1. Fast low-temperature irradiation creep driven by athermal defect dynamics
- Author
-
Feichtmayer, Alexander, Boleininger, Max, Riesch, Johann, Mason, Daniel R., Reali, Luca, Höschen, Till, Fuhr, Maximilian, Schwarz-Selinger, Thomas, Neu, Rudolf, and Dudarev, Sergei L.
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
The occurrence of high stress concentrations in reactor components is a still intractable phenomenon encountered in fusion reactor design. We observe and quantitatively model a non-linear high-dose radiation mediated microstructure evolution effect that facilitates fast stress relaxation in the most challenging low-temperature limit. In situ observations of a tensioned tungsten wire exposed to a high-energy ion beam show that internal stress of up to 2 GPa relaxes within minutes, with the extent and time-scale of relaxation accurately predicted by a parameter-free multiscale model informed by atomistic simulations. As opposed to conventional notions of radiation creep, the effect arises from the self-organisation of nanoscale crystal defects, athermally coalescing into extended polarized dislocation networks that compensate and alleviate the external stress., Comment: 10 pages, 5 figures
- Published
- 2024