Chantal), Kushner, S.A. (Steven), Koopmans D.V.M., M.P.G. (Marion), Haagmans, B.L. (Bart), Martina, B.E.E. (Byron), Riel, D.A.J. (Debby) van, Anfasa, F. (Fatih), Siegers, J.Y. (Jurre), Kroeg, M. (Mark) van der, Mumtaz, N. (Noreen), Stalin Raj, V., Vrij, F.M.S. (Femke), Widagdo, W. (Widagdo), Gabriel, G. (Gülsah), Salinas, S. (Sara), Simonin, Y. (Yannick), Reusken, C.B.E.M. (Chantal), Kushner, S.A. (Steven), Koopmans D.V.M., M.P.G. (Marion), Haagmans, B.L. (Bart), Martina, B.E.E. (Byron), and Riel, D.A.J. (Debby) van
- Abstract
Recent Zika virus (ZIKV) infections have been associated with a range of neurological complications, in particular congenital microcephaly. Human neural progenitor cells (hNPCs) are thought to play an important role in the pathogenesis of microcephaly, and experimental ZIKV infection of hNPCs has been shown to induce cell death. However, the infection efficiency and rate of cell death have varied between studies, which might be related to intrinsic differences between African and Asian lineage ZIKV strains. Therefore, we determined the replication kinetics, including infection efficiency, burst size, and ability to induce cell death, of two Asian and two African ZIKV strains. African ZIKV strains replicated to higher titers in Vero cells, human glioblastoma (U87MG) cells, human neuroblastoma (SK-N-SH) cells, and hNPCs than Asian ZIKV strains. Furthermore, infection with Asian ZIKV strains did not result in significant cell death early after infection, whereas infection with African ZIKV strains resulted in high percentages of cell death in hNPCs. The differences between African and Asian lineage ZIKV strains highlight the importance of including relevant ZIKV strains to study the pathogenesis of congenital microcephaly and caution against extrapolation of experimental data obtained using historical African ZIKV strains to the current outbreak. Finally, the fact that Asian ZIKV strains infect only a minority of cells with a relatively low burst size together with the lack of early cell death induction might contribute to its ability to cause chronic infections within the central nervous system (CNS).
- Published
- 2017
- Full Text
- View/download PDF
41. Virus genomes reveal factors that spread and sustained the Ebola epidemic
- Author
-
Dudas, G. (Gytis), Carvalho, L.M. (Luiz Max), Bedford, T. (Trevor), Tatem, A.J. (Andrew J.), Baele, G. (Guy), Faria, R. (Rui), Park, D.J. (Daniel J.), Ladner, J.T. (Jason T.), Arias, A., Asogun, D. (Danny), Bielejec, F. (Filip), Caddy, S.L., Cotten, M. (Matthew), D'Ambrozio, J. (Jonathan), Dellicour, S. (Simon), Di Caro, A. (Antonino), Diclaro, J.W. (Joseph W.), Duraffour, S. (Sophie), Elmore, M.J. (Michael J.), Fakoli, L.S. (Lawrence S.), Faye, O. (Ousmane), Gilbert, M.L. (Merle L.), Gevao, S.M. (Sahr M.), Gire, S. (Stephen), Gladden-Young, A. (Adrianne), Gnirke, A. (Andreas), Goba, A. (Augustine), Grant, D.S. (Donald S.), Haagmans, B.L. (Bart), Hiscox, J.A. (Julian A.), Jah, U., Kugelman, J.R. (Jeffrey R.), Liu, D. (Di), Lu, J. (Jia), Malboeuf, C.M. (Christine M.), Mate, S. (Suzanne), Matthews, D.A. (David A.), Matranga, C.B. (Christian B.), Meredith, L.W. (Luke W.), Qu, J. (James), Quick, J. (Joshua), Pas, S.D. (Suzan), Phan, M.V.T. (My V. T.), Pollakis, G. (G.), Reusken, C.B.E.M. (Chantal), Sanchez-Lockhart, M. (Mariano), Schaffner, S.F. (Stephen F.), Schieffelin, J.S. (John S.), Sealfon, R.S. (Rachel S.), Simon-Loriere, E. (Etienne), Smits, S.L. (Saskia), Stoecker, K. (Kilian), Thorne, L. (Lucy), Tobin, E.A. (Ekaete Alice), Vandi, M.A. (Mohamed A.), Watson, S.J. (Simon J.), West, K. (Kendra), Whitmer, S. (Shannon), Wiley, M.R. (Michael R.), Winnicki, S.M. (Sarah M.), Wohl, S. (Shirlee), Wölfel, R. (Roman), Yozwiak, N.L. (Nathan L.), Andersen, K.G. (Kristian G.), Blyden, S.O. (Sylvia O.), Bolay, F. (Fatorma), Carroll, M.W. (Miles W.), Dahn, B. (Bernice), Diallo, B. (Boubacar), Formenty, P. (Pierre), Fraser, C. (Christophe), Gao, G.F. (George F.), Garry, R.F. (Robert F.), Goodfellow, I. (Ian), Günther, S. (Stephan), Happi, C.T. (Christian T.), Holmes, E.C. (Edward C.), Kargbo, B. (Brima), Keïta, S. (Sakoba), Kellam, P. (Paul), Koopmans D.V.M., M.P.G. (Marion), Kuhn, J.H. (Jens H.), Loman, N.J. (Nicholas J.), Magassouba, N. (N'Faly), Naidoo, D. (Dhamari), Nichol, S.T. (Stuart T.), Nyenswah, T. (Tolbert), Palacios, G. (Gustavo), Pybus, O. (Oliver), Sabeti, P.C. (Pardis C.), Sall, A. (Amadou), Ströher, U. (Ute), Wurie, I., Suchard, M.A. (Marc), Lemey, P. (Philippe), Rambaut, A. (Andrew), Dudas, G. (Gytis), Carvalho, L.M. (Luiz Max), Bedford, T. (Trevor), Tatem, A.J. (Andrew J.), Baele, G. (Guy), Faria, R. (Rui), Park, D.J. (Daniel J.), Ladner, J.T. (Jason T.), Arias, A., Asogun, D. (Danny), Bielejec, F. (Filip), Caddy, S.L., Cotten, M. (Matthew), D'Ambrozio, J. (Jonathan), Dellicour, S. (Simon), Di Caro, A. (Antonino), Diclaro, J.W. (Joseph W.), Duraffour, S. (Sophie), Elmore, M.J. (Michael J.), Fakoli, L.S. (Lawrence S.), Faye, O. (Ousmane), Gilbert, M.L. (Merle L.), Gevao, S.M. (Sahr M.), Gire, S. (Stephen), Gladden-Young, A. (Adrianne), Gnirke, A. (Andreas), Goba, A. (Augustine), Grant, D.S. (Donald S.), Haagmans, B.L. (Bart), Hiscox, J.A. (Julian A.), Jah, U., Kugelman, J.R. (Jeffrey R.), Liu, D. (Di), Lu, J. (Jia), Malboeuf, C.M. (Christine M.), Mate, S. (Suzanne), Matthews, D.A. (David A.), Matranga, C.B. (Christian B.), Meredith, L.W. (Luke W.), Qu, J. (James), Quick, J. (Joshua), Pas, S.D. (Suzan), Phan, M.V.T. (My V. T.), Pollakis, G. (G.), Reusken, C.B.E.M. (Chantal), Sanchez-Lockhart, M. (Mariano), Schaffner, S.F. (Stephen F.), Schieffelin, J.S. (John S.), Sealfon, R.S. (Rachel S.), Simon-Loriere, E. (Etienne), Smits, S.L. (Saskia), Stoecker, K. (Kilian), Thorne, L. (Lucy), Tobin, E.A. (Ekaete Alice), Vandi, M.A. (Mohamed A.), Watson, S.J. (Simon J.), West, K. (Kendra), Whitmer, S. (Shannon), Wiley, M.R. (Michael R.), Winnicki, S.M. (Sarah M.), Wohl, S. (Shirlee), Wölfel, R. (Roman), Yozwiak, N.L. (Nathan L.), Andersen, K.G. (Kristian G.), Blyden, S.O. (Sylvia O.), Bolay, F. (Fatorma), Carroll, M.W. (Miles W.), Dahn, B. (Bernice), Diallo, B. (Boubacar), Formenty, P. (Pierre), Fraser, C. (Christophe), Gao, G.F. (George F.), Garry, R.F. (Robert F.), Goodfellow, I. (Ian), Günther, S. (Stephan), Happi, C.T. (Christian T.), Holmes, E.C. (Edward C.), Kargbo, B. (Brima), Keïta, S. (Sakoba), Kellam, P. (Paul), Koopmans D.V.M., M.P.G. (Marion), Kuhn, J.H. (Jens H.), Loman, N.J. (Nicholas J.), Magassouba, N. (N'Faly), Naidoo, D. (Dhamari), Nichol, S.T. (Stuart T.), Nyenswah, T. (Tolbert), Palacios, G. (Gustavo), Pybus, O. (Oliver), Sabeti, P.C. (Pardis C.), Sall, A. (Amadou), Ströher, U. (Ute), Wurie, I., Suchard, M.A. (Marc), Lemey, P. (Philippe), and Rambaut, A. (Andrew)
- Abstract
The 2013-2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. We test the association of geography, climate and demography with viral movement among administrative regions, inferring a classic 'gravity' model, with intense dispersal between larger and closer populations. Despite attenuation of international dispersal after border closures, cross-border transmission had already sown the seeds for an international epidemic, rendering these measures ineffective at curbing the epidemic. We address why the epidemic did not spread into neighbouring countries, showing that these countries were susceptible to substantial outbreaks but at lower risk of introductions. Finally, we reveal that this large epidemic was a heterogeneous and spatially dissociated collection of transmission clusters of varying size, duration and connectivity. These insights will help to inform interventions in future epidemics.
- Published
- 2017
- Full Text
- View/download PDF
42. Identification of HCV Resistant Variants against Direct Acting Antivirals in Plasma and Liver of Treatment Naïve Patients
- Author
-
Raj, V.S. (Stalin), Hundie, G.B. (Gadissa Bedada), Schürch, A. (Anita), Smits, S.L. (Saskia), Pas, S.D. (Suzan), Le Pogam, S. (Sophie), Janssen, H.L.A. (Harry), Knegt, R.J. (Robert) de, Osterhaus, A.D.M.E. (Albert), Najera, I. (Isabel), Boucher, C.A.B. (Charles), Haagmans, B.L. (Bart), Raj, V.S. (Stalin), Hundie, G.B. (Gadissa Bedada), Schürch, A. (Anita), Smits, S.L. (Saskia), Pas, S.D. (Suzan), Le Pogam, S. (Sophie), Janssen, H.L.A. (Harry), Knegt, R.J. (Robert) de, Osterhaus, A.D.M.E. (Albert), Najera, I. (Isabel), Boucher, C.A.B. (Charles), and Haagmans, B.L. (Bart)
- Abstract
Current standard-of-care treatment of chronically infected hepatitis C virus (HCV) patients involves direct-acting antivirals (DAA). However, concerns exist regarding the emergence of drug -resistant variants and subsequent treatment failure. In this study, we investigate potential natural drug-resistance mutations in the NS5B gene of HCV genotype 1b from treatment-naïve patients. Population-based sequencing and 454 deep sequencing of NS5B gene were performed on plasma and liver samples obtained from 18 treatment- naïve patients. The quasispecies distribution in plasma and liver samples showed a remarkable overlap in each patient. Although unique sequences in plasma or liver were observed, in the majority of cases the most dominant sequences were shown to be identical in both compartments. Neither in plasma nor in the liver codon changes were detected at position 282 that cause resistance to nucleos(t)ide analogues. However, in 10 patients the V321I change conferring resistance to nucleos(t)ide NS5B polymerase inhibitors and in 16 patients the C316N/Y/H non-nucleoside inhibitors were found mainly in liver samples. In conclusion, 454-deep sequencing of liver and plasma compartments in treatment naïve patients provides insight into viral quasispecies and the pre-existence of some drug-resistant variants in the liver, which are not necessarily present in plasma.
- Published
- 2017
- Full Text
- View/download PDF
43. Livestock susceptibility to infection with middle east respiratory syndrome coronavirus
- Author
-
Vergara-Alert, J. (Júlia), Brand, J.M.A. (Judith) van den, Widagdo, W. (Widagdo), Muñoz, M. (Marta), Raj, V.S. (Stalin), Schipper, D. (Debby), Solanes, D. (David), Cordón, I. (Ivan), Bensaid, A. (Albert), Haagmans, B.L. (Bart), Segalés, J. (Joaquim), Vergara-Alert, J. (Júlia), Brand, J.M.A. (Judith) van den, Widagdo, W. (Widagdo), Muñoz, M. (Marta), Raj, V.S. (Stalin), Schipper, D. (Debby), Solanes, D. (David), Cordón, I. (Ivan), Bensaid, A. (Albert), Haagmans, B.L. (Bart), and Segalés, J. (Joaquim)
- Abstract
Middle East respiratory syndrome (MERS) cases continue to be reported, predominantly in Saudi Arabia and occasionally other countries. Although dromedaries are the main reservoir, other animal species might be susceptible to MERS coronavirus (MERS-CoV) infection and potentially serve as reservoirs. To determine whether other animals are potential reservoirs, we inoculated MERS-CoV into llamas, pigs, sheep, and horses and collected nasal and rectal swab samples at various times. The presence of MERS-CoV in the nose of pigs and llamas was confirmed by PCR, titration of infectious virus, immunohistochemistry, and in situ hybridization; seroconversion was detected in animals of both species. Conversely, in sheep and horses, virus-specific antibodies did not develop and no evidence of viral replication in the upper respiratory tract was found. These results prove the susceptibility of llamas and pigs to MERS-CoV infection. Thus, the possibility of MERS-CoV circulation in animals other than dromedaries, such as llamas and pigs, is not negligible.
- Published
- 2017
- Full Text
- View/download PDF
44. Middle East respiratory syndrome coronavirus vaccines: current status and novel approaches
- Author
-
Okba, N.M.A. (Nisreen), Raj, V.S. (Stalin), Haagmans, B.L. (Bart), Okba, N.M.A. (Nisreen), Raj, V.S. (Stalin), and Haagmans, B.L. (Bart)
- Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a cause of severe respiratory infection in humans, specifically the elderly and people with comorbidities. The re-emergence of lethal coronaviruses calls for international collaboration to produce coronavirus vaccines, which are still lacking to date. Ongoing efforts to develop MERS-CoV vaccines should consider the different target populations (dromedary camels and humans) and the correlates of protection. Extending on our current knowledge of MERS, vaccination of dromedary camels to induce mucosal immunity could be a promising approach to diminish MERS-CoV transmission to humans. In addition, it is equally important to develop vaccines for humans that induce broader reactivity against various coronaviruses to be prepared for a potential next CoV outbreak.
- Published
- 2017
- Full Text
- View/download PDF
45. Middle East respiratory syndrome coronavirus experimental transmission using a pig model
- Author
-
Vergara-Alert, J. (J.), Raj, V.S. (Stalin), Muñoz, M. (M.), Abad, F.X. (F. X.), Cordón, I. (I.), Haagmans, B.L. (Bart), Bensaid, A. (A.), Segalés, J. (J.), Vergara-Alert, J. (J.), Raj, V.S. (Stalin), Muñoz, M. (M.), Abad, F.X. (F. X.), Cordón, I. (I.), Haagmans, B.L. (Bart), Bensaid, A. (A.), and Segalés, J. (J.)
- Abstract
Dromedary camels are the main reservoir of Middle East respiratory syndrome coronavirus (MERS-CoV), but other livestock species (i.e., alpacas, llamas, and pigs) are also susceptible to infection with MERS-CoV. Animal-to-animal transmission in alpacas was reported, but evidence for transmission in other species has not been proved. This study explored pig-to-pig MERS-CoV transmission experimentally. Virus was present in nasal swabs of infected animals, and limited amounts of viral RNA, but no infectious virus were detected in the direct contact pigs. No virus was detected in the indirect contact group. Furthermore, direct and indirect contact pigs did not develop specific antibodies against MERS-CoV. Therefore, the role of pigs as reservoir is probably negligible, although it deserves further confirmation.
- Published
- 2017
- Full Text
- View/download PDF
46. Tissue Distribution of the MERS-Coronavirus Receptor in Bats
- Author
-
Widagdo, W. (Widagdo), Begeman, L. (Lineke), Schipper, D. (Debby), Run, P.R.W.A. (Peter) van, Cunningham, A.A. (Andrew A), Kley, N. (Nils), Reusken, C.B.E.M. (Chantal), Haagmans, B.L. (Bart), Brand, J.M.A. (Judith) van den, Widagdo, W. (Widagdo), Begeman, L. (Lineke), Schipper, D. (Debby), Run, P.R.W.A. (Peter) van, Cunningham, A.A. (Andrew A), Kley, N. (Nils), Reusken, C.B.E.M. (Chantal), Haagmans, B.L. (Bart), and Brand, J.M.A. (Judith) van den
- Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) has been shown to infect both humans and dromedary camels using dipeptidyl peptidase-4 (DPP4) as its receptor.The distribution of DPP4 in the respiratory tract tissues of humans and camels reflects MERS-CoV tropism.Apart from dromedary camels, insectivorous bats are suggested as another natural reservoir for MERS-like-CoVs.In order to gain insight on the tropism of these viruses in bats, we studied the DPP4 distribution in the respiratory and extra-respiratory tissues of two frugivorous bat spe
- Published
- 2017
- Full Text
- View/download PDF
47. Genetic diversity of hepatitis C virus in Ethiopia
- Author
-
Hundie, G.B. (Gadissa Bedada), Raj, V.S. (Stalin), GebreMichael, D. (Daniel), Pas, S.D. (Suzan), Haagmans, B.L. (Bart), Hundie, G.B. (Gadissa Bedada), Raj, V.S. (Stalin), GebreMichael, D. (Daniel), Pas, S.D. (Suzan), and Haagmans, B.L. (Bart)
- Abstract
Hepatitis C virus (HCV) is genetically highly divergent and classified in seven major genotypes and approximately hundred subtypes. These genotypes/subtypes have different geographic distribution and response to antiviral therapy. In Ethiopia, however, little is known about their molecular epidemiology and genetic diversity. The aim of this study was to investigate the distribution and genetic diversity of HCV genotypes/subtypes in Ethiopia, using 49 HCV RNA positive samples. HCV genotypes and subtypes were determined based on the sequences of the core and the nonstructural protein 5B (NS5B) genomic regions. Phylogenetic analysis revealed that the predominant was genotype 4 (77.6%) followed by 2 (12.2%), 1 (8.2%), and 5 (2.0%). Seven subtypes were identified (1b, 1c, 2c, 4d, 4l, 4r and 4v), with 4d (34.7%), 4r (34.7%) and 2c (12.2%) as the most frequent subtypes. Consistent with the presence of these subtypes was the identification of a potential recombinant virus. One strain was typed as genotype 2c in the NS5B region sequence and genotype 4d in the core region. In conclusion, genotype 4 HCV viruses, subtypes 4d and 4r, are most prevalent in Ethiopia. This genotype is considered to be difficult to treat, thus, our finding has an important impact on the development of treatment strategies and patient management in Ethiopia.
- Published
- 2017
- Full Text
- View/download PDF
48. MERS-coronavirus: From discovery to intervention
- Author
-
Widagdo, W. (Widagdo), Okba, N.M.A. (Nisreen), Stalin Raj, V., Haagmans, B.L. (Bart), Widagdo, W. (Widagdo), Okba, N.M.A. (Nisreen), Stalin Raj, V., and Haagmans, B.L. (Bart)
- Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) still causes outbreaks despite public awareness and implementation of health care measures, such as rapid viral diagnosis and patient quarantine. Here we describe the current epidemiological picture of MERS-CoV, focusing on humans and animals affected by this virus and propose specific intervention strategies that would be appropriate to control MERS-CoV. One-third of MERS-CoV patients develop severe lower respiratory tract infection and succumb to a fatal outcome; these patients would require effective therapeutic antiviral therapy. Because of the lack of such intervention strategies, supportive care is the best that can be offered at the moment. Limiting viral spread from symptomatic human cases to health care workers and family members, on the other hand, could be achieved through prophylactic administration of MERS-CoV neutralizing antibodies and vaccines. To ultimately prevent spread of the virus into the human population, however, vaccination of dromedary camels – currently the only confirmed animal host for MERS-CoV – may be the best option to achieve a sustained drop in human MERS cases in time. In the end, a One Health approach combining all these different efforts is needed to tackle this zoonotic outbreak.
- Published
- 2017
- Full Text
- View/download PDF
49. The sample of choice for detecting Middle East respiratory syndrome coronavirus in asymptomatic dromedary camels using real-time reversetranscription polymerase chain reaction
- Author
-
MOHRAN, K.A., primary, FARAG, E.A.B.A., additional, REUSKEN, C.B.E.M., additional, RAJ, V.S., additional, LAMERS, M.M., additional, PAS, S.D., additional, VOERMANS, J., additional, SMITS, S.L., additional, ALHAJRI, M.M., additional, ALHAJRI, F., additional, AL-ROMAIHI, H.E., additional, GHOBASHY, H., additional, EL-MAGHRABY, M.M., additional, AL DHAHIRY, S.H.S., additional, AL-MAWLAWI, N., additional, EL-SAYED, A.M., additional, AL-THANI, M., additional, AL-MARRI, S.A., additional, HAAGMANS, B.L., additional, and KOOPMANS, M.P.G., additional
- Published
- 2016
- Full Text
- View/download PDF
50. Deletion variants of middle east respiratory syndrome coronavirus from humans, Jordan, 2015
- Author
-
Lamers, M.M. (Mart M.), Raj, V. (Stalin V.), Shafei, M. (Mah’D), Ali, S.S. (Sami Sheikh), Abdallh, S.M. (Sultan), Gazo, M. (Mahmoud), Nofal, S. (Samer), Lu, X. (Xiaoyan), Erdman, D.D. (Dean), Koopmans D.V.M., M.P.G. (Marion), Abdallat, M. (Mohammad), Haddadin, A. (Aktham), Haagmans, B.L. (Bart), Lamers, M.M. (Mart M.), Raj, V. (Stalin V.), Shafei, M. (Mah’D), Ali, S.S. (Sami Sheikh), Abdallh, S.M. (Sultan), Gazo, M. (Mahmoud), Nofal, S. (Samer), Lu, X. (Xiaoyan), Erdman, D.D. (Dean), Koopmans D.V.M., M.P.G. (Marion), Abdallat, M. (Mohammad), Haddadin, A. (Aktham), and Haagmans, B.L. (Bart)
- Abstract
We characterized Middle East respiratory syndrome coronaviruses from a hospital outbreak in Jordan in 2015. The viruses from Jordan were highly similar to isolates from Riyadh, Saudi Arabia, except for deletions in open reading frames 4a and 3. Transmissibility and pathogenicity of this strain remains to be determined.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.