1. ATOMS: ALMA Three-millimeter Observations of Massive Star-forming regions – X. Chemical differentiation among the massive cores in G9.62+0.19
- Author
-
Yaping Peng, Tie Liu, Sheng-Li Qin, Tapas Baug, Hong-Li Liu, Ke Wang, Guido Garay, Chao Zhang, Long-Fei Chen, Chang Won Lee, Mika Juvela, Dalei Li, Ken’ichi Tatematsu, Xun-Chuan Liu, Jeong-Eun Lee, Gan Luo, Lokesh Dewangan, Yue-Fang Wu, Li Zhang, Leonardo Bronfman, Jixing Ge, Mengyao Tang, Yong Zhang, Feng-Wei Xu, Yao Wang, Bing Zhou, University of Helsinki, and Department of Physics
- Subjects
stars: formation ,ISM: molecules-radio lines: ISM ,HERSCHEL OBSERVATIONS ,COMPLEX ORGANIC-MOLECULES ,ISM: individual: G9.62+0.19 ,METHYL FORMATE ,FOS: Physical sciences ,Astronomy and Astrophysics ,HOT-CORE ,114 Physical sciences ,Astrophysics - Astrophysics of Galaxies ,ISM: abundances ,IRAS 16293-2422 ,WIDE SPECTRAL SURVEY ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,EXTRAORDINARY SOURCES ANALYSIS ,HIGH-RESOLUTION OBSERVATIONS ,C-12/C-13 ISOTOPE RATIO ,GALACTIC-CENTER - Abstract
Investigating the physical and chemical structures of massive star-forming regions is critical for understanding the formation and the early evolution of massive stars. We performed a detailed line survey toward six dense cores named as MM1, MM4, MM6, MM7, MM8, and MM11 in G9.62+0.19 star-forming region resolved in ALMA band 3 observations. Toward these cores, about 172 transitions have been identified and attributed to 16 species including organic Oxygen-, Nitrogen-, Sulfur-bearing molecules and their isotopologues. Four dense cores MM7, MM8, MM4, and MM11 are line rich sources. Modeling of these spectral lines reveals the rotational temperature in a range of 72$-$115~K, 100$-$163~K, 102$-$204~K, and 84$-$123~K for the MM7, MM8, MM4, and MM11, respectively. The molecular column densities are 1.6 $\times$ 10$^{15}$ $-$ 9.2 $\times$ 10$^{17}$~cm$^{-2}$ toward the four cores. The cores MM8 and MM4 show chemical difference between Oxygen- and Nitrogen-bearing species, i.e., MM4 is rich in oxygen-bearing molecules while nitrogen-bearing molecules especially vibrationally excited HC$_{3}$N lines are mainly observed in MM8. The distinct initial temperature at accretion phase may lead to this N/O differentiation. Through analyzing column densities and spatial distributions of O-bearing Complex Organic Molecules (COMs), we found that C$_{2}$H$_{5}$OH and CH$_{3}$OCH$_{3}$ might have a common precursor, CH$_{3}$OH. CH$_{3}$OCHO and CH$_{3}$OCH$_{3}$ are likely chemically linked. In addition, the observed variation in HC$_{3}$N and HC$_{5}$N emission may indicate that their different formation mechanism at hot and cold regions., Comment: 40 pages, 23 figures
- Published
- 2022
- Full Text
- View/download PDF