18 results on '"H.P. Van Landeghem"'
Search Results
2. High-throughput investigation of ferrite growth kinetics in graded ternary Fe-C-X alloys
- Author
-
I.-E. Benrabah, H.P. Van Landeghem, F. Bonnet, B. Denand, G. Geandier, and A. Deschamps
- Subjects
General Materials Science - Published
- 2022
- Full Text
- View/download PDF
3. Evolution of a low-alloy steel / nickel superalloy dissimilar metal weld during post-weld heat treatment
- Author
-
Florence Robaut, G. Badinier, J. Ghanbaja, Marc Verdier, Catherine Tassin, T. Marlaud, C.V. da Silva Lima, H.P. Van Landeghem, Science et Ingénierie des Matériaux et Procédés (SIMaP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), and FRAMATOME
- Subjects
0209 industrial biotechnology ,Materials science ,Nano-indentation ,Alloy steel ,Alloy ,chemistry.chemical_element ,02 engineering and technology ,Welding ,engineering.material ,7. Clean energy ,020501 mining & metallurgy ,law.invention ,[SPI.MAT]Engineering Sciences [physics]/Materials ,020901 industrial engineering & automation ,law ,Microstructure ,GTAW ,Austenite ,DMW ,Filler metal ,Mechanical Engineering ,Gas tungsten arc welding ,Metallurgy ,technology, industry, and agriculture ,Metals and Alloys ,respiratory system ,PWHT ,equipment and supplies ,Superalloy ,Nickel ,0205 materials engineering ,chemistry ,Mechanics of Materials ,engineering ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,EPMA - Abstract
International audience; The design of the dissimilar metal weld investigated here is aimed at applications in the steam generator of a sodium-cooled nuclear reactor, with a multi-decade lifespan in demanding operational conditions. It consists in a narrow-gap joint between 2.25Cr-1Mo low-alloy steel and an austenitic alloy using a nickel-based alloy 82 as filler material. This study focuses on understanding the microstructural and micromechanical evolution in the near fusion boundary region between the low-alloy steel and the nickel alloy filler metal during post-weld heat treatment, using notably electron probe microanalysis and nano-indentation. The difference in matrix phase and chemical composition between the two alloys leads to a large difference in chemical potential for carbon, which is mobile at the post-weld heat treatment temperature. A number of fine-scale characterization techniques were used to assess the gradient of composition, hardness and microstructures across the fusion boundary, both as welded and after post-weld heat treatment. This complete analysis permits to highlight and understand the main microstructural and micromechanical changes occurring during post-weld heat treatment and opens the way to their long term study in service conditions.
- Published
- 2021
- Full Text
- View/download PDF
4. Multi-technique study of precipitation in the nearfusion boundary region of an aged narrow-gap dissimilar metal weld
- Author
-
Florence Robaut, H.P. Van Landeghem, F. De Geuser, Catherine Tassin, Frédéric Danoix, Miguel Yescas, A. Akhatova, François Roch, Science et Ingénierie des Matériaux et Procédés (SIMaP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Groupe de physique des matériaux (GPM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), FRAMATOME-ANP, Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), and Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,02 engineering and technology ,Atom probe ,Precipitation ,01 natural sciences ,Carbide ,law.invention ,[SPI.MAT]Engineering Sciences [physics]/Materials ,law ,Ferrite (iron) ,0103 physical sciences ,General Materials Science ,Atom Probe Tomography ,Base metal ,Gas Tungsten Arc Welding ,010302 applied physics ,Austenite ,Filler metal ,Precipitation (chemistry) ,Dissimilar Metal Weld ,Metallurgy ,021001 nanoscience & nanotechnology ,Microstructure ,Small Angle X-ray Scattering ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology ,Electron Probe Microanalysis - Abstract
International audience; In ferrite/austenite dissimilar metal welds, carbon can diffuse from the ferritic low-alloy steel to the austenitic weld metal during heat treatment and thermal aging due to the large carbon and chromium content differences between the two alloys. This carbon influx leads to the precipitation of carbides in the high-alloy weld metal, near the fusion boundary, which can affect the properties of the joint. This precipitation was investigated using multiple characterization techniques: electron probe microanalysis, small angle X-ray scattering and atom probe tomography. The studied joint consisted of low-alloy steel and stainless steel base metals that were arc welded using a nickel-based filler metal. Given the heterogeneous microstructure of such joints, a microstructure navigation strategy was implemented to ensure all characterizations were carried out in the same regions of interest and the associated data could later be correlated. The precipitates were found to be mostly M23C6. The precipitation was quantified using two different methods that gave comparable results, whose differences highlight the capabilities and limitations of each technique. Precipitate fractions are higher following thermal aging but remain far from equilibrium in all cases, indicating that precipitation kinetics should be accounted for to model the microstructural evolution of such dissimilar metal welds more accurately.
- Published
- 2021
- Full Text
- View/download PDF
5. Microstructural and mechanical investigation of the near fusion boundary region in thermally aged 18MND5 / Alloy 52 narrow-gap dissimilar metal weld
- Author
-
Catherine Tassin, F. Robaut, A. Akhatova, François Roch, Miguel Yescas, Marc Verdier, H.P. Van Landeghem, Science et Ingénierie des Matériaux et Procédés (SIMaP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), and FRAMATOME-ANP
- Subjects
Materials science ,Diffusion ,Alloy ,chemistry.chemical_element ,02 engineering and technology ,Welding ,engineering.material ,01 natural sciences ,law.invention ,[SPI.MAT]Engineering Sciences [physics]/Materials ,law ,Hardness ,Nickel-based filler metal ,0103 physical sciences ,Low-Alloy Steel ,General Materials Science ,Composite material ,Gas Tungsten Arc Welding ,010302 applied physics ,Fusion ,Mechanical Engineering ,Gas tungsten arc welding ,Dissimilar Metal Weld ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Microstructure ,Phase transformation ,Characterization (materials science) ,chemistry ,Mechanics of Materials ,engineering ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology ,Carbon - Abstract
International audience; Detailed characterization of the near fusion-boundary region of 18MND5 / Alloy 52 dissimilar metal weld joints was performed to investigate the effect of thermal aging on the microstructure and mechanical properties and to quantify the diffusion of carbon into the weld metal. It was shown that the microstructural features of dissimilar metal welds, such as the size of the partially mixed zone in the weld and the adjacency to micro-segregations in the low-alloy steel have an effect on the peak carbon concentration in the enriched region of the weld. Aging conditions (time and temperature) influence the position of this concentration peak in the weld. Those trends were supported by thermodynamic calculations.
- Published
- 2020
- Full Text
- View/download PDF
6. Isothermal decomposition of carbon and nitrogen-enriched austenite in 23MnCrMo5 low-alloy steel
- Author
-
H.P. Van Landeghem, Moukrane Dehmas, S.D. Catteau, M. Courteaux, Sabine Denis, Julien Teixeira, A. Redjaïmia, J. Dulcy, Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Labex DAMAS, Université de Lorraine (UL), PSA Peugeot - Citroën (PSA), PSA Peugeot Citroën (PSA), ANR-11-LABX-0008,DAMAS,Design des Alliages Métalliques pour Allègement des Structures(2011), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), PSA Peugeot Citroën (FRANCE), Université de Lorraine (FRANCE), Centre Interuniversitaire de Recherche et d'Ingénierie des Matériaux - CIRIMAT (Toulouse, France), and Institut National Polytechnique de Toulouse - INPT (FRANCE)
- Subjects
Materials science ,Polymers and Plastics ,Matériaux ,Alloy steel ,Nucleation ,Low-alloy steel ,02 engineering and technology ,Nitride ,engineering.material ,01 natural sciences ,Ferrite (iron) ,0103 physical sciences ,Phase transformations ,Génie des procédés ,Microstructure ,010302 applied physics ,Austenite ,Isothermal austeniteeferrite transformation ,Carbonitriding ,Precipitation (chemistry) ,Metallurgy ,Metals and Alloys ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Electronic, Optical and Magnetic Materials ,Isothermal transformation diagram ,Ceramics and Composites ,engineering ,0210 nano-technology - Abstract
International audience; The industrial importance of carbonitriding is owed to the exceptional wear and fatigue resistance it imparts to treated steel parts. This resistance is related to microstructural changes occurring during the enrichment treatment and upon cooling. Here, the effects of interstitial contents, in particular nitrogen, and transformation temperature were investigated in 23MnCrMo5 steel. Samples were homogeneously enriched in the austenitic phase and the isothermal transformation of the enriched austenite between 750 °C and 600 °C was studied. CrN was found to precipitate during the enrichment treatment. During subsequent isothermal holding, CrN precipitate as fine platelets in nitrogen containing samples. At equal carbon content, ferrite formed faster and in finer grains in presence of nitrogen. Preexisting CrN facilitate ferrite nucleation resulting in more numerous ferrite grains. The intense nitride precipitation is the main origin for enhanced hardness in nitrogen-enriched alloys. The exact mechanism leading to the observed microstructures could not be determined and remains under investigation. In particular, the high nitrogen supersaturation of ferrite required to produce the observed fraction of CrN has to be explained.
- Published
- 2018
- Full Text
- View/download PDF
7. Solute drag modeling for ferrite growth kinetics during precipitation experiments
- Author
-
Guillaume Geandier, H.P. Van Landeghem, Imed-Eddine Benrabah, Alexis Deschamps, B. Denand, Frederic D. R. Bonnet, Science et Ingénierie des Matériaux et Procédés (SIMaP), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), ArcelorMittal Maizières Research SA, ArcelorMittal, Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019), and ANR-15-IDEX-0002,UGA,IDEX UGA(2015)
- Subjects
Diffraction ,Materials science ,Polymers and Plastics ,Kinetics ,Alloy ,0211 other engineering and technologies ,Thermodynamics ,02 engineering and technology ,Flory–Huggins solution theory ,engineering.material ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Ferrite (iron) ,Solvent drag ,021102 mining & metallurgy ,Precipitation (chemistry) ,Metals and Alloys ,Interface ,Ferrite growth ,021001 nanoscience & nanotechnology ,Solute drag ,Electronic, Optical and Magnetic Materials ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Ceramics and Composites ,engineering ,Steels ,0210 nano-technology ,Ternary operation - Abstract
The growth kinetics of ferrite during intercritical annealing of steel has been investigated using in situ high energy X-ray diffraction with a specially designed furnace allowing highly quantitative measurements of phase volume fractions. Kinetics have been obtained at 730 ∘ C, 750 ∘ C and 775 ∘ C in different ternary Fe-C-X (where X : Mn, Ni, Mo and Cr) alloys and in a quaternary Fe-C-1Mn-1Cr (wt.%) alloy. The obtained results were compared with the predictions of classical Local Equilibrium and Para-Equilibrium models as well as an improved version of a three-jump solute drag model, where the interactions between the solute elements and the moving interface are described comprehensively. Good agreement was obtained between the measured ferrite growth kinetics and the predictions of the solute drag model for the different Fe-C-X systems using only one fitting parameter, namely the Fe-X interaction parameter at the interface. The interactions found here qualitatively match those reported in literature for all solutes except for Ni, which displayed an attractive interaction with the interface. For the quaternary Fe-C-Mn-Cr system, the solute drag model succeeded in predicting ferrite growth kinetics using the same interaction values as used for the ternary Fe-C-Mn and Fe-C-Cr systems.
- Published
- 2021
- Full Text
- View/download PDF
8. Carbon and nitrogen effects on microstructure and kinetics associated with bainitic transformation in a low-alloyed steel
- Author
-
J. Dulcy, Sabine Denis, Moukrane Dehmas, M. Courteaux, H.P. Van Landeghem, A. Redjaïmia, S.D. Catteau, Julien Teixeira, Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), PSA Peugeot Citroën DCTC/CIMB/IMPM/AFTS, Labex DAMAS, and Université de Lorraine (UL)
- Subjects
Materials science ,Bainite ,02 engineering and technology ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Carburizing ,chemistry.chemical_compound ,ddc:670 ,Ferrite (iron) ,0103 physical sciences ,Materials Chemistry ,010302 applied physics ,Austenite ,Carbonitriding ,Cementite ,Mechanical Engineering ,Metallurgy ,Metals and Alloys ,021001 nanoscience & nanotechnology ,Microstructure ,chemistry ,Mechanics of Materials ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology ,Nitriding - Abstract
Journal of alloys and compounds 658, 832 - 838(2016). doi:10.1016/j.jallcom.2015.11.007, The effect on the bainitic transformation of carburizing, nitriding and carbonitriding of a 23MnCrMo5 low-alloyed steel in the austenitic field was examined by in situ high-energy synchrotron X-ray diffraction (HEXRD) and transmission electron microscopy. CrN nitrides precipitated in austenite during the enrichment in nitrogen and were quantified. Enrichment in nitrogen leads to a fine bainitic ferrite microstructure, which contains the CrN nitrides as well as some AlN, VN and MnSiN2 precipitates, with much smaller number density. The precipitates are frequently gathered into aggregates. By using HEXRD, it was possible to monitor ferrite, austenite, cementite and CrN mass fraction during the isothermal bainitic transformation, whereas HEXRD experiments in previous studies focused mostly on carbide-free bainite. Ferrite formed first, followed by cementite precipitation and, in the case of nitrided steels, increase of CrN mass fraction. Enrichment in carbon and/or nitrogen tends to slow down the bainitic transformation compared to the initial steel, as expected from their austenite-stabilizing character. However, comparison between enriched steels shows that kinetics is not simply related to the total interstitial content when both carbon and nitrogen are simultaneously involved. Possible role of CrN precipitated in austenite on ferrite formation acceleration is discussed., Published by Elsevier, Lausanne
- Published
- 2016
- Full Text
- View/download PDF
9. Nitrogen-induced nanotwinning of bainitic ferrite in low-alloy steel
- Author
-
Muriel Véron, Julien Teixeira, J. Dulcy, S.D. Catteau, A. Redjaïmia, H.P. Van Landeghem, Sabine Denis, Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Labex DAMAS, Université de Lorraine (UL), PSA Peugeot Citroën (PSA), ANR-11-LABX-0008,DAMAS,Design des Alliages Métalliques pour Allègement des Structures(2011), and ANR-10-LABX-0044,CEMAM,Center of Excellence in Multifunctional Architectured Materials(2010)
- Subjects
Materials science ,Bainite ,Alloy ,02 engineering and technology ,engineering.material ,01 natural sciences ,Carburizing ,[SPI.MAT]Engineering Sciences [physics]/Materials ,chemistry.chemical_compound ,Ferrite (iron) ,0103 physical sciences ,General Materials Science ,010302 applied physics ,Austenite ,Carbonitriding ,Cementite ,Mechanical Engineering ,Metallurgy ,Metals and Alloys ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,chemistry ,Mechanics of Materials ,Martensite ,engineering ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology - Abstract
International audience; The isothermal decomposition of austenite between BS and MS was investigated after carburizing and carbonitriding in low-alloy steel 23MnCrMo5. The microstructure of the products differed significantly between carburizing and carbonitriding. The carburized alloy produced an expected bainitic microstructure consisting mainly of bainitic ferrite with some cementite and retained austenite. In contrast, the microstructure of the nitrogen-containing sample showed finer, entangled ferrite plates, retained austenite and nitrides. The ferrite plates contain numerous transformation twins, which can be as thin as only a few nanometers. This original result proves that abundant twinning can be found in bainite as well as in martensite.
- Published
- 2018
- Full Text
- View/download PDF
10. Bainite Formation in Carbon and Nitrogen enriched Low Alloyed Steels: Kinetics and Microstructures
- Author
-
Sabine Denis, Julien Teixeira, S.D. Catteau, H.P. Van Landeghem, Moukrane Dehmas, J. Dulcy, A. Redjaïmia, M. Courteaux, Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Labex DAMAS, Université de Lorraine (UL), PSA Peugeot-Citroën [Voujeaucourt], PSA Peugeot Citroën (PSA), Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and ANR-11-LABX-0008,DAMAS,Design des Alliages Métalliques pour Allègement des Structures(2011)
- Subjects
Austenite ,Materials science ,Carbonitriding ,Bainite ,Metallurgy ,Metals and Alloys ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Microstructure ,Industrial and Manufacturing Engineering ,Acicular ferrite ,020501 mining & metallurgy ,Carburizing ,[SPI.MAT]Engineering Sciences [physics]/Materials ,0205 materials engineering ,Ferrite (iron) ,Materials Chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology ,Nitriding - Abstract
The effect on the bainite formation of carburizing (0.6 wt.% C), nitriding (0.12 wt.% C-0.25 wt.% N) and carbonitriding (0.7 wt.% C-0.25 wt.% N) of a 23MnCrMo5 low-alloyed steel in the austenitic field was examined by in situ high-energy synchrotron X-ray diffraction (HEXRD) and transmission electron microscopy. The enrichment in nitrogen induces strong acceleration of the bainite transformation kinetics in carbonitrided steel compared to carburized steel, despite the γ-stabilizing character of nitrogen. This is attributed to the nucleation of ferrite on CrN nitrides, which precipitated during the enrichment, either at γ grain boundaries or intragranularly. AlN, VN and MnSiN2 nitrides were observed as well, with much smaller number density. They formed frequently aggregates with the CrN nitrides. The bainite microstructure is much finer than in initial or carburized steel. It shares some common features with intragranularly nucleated bainite, i. e. acicular ferrite. From HEXRD, the chronology of the phase formation (ferrite and precipitates) during bainite formation as well as cell parameter evolutions are analyzed.
- Published
- 2018
- Full Text
- View/download PDF
11. Investigation of solute/interphase interaction during ferrite growth
- Author
-
Hatem S. Zurob, Andreas Korinek, Brian Langelier, H.P. Van Landeghem, Damon Panahi, Baptiste Gault, Gary R. Purdy, Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), McMaster University [Hamilton, Ontario], Mc Master University, Dept Mat sci & Eng. Hamilton, Canada, Mc Master University, Hamilton, Ontario, Canada, Department of Materials Science and Engineering and Canadian Centre for Electron Microscopy, McMaster University, and Department of Materials Science
- Subjects
Materials science ,Polymers and Plastics ,Beta ferrite ,Binding energy ,Thermodynamics ,02 engineering and technology ,Atom probe ,01 natural sciences ,law.invention ,[SPI.MAT]Engineering Sciences [physics]/Materials ,law ,Ferrite (iron) ,0103 physical sciences ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,Austenite ,Decarburization ,Metals and Alloys ,021001 nanoscience & nanotechnology ,Electronic, Optical and Magnetic Materials ,Crystallography ,Ceramics and Composites ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Grain boundary ,0210 nano-technology ,Ternary operation - Abstract
Knowledge of solute interaction with the interface during the transformation of austenite into ferrite is fundamental in predicting its kinetics in multicomponent steel. This interaction notably translates in segregation, or depletion, of the solutes at the transformation interface. Here, this segregation was successfully quantified by atom probe tomography (APT) in four ternary Fe-X-C systems involving substitutional solutes commonly found in modern steel grades (X = Cr, Mn, Ni, Mo). Controlled decarburization was used to grow a uniform, planar and incoherent ferrite layer at the surface of fully austenitic samples. In the case of Fe-Cr-C and Fe-Mo-C, the interfacial concentrations permitted the evaluation of the binding energy of each substitutional solute to the interface, which was found to be comparable to its respective grain boundary binding energy. In the case of Fe-Mn-C and Fe-Ni-C, undesirable motion of the interface during the quench of the samples could not be avoided, preventing a reliable estimation of their binding energy since temperature and interface velocity were unknown.
- Published
- 2017
- Full Text
- View/download PDF
12. Unexpected low-temperature crystallization of amorphous silicon nitride into α-Si3N4 in a ferritic Fe–Si matrix
- Author
-
A. Redjaïmia, H.P. Van Landeghem, Thierry Epicier, Mohamed Gouné, Labex DAMAS, Université de Lorraine (UL), Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), ArcelorMittal Maizières Research SA, ArcelorMittal, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université de Bordeaux (UB), Matériaux, ingénierie et science [Villeurbanne] (MATEIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and ANR-11-LABX-0008,DAMAS,Design des Alliages Métalliques pour Allègement des Structures(2011)
- Subjects
Materials science ,Annealing (metallurgy) ,Precipitation ,02 engineering and technology ,Nitride ,01 natural sciences ,Nitrides ,law.invention ,law ,Iron alloys ,0103 physical sciences ,General Materials Science ,Crystallization ,010302 applied physics ,Hexagonal prism ,Precipitation (chemistry) ,Mechanical Engineering ,Metallurgy ,Metals and Alloys ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Crystallography ,Structural change ,Mechanics of Materials ,0210 nano-technology ,Amorphous silicon nitride ,Nitriding - Abstract
Annealing conditions leading to the crystallization of amorphous silicon nitride occurring upon nitriding of Fe–Si alloys have been found. A brief thermodynamic explanation for the occurrence of this unexpected amorphous-to-crystal transition is given. The crystalline precipitates were found to be α-Si3N4 and follow the orientation relationship given by ( 1 1 ¯ 0 ) α -Fe / / ( 10 1 ¯ 0 ) α - Si 3 N 4 with [ 111 ] α -Fe / / [ 0001 ] α - Si 3 N 4 . This transition happens in precipitates with a constant Si3N4 composition. This structural change also leads to a morphological change from the initial cube-like shape to a hexagonal prism.
- Published
- 2013
- Full Text
- View/download PDF
13. Mechanism of Si3N4 precipitation in nitrided Fe-Si alloys: A novel example of particle-stimulated-nucleation
- Author
-
A. Redjaïmia, Raphaële Danoix, H.P. Van Landeghem, Frédéric Danoix, Mohamed Gouné, A. Martinavičius, Labex DAMAS, Université de Lorraine (UL), Groupe de physique des matériaux (GPM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université de Bordeaux (UB), ANR-11-LABX-0008,DAMAS,Design des Alliages Métalliques pour Allègement des Structures(2011), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), and Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Silicon nitride ,Nitriding Steel ,Materials science ,Silicon ,Annealing (metallurgy) ,Alloy ,Nucleation ,chemistry.chemical_element ,02 engineering and technology ,Atom probe ,Precipitation ,Nitride ,engineering.material ,law.invention ,chemistry.chemical_compound ,law ,General Materials Science ,020502 materials ,Mechanical Engineering ,Metallurgy ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Atom probe tomography ,0205 materials engineering ,chemistry ,Chemical engineering ,Mechanics of Materials ,engineering ,0210 nano-technology ,Nitriding - Abstract
International audience; Atom probe tomography (APT) was employed to investigate the precipitation process of Si3N4 particles after plasma assisted nitriding and subsequent annealing of Fe-Si alloy. The nitriding was done using 15N2 medium to enable quantitative analysis of Si and N by APT. Al, as a minor alloying element, is found to play an important role in the precipitation sequence. It is shown that Al forms Al-N clusters before Si3N4 precipitation takes place, and provides nucleation sites for the precipitation of Si3N4. Composition measurements show that silicon nitrides are enriched in Al, Ti and Mn as compared to the matrix.
- Published
- 2017
- Full Text
- View/download PDF
14. Multiscale analysis of an ODS FeAl40 intermetallic after plasma-assisted nitriding
- Author
-
A. Martinavicius, Christine Gendarme, R. Danoix, H.P. Van Landeghem, Thierry Grosdidier, Frédéric Danoix, Stéphanie Bruyère, J. Martin, A. Redjaïmia, Thierry Czerwiec, Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Labex DAMAS, Université de Lorraine (UL), Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies, HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM), Groupe de physique des matériaux (GPM), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), ANR-11-LABX-0008,DAMAS,Design des Alliages Métalliques pour Allègement des Structures(2011), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), HESAM Université (HESAM)-HESAM Université (HESAM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), and Normandie Université (NU)
- Subjects
Materials science ,Alloy ,Intermetallic ,Analytical chemistry ,Fe-Al alloy ,02 engineering and technology ,Atom probe ,engineering.material ,01 natural sciences ,law.invention ,[SPI.MAT]Engineering Sciences [physics]/Materials ,law ,0103 physical sciences ,Materials Chemistry ,010302 applied physics ,Mechanical Engineering ,Metallurgy ,Discontinuous precipitation ,Metals and Alloys ,Plasma nitriding ,021001 nanoscience & nanotechnology ,Atom probe tomography ,Lamella (surface anatomy) ,Mechanics of Materials ,engineering ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Grain boundary ,0210 nano-technology ,Layer (electronics) ,Aluminide ,Nitriding ,Transmission electron microscopy - Abstract
International audience; The binary B2 (ordered bcc-type structure) FeAl40 Grade 3 aluminide containing 40 at.% Al was nitrided at 600 °C for 15 min with a pulsed DC plasma in a 95% N2/5% H2 gas mixture. The nitrided layer was described at the micro-, nano- and atomic scales. The nitrided layer consists of a thin outer sublayer (∼1 μm in thickness) containing γ′-Fe4N and having a moderate hardness (870 Hv) below which a thicker (∼36 μm in thickness) and harder (1400 Hv) inner sublayer is formed. While the outer sublayer is completely depleted in Al, the inner sublayer is made of a mixture of hex. AlN and α-Fe phases regularly structured at different levels: i) At the micrometre scale, observations showed a network of α-Fe “wave-like” veins (∼2 μm in length and ∼100 nm in width) located at the grain boundaries and preferentially aligned parallel to the nitrided surface. ii) At the nanometre scale, observations evidenced that such veins are embedded in a “lamellar-like” morphology matrix alternately composed of α-Fe and α-Fe/hex. AlN lamellae (∼300 nm in length and ∼10 nm in width). iii) At the atomic scale, analysis pointed out that each α-Fe/hex. AlN lamella presents a finer structural arrangement in which hex. AlN-rich clusters (∼4 nm in diameter) are trapped between thin α-Fe walls (∼2 nm in thickness). The diversity of the morphologies evidenced in the present study highlights the complexity of the nitriding mechanisms of iron-based aluminides. The observations support however a mechanism of discontinuous precipitation in the inner nitrided sublayer which seems to be strongly promoted by the high amount of Al in the FeAl40 grade 3 alloy (40 at.%).
- Published
- 2016
- Full Text
- View/download PDF
15. Solute Segregation During Ferrite Growth: Solute/Interphase and Substitutional/Interstitial Interactions
- Author
-
Brian Langelier, Christopher Hutchinson, Gianluigi A. Botton, Gary R. Purdy, Hatem S. Zurob, H.P. Van Landeghem, Damon Panahi, Department of Materials Science and Engineering, McMaster University, McMaster University [Hamilton, Ontario], Science et Ingénierie des Matériaux et Procédés (SIMaP ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), and Monash University [Clayton]
- Subjects
010302 applied physics ,Austenite ,Decarburization ,Materials science ,Silicon ,General Engineering ,chemistry.chemical_element ,02 engineering and technology ,Atom probe ,Manganese ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,law.invention ,Crystallography ,chemistry ,law ,Chemical physics ,Ferrite (iron) ,0103 physical sciences ,General Materials Science ,Grain boundary ,Interphase ,0210 nano-technology - Abstract
International audience; The segregation of solutes to austenite/ferrite transformation interfaces during decarburization/denitriding of Fe-Mn-C, Fe-Mn-N, and Fe-Si-C ternary alloys was studied by using atom probe tomography. Manganese was found to segregate noticeably to the transformation interface in the presence of carbon, while no segregation could be detected in the presence of nitrogen. This result might indicate that manganese interacts little with the interface itself and that its interaction with the interstitial controls its segregation behavior. In the case of Fe-Si-C, the experiments were complicated by interface motion during quenching. Preliminary results suggest that silicon was depleted at the interface in contrast to the commonly observed segregation behavior of silicon at grain boundaries of ferrite and austenite. This observation could be explained by taking into account the repulsive interaction between silicon and carbon along with the intense segregation of carbon to the interface. This would lead to a net repulsive interaction of silicon with the interface even when considering the intrinsic tendency of silicon to segregate to the boundary in the absence of carbon. The results presented here emphasize the need to account for the interaction of all solutes present at the interface in ferrite growth models.
- Published
- 2016
- Full Text
- View/download PDF
16. Nitride precipitation in compositionally heterogeneous alloys: Nucleation, growth and coarsening during nitriding
- Author
-
Abdelkrim Redjaïmia, Mohamed Gouné, H.P. Van Landeghem, Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), ArcelorMittal Maizières Research SA, ArcelorMittal, Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), and Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université de Bordeaux (UB)
- Subjects
Materials science ,Nucleation ,Thermodynamics ,chemistry.chemical_element ,02 engineering and technology ,Nitride ,01 natural sciences ,Diffusion ,Growth from solutions ,Inorganic Chemistry ,0103 physical sciences ,Materials Chemistry ,Diffusion (business) ,Particle density ,010302 applied physics ,Precipitation (chemistry) ,Metallurgy ,Modeling ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Nitrogen ,Kinetics ,chemistry ,Volume fraction ,0210 nano-technology ,Nitriding - Abstract
International audience; A theoretical approach is proposed to take into the account nucleation, growth and coarsening of nitrides in alloys featuring heterogeneous nitrogen content. It is based on physical considerations and accounts for both bulk nitrogen diffusion, which results from the nitriding process and nitrides precipitation kinetics. It predicts local information such as average particle density, radius and volume fraction of nitrides as a function of depth. The work presented in this paper leads to two important conclusions. First, the precipitation rate is not so high that precipitation can be considered as infinitely faster than the diffusion of nitrogen into the bulk. Second, the precipitation state at a given depth depends on the local interaction between nucleation, growth and coarsening phenomena, themselves depending on the local nitrogen content. Finally, the precipitation in alloys with heterogeneous nitrogen content induced by nitriding is radically different from classical precipitation in a single phase where the driving force for precipitation is consumed.
- Published
- 2012
- Full Text
- View/download PDF
17. New insights into the limit for non-partitioning ferrite growth
- Author
-
Damon Panahi, Gary R. Purdy, Christopher Hutchinson, Hatem S. Zurob, H.P. Van Landeghem, McMaster University [Hamilton, Ontario], Monash Univ. Dept Mat. engn Clayton, Vic Australia, and Monash University [Clayton]
- Subjects
Austenite ,Ferrite layer ,Decarburization ,Materials science ,Polymers and Plastics ,Growth kinetics ,Metallurgy ,Beta ferrite ,Metals and Alloys ,Dissipation ,Local equilibrium ,Electronic, Optical and Magnetic Materials ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Ferrite (iron) ,Ceramics and Composites ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Composite material ,ComputingMilieux_MISCELLANEOUS - Abstract
The limiting conditions for non-partitioned ferrite growth were investigated under controlled decarburization conditions. An abrupt change in the growth kinetics and morphology of ferrite was observed when the temperature increased above the limit defined by the local equilibrium no-partitioning (LENP) model. The ferrite layer formed below the LENP limit consisted of columnar grains and showed continuous, parabolic growth kinetics. In contrast, ferrite growth above the LENP limit showed two distinct stages. Initially, a thin layer of columnar ferrite grains formed and grew rapidly for a short period of time. In the second stage, the ferrite layer appeared to increase in thickness at a very low rate. The slow growth of the ferrite layer was associated with a strong depletion of carbon content in austenite as well as the formation of new ferrite grains as opposed to the growth of existing grains. The evolution of the carbon concentration in austenite was used to infer the operating interfacial contact conditions as a function of time. The evolution of the interfacial austenite conditions is suggested to penetrate deep into the two-phase region as predicted by ferrite growth theories that account for free-energy dissipation during the austenite-to-ferrite phase transformation.
- Published
- 2015
- Full Text
- View/download PDF
18. Competitive precipitation of amorphous and crystalline silicon nitride in ferrite: Interaction between structure, morphology, and stress relaxation
- Author
-
S. Bordère, Frédéric Danoix, H.P. Van Landeghem, A. Redjaïmia, Mohamed Gouné, Labex DAMAS, Université de Lorraine (UL), Institut Jean Lamour (IJL), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université de Bordeaux (UB), Groupe de physique des matériaux (GPM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), ANR-12-INSE-0008,LIESSE,Effets laser et fautes sur les circuits intégrés dédiés à la sécurité(2012), ANR-11-LABX-0008,DAMAS,Design des Alliages Métalliques pour Allègement des Structures(2011), Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), and Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Morphology ,Hexagonal prism ,Materials science ,Polymers and Plastics ,Metals and Alloys ,Precipitation ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Nitride ,Electronic, Optical and Magnetic Materials ,Amorphous solid ,Crystal ,chemistry.chemical_compound ,Crystallography ,Silicon nitride ,chemistry ,Chemical physics ,Ceramics and Composites ,Stress relaxation ,sense organs ,Crystalline silicon ,Nitriding ,Strain energy - Abstract
International audience; We present a detailed analysis based on both experimental and modeling approaches of the unique silicon nitride precipitation sequence recently observed in ferritic Fe–Si alloys upon nitriding. At 570 °C, silicon nitride forms as an amorphous phase of size-dependent cuboidal morphology which results from the symmetry of matrix crystal structure. These amorphous precipitates are stable over remarkably long treatment durations. However, we demonstrate here that it is possible to trigger a transition to the precipitation of a crystalline modification of Si3N4 by switching to a denitriding medium at the same temperature. This change in structure is associated with a change from the cube-like morphology to a hexagonal prism shape. This unique phenomenon, driven by a classical nucleation and growth process, can be explained by the shift of stress-relief mechanism related to the change of atmosphere. The plentiful availability of nitrogen atoms during nitriding allows a strong relaxation of the precipitation-induced stress, which is energetically more favorable to the amorphous phase. Upon annealing in a low nitrogen activity medium, nitrogen in solid solution diffuses outward and no longer relieves the precipitation-induced stress. In that configuration, the crystalline modification of Si3N4 becomes more stable owing to its lower associated stress. It precipitates in a hexagonal prism shape, which is the equilibrium shape dictated by the crystal symmetries of both the matrix and the precipitates.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.