25 results on '"Hélène, Dehondt"'
Search Results
2. Adipocyte-specific FXR-deficiency protects adipose tissue from oxidative stress and insulin resistance and improves glucose homeostasis
- Author
-
Hélène Dehondt, Arianna Marino, Laura Butruille, Denis A. Mogilenko, Arielle C. Nzoussi Loubota, Oscar Chávez-Talavera, Emilie Dorchies, Emmanuelle Vallez, Joel Haas, Bruno Derudas, Antonino Bongiovanni, Meryem Tardivel, Folkert Kuipers, Philippe Lefebvre, Sophie Lestavel, Anne Tailleux, David Dombrowicz, Sandrine Caron, and Bart Staels
- Subjects
White adipose tissue ,Nuclear receptor FXR ,Inflammation ,Oxidative stress ,Glucose metabolism ,Internal medicine ,RC31-1245 - Abstract
Objective: Obesity is associated with metabolic dysfunction of white adipose tissue (WAT). Activated adipocytes secrete pro-inflammatory cytokines resulting in the recruitment of pro-inflammatory macrophages, which contribute to WAT insulin resistance. The bile acid (BA)-activated nuclear Farnesoid X Receptor (FXR) controls systemic glucose and lipid metabolism. Here, we studied the role of FXR in adipose tissue function. Methods: We first investigated the immune phenotype of epididymal WAT (eWAT) from high fat diet (HFD)-fed whole-body FXR-deficient (FXR−/−) mice by flow cytometry and gene expression analysis. We then generated adipocyte-specific FXR-deficient (Ad-FXR−/−) mice and analyzed systemic and eWAT metabolism and immune phenotype upon HFD feeding. Transcriptomic analysis was done on mature eWAT adipocytes from HFD-fed Ad-FXR−/− mice. Results: eWAT from HFD-fed whole-body FXR−/− and Ad-FXR−/− mice displayed decreased pro-inflammatory macrophage infiltration and inflammation. Ad-FXR−/− mice showed lower blood glucose concentrations, improved systemic glucose tolerance and WAT insulin sensitivity and oxidative stress. Transcriptomic analysis identified Gsta4, a modulator of oxidative stress in WAT, as the most upregulated gene in Ad-FXR−/− mouse adipocytes. Finally, chromatin immunoprecipitation analysis showed that FXR binds the Gsta4 gene promoter. Conclusions: These results indicate a role for the adipocyte FXR-GSTA4 axis in controlling HFD-induced inflammation and systemic glucose homeostasis.
- Published
- 2023
- Full Text
- View/download PDF
3. Endoplasmic reticulum stress actively suppresses hepatic molecular identity in damaged liver
- Author
-
Vanessa Dubois, Céline Gheeraert, Wouter Vankrunkelsven, Julie Dubois‐Chevalier, Hélène Dehondt, Marie Bobowski‐Gerard, Manjula Vinod, Francesco Paolo Zummo, Fabian Güiza, Maheul Ploton, Emilie Dorchies, Laurent Pineau, Alexis Boulinguiez, Emmanuelle Vallez, Eloise Woitrain, Eric Baugé, Fanny Lalloyer, Christian Duhem, Nabil Rabhi, Ronald E van Kesteren, Cheng‐Ming Chiang, Steve Lancel, Hélène Duez, Jean‐Sébastien Annicotte, Réjane Paumelle, Ilse Vanhorebeek, Greet Van den Berghe, Bart Staels, Philippe Lefebvre, and Jérôme Eeckhoute
- Subjects
liver injury ,NFIL3 ,PAR‐bZIP ,sepsis ,super‐enhancer ,Biology (General) ,QH301-705.5 ,Medicine (General) ,R5-920 - Abstract
Abstract Liver injury triggers adaptive remodeling of the hepatic transcriptome for repair/regeneration. We demonstrate that this involves particularly profound transcriptomic alterations where acute induction of genes involved in handling of endoplasmic reticulum stress (ERS) is accompanied by partial hepatic dedifferentiation. Importantly, widespread hepatic gene downregulation could not simply be ascribed to cofactor squelching secondary to ERS gene induction, but rather involves a combination of active repressive mechanisms. ERS acts through inhibition of the liver‐identity (LIVER‐ID) transcription factor (TF) network, initiated by rapid LIVER‐ID TF protein loss. In addition, induction of the transcriptional repressor NFIL3 further contributes to LIVER‐ID gene repression. Alteration to the liver TF repertoire translates into compromised activity of regulatory regions characterized by the densest co‐recruitment of LIVER‐ID TFs and decommissioning of BRD4 super‐enhancers driving hepatic identity. While transient repression of the hepatic molecular identity is an intrinsic part of liver repair, sustained disequilibrium between the ERS and LIVER‐ID transcriptional programs is linked to liver dysfunction as shown using mouse models of acute liver injury and livers from deceased human septic patients.
- Published
- 2020
- Full Text
- View/download PDF
4. Hepatic transcriptomic signatures of statin treatment are associated with impaired glucose homeostasis in severely obese patients
- Author
-
Daniel Margerie, Philippe Lefebvre, Violeta Raverdy, Uwe Schwahn, Hartmut Ruetten, Philip Larsen, Alain Duhamel, Julien Labreuche, Dorothée Thuillier, Bruno Derudas, Céline Gheeraert, Hélène Dehondt, Quentin Dhalluin, Jérémy Alexandre, Robert Caiazzo, Pamela Nesslany, Helene Verkindt, François Pattou, and Bart Staels
- Subjects
Statin ,Human ,Liver ,Iatrogenic diabetes ,Gene expression ,Gene networks ,Internal medicine ,RC31-1245 ,Genetics ,QH426-470 - Abstract
Abstract Background Clinical data identified an association between the use of HMG-CoA reductase inhibitors (statins) and incident diabetes in patients with underlying diabetes risk factors such as obesity, hypertension and dyslipidemia. The molecular mechanisms however are unknown. Methods An observational cross-sectional study included 910 severely obese patients, mean (SD) body mass index (BMI) 46.7 (8.7), treated with or without statins (ABOS cohort: a biological atlas of severe obesity). Data and sample collection took place in France between 2006 and 2016. Transcriptomic signatures of statin treatment in human liver obtained from genome-wide transcriptomic profiling of five different statin drugs using microarrays were correlated to clinico-biological phenotypes and also assigned to biological pathways and mechanisms. Patients from the non-statin-users group were matched to patients in the statin users group by propensity score analysis to minimize confounding effects from age, gender, parental familial history of diabetes, BMI, waist circumference, systolic and diastolic blood pressure and use of anti-hypertensive drugs as pre-specified covariates. Results We determined the hepatic, statin-related gene signature from genome-wide transcriptomic profiling in severely obese patients with varying degrees of glucose tolerance and cardio-metabolic comorbidities. One hundred and fifty seven patients on statin treatment in the matched cohort showed higher diabetes prevalence (OR = 2.67; 95%CI, 1.60–4.45; P = 0.0002) and impairment of glucose homeostasis. This phenotype was associated with molecular signatures of increased hepatic de novo lipogenesis (DNL) via activation of sterol regulatory element-binding protein 1 (SREBP1) and concomitant upregulation of the expression of key genes in both fatty acid and triglyceride metabolism. Conclusions A DNL gene activation profile in response to statins is associated with insulin resistance and the diabetic status of the patients. Identified molecular signatures thus suggest that statin treatment increases the risk for diabetes in humans at least in part via induction of DNL. Trial registration NCT01129297. Registered May 242,010 (retrospectively registered).
- Published
- 2019
- Full Text
- View/download PDF
5. Keratinocyte Expression of A20/TNFAIP3 Controls Skin Inflammation Associated with Atopic Dermatitis and Psoriasis
- Author
-
Denis A. Mogilenko, Delphine Staumont-Sallé, Geert van Loo, Wim Declercq, Peter Vandenabeele, Michael Devos, David Dombrowicz, Peter Tougaard, C. Becquart, Claus Bachert, Sandrine Quemener, Bart Staels, Barbara Gilbert, Hélène Dehondt, and Sébastien Fleury
- Subjects
Keratinocytes ,0301 basic medicine ,Chemokine ,Biopsy ,Inflammation ,Dermatology ,Systemic inflammation ,Biochemistry ,Dermatitis, Atopic ,Proinflammatory cytokine ,Mice ,03 medical and health sciences ,0302 clinical medicine ,Psoriasis ,medicine ,Animals ,Humans ,Molecular Biology ,Tumor Necrosis Factor alpha-Induced Protein 3 ,Mice, Knockout ,integumentary system ,biology ,Reverse Transcriptase Polymerase Chain Reaction ,Tumor Necrosis Factor-alpha ,business.industry ,Cell Biology ,Atopic dermatitis ,medicine.disease ,030104 developmental biology ,medicine.anatomical_structure ,Gene Expression Regulation ,030220 oncology & carcinogenesis ,Immunology ,biology.protein ,Cytokines ,RNA ,Tumor necrosis factor alpha ,Epidermis ,medicine.symptom ,business ,Keratinocyte ,Signal Transduction - Abstract
Keratinocytes are key players in chronic inflammatory skin diseases. A20 regulates NF-κB-dependent expression of proinflammatory genes and cell death, but the impact of its expression in keratinocytes on systemic inflammation and skin disorders has not been determined. Comparative transcriptomic analysis of microdissected epidermis showed that A20 is down-regulated in involved epidermis, but not in dermis, of psoriasis and atopic dermatitis patients, suggesting that loss of A20 expression in keratinocytes increases the vulnerability for psoriasis/atopic dermatitis induction. We have previously shown that epidermis-specific A20 knockout mice (A20EKO) develop mild epidermal hyperplasia but no macroscopic skin inflammation. We now show that various cytokines and chemokines are up-regulated in A20EKO mouse skin. A20EKO mice also display systemic proinflammatory changes, even in the absence of skin immune cell infiltration, and an exacerbated disease severity upon induction of experimental psoriasis, atopic dermatitis, or skin barrier disruption. Keratinocytes showed increased proinflammatory gene expression in the absence of A20 in unstimulated and IL-17A-stimulated conditions, in part resulting from uncontrolled MyD88-dependent signaling. Our findings indicate that absence of A20 in keratinocytes leads to systemic inflammation at homeostatic conditions and is sufficient to exacerbate inflammatory skin disorders associated with different immune profiles by increasing cytokine and chemokine expression.
- Published
- 2019
6. Transcriptional Network Analysis Implicates Altered Hepatic Immune Function in NASH development and resolution
- Author
-
Audrey Deprince, David Dombrowicz, Artemii Nikitin, Bart Staels, Ann Driessen, Sébastien Fleury, An Verrijken, Denis A. Mogilenko, Hélène Dehondt, Samuel Pic, Luisa Vonghia, Bruno Derudas, Sven Francque, Joel T. Haas, Philippe Lefebvre, Luc Van Gaal, Olivier Molendi-Coste, Céline Gheeraert, Lucie Ducrocq-Geoffroy, Eloise Woitrain, Récepteurs nucléaires, maladies cardiovasculaires et diabète - U 1011 (RNMCD), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Department of Gastroenterology and Hepatology [Antwerp, Belgium], Antwerp University Hospital [Edegem] (UZA), Department of Endocrinology, Diabetology and Metabolism [Antwerp, Belgium], Department of Pathology [Antwerp, Belgium], ANR-16-RHUS-0006,PreciNASH,PreciNASH(2016), European Project: 694717,H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) ,ImmunoBile(2016), Derudas, Marie-Hélène, and Bile acid, immune-metabolism, lipid and glucose homeostasis - ImmunoBile - - H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) 2016-09-01 - 2021-08-31 - 694717 - VALID
- Subjects
[SDV.IMM] Life Sciences [q-bio]/Immunology ,Transcription, Genetic ,Endocrinology, Diabetes and Metabolism ,Antigen presentation ,Inflammation ,Biology ,Diet, High-Fat ,digestive system ,Article ,03 medical and health sciences ,Mice ,0302 clinical medicine ,Immune system ,Non-alcoholic Fatty Liver Disease ,Physiology (medical) ,Internal Medicine ,medicine ,Cytotoxic T cell ,Animals ,Humans ,Gene Regulatory Networks ,030304 developmental biology ,[SDV.MHEP.EM] Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism ,0303 health sciences ,Microarray analysis techniques ,Fatty liver ,nutritional and metabolic diseases ,Cell Biology ,Gene signature ,[SDV.MHEP.EM]Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism ,medicine.disease ,digestive system diseases ,3. Good health ,Mice, Inbred C57BL ,Liver ,Cancer research ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,030211 gastroenterology & hepatology ,Human medicine ,Steatohepatitis ,medicine.symptom - Abstract
Luisa Vonghia and David Dombrowicz equally contributed to the work.; International audience; Progression of fatty liver to non-alcoholic steatohepatitis (NASH) is a rapidly growing health problem. The presence of inflammatory infiltrates in the liver and hepatocyte damage distinguish NASH from simple steatosis. However, the underlying molecular mechanisms involved in the development of NASH remain to be fully understood. Here we perform transcriptional and immune profiling of patients with NASH before and after lifestyle intervention (LSI). Analysis of liver microarray data from a cohort of patients with histologically assessed non-alcoholic fatty liver disease (NAFLD) reveals a hepatic gene signature, which is associated with NASH and is sensitive to regression of NASH activity on LSI independently of body weight loss. Enrichment analysis reveals the presence of immune-associated genes linked to inflammatory responses, antigen presentation and cytotoxic cells in the NASH-linked gene signature. In an independent cohort, NASH is also associated with alterations in blood immune cell populations, including conventional dendritic cells (cDC) type 1 and 2, and cytotoxic CD8 T cells. Lobular inflammation and ballooning are associated with the accumulation of CD8 T cells in the liver. Progression from simple steatosis to NASH in a mouse model of diet-driven NASH results in a comparable immune-related hepatic expression signature and the accumulation of intrahepatic cDC and CD8 T cells. These results show that NASH, compared to normal liver or simple steatosis, is associated with a distinct hepatic immune-related gene signature, elevated hepatic CD8 T cells, and altered antigen-presenting and cytotoxic cells in blood. These findings expand our understanding of NASH and may identify potential targets for NASH therapy.
- Published
- 2019
7. Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR
- Author
-
Maria P. Longhi, Jörg Cammenga, Kamil R. Kranc, Samuel Pic, David Dombrowicz, Benoit Viollet, Olivier Molendi-Coste, Arnaud Villacreces, C. Becquart, Alexandra M. Bogomolova, Peter Carmeliet, Steve Lancel, Jean-Sébastien Annicotte, Christophe Paget, Joel T. Haas, Cédric Dewas, Julien Wartelle, Simon Tavernier, Luciana Berod, Nabil Rabhi, Seiichi Oyadomari, Laurent Pineau, Milica Vukovic, Bart Staels, Céline Gheeraert, Guillemette Marot, Laurent L'homme, Ezra Aksoy, Sébastien Fleury, Sandrine Quemener, Sophie Janssens, Matthieu Levavasseur, Alexis C. Boulter, Hélène Dehondt, Marc Foretz, Delphine Staumont-Sallé, Talia Velasco-Hernandez, Artemii Nikitin, Denis A. Mogilenko, Aurelie Melchior, Récepteurs Nucléaires, Maladies Métaboliques et Cardiovasculaires (RNMCD - U1011), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), European Genomic Institute for Diabetes - FR 3508 (EGID), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), CHU Lille, Metabolic functional (epi)genomics and molecular mechanisms involved in type 2 diabetes and related diseases - UMR 8199 - UMR 1283 (GI3M), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Tokushima University, Linköping University (LIU), Institut Cochin (IC UM3 (UMR 8104 / U1016)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Queen Mary University of London (QMUL), Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), MOdel for Data Analysis and Learning (MODAL), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Paul Painlevé - UMR 8524 (LPP), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Evaluation des technologies de santé et des pratiques médicales - ULR 2694 (METRICS), Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-École polytechnique universitaire de Lille (Polytech Lille)-Université de Lille, Sciences et Technologies, The University of Florida College of Medicine, Universiteit Gent = Ghent University [Belgium] (UGENT), Helmholtz Centre for Infection Research (HZI), Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100 (CEPR), Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPC), Laboratoire Paul Painlevé - UMR 8524 (LPP), Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Université de Lille, Sciences et Technologies-Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Evaluation des technologies de santé et des pratiques médicales - ULR 2694 (METRICS), Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-École polytechnique universitaire de Lille (Polytech Lille), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Tours (UT), Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-École polytechnique universitaire de Lille (Polytech Lille), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille, Université de Tours-Institut National de la Santé et de la Recherche Médicale (INSERM), Récepteurs nucléaires, maladies cardiovasculaires et diabète (EGID), Université de Lille, Droit et Santé-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Institut de Recherche Biomédicale des Armées (IRBA), Departement de Physiologie, Faculté de Médecine, EA4484, IFR 114 IMPRT, Université de Lille, Droit et Santé, Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 (UGSF), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Génomique Intégrative et Modélisation des Maladies Métaboliques (EGID), Université de Lille-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Centre National de la Recherche Scientifique (CNRS)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Fujii Memorial Institute of Medical Sciences [Tokushima, Japan] (Institute of Advanced Medical Sciences), Department of Hematology [Linköping, Sweden] (Institute for Clinical and Experimental Medicine), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre for Haemato-Oncology [London, UK] (Barts Cancer Institute), Composantes innées de la réponse immunitaire et différenciation (CIRID), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, Santé publique : épidémiologie et qualité des soins-EA 2694 (CERIM), Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille, University of Florida College of Medicine [Gainesville, FL, USA], Hannover Medical School [Hannover] (MHH), The William Harvey Research Institute [London, UK] (NIHR Barts Biomedical Research Centre), Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Institut National de la Santé et de la Recherche Médicale (INSERM), ER Stress and Inflammation [Ghent, Belgium], VIB Center for Inflammation Research [Ghent, Belgium], and Centre for Biochemical Pharmacology [London, UK] (William Harvey Research Institute)
- Subjects
X-Box Binding Protein 1 ,XBP1 ,[SDV]Life Sciences [q-bio] ,Citric Acid Cycle ,Inflammation ,UPR ,Biology ,fatty acids ,General Biochemistry, Genetics and Molecular Biology ,Mice ,chemistry.chemical_compound ,03 medical and health sciences ,Immune system ,0302 clinical medicine ,IL-23 ,medicine ,Animals ,metabolic reprogramming ,dendritic cells ,innate immunity ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,Mice, Knockout ,Hexokinase ,0303 health sciences ,Innate immune system ,mtROS ,hexokinase ,Toll-Like Receptors ,Dendritic cell ,psoriasis ,glycolysis ,Acquired immune system ,Immunity, Innate ,Mitochondria ,Cell biology ,Cellular Microenvironment ,chemistry ,030220 oncology & carcinogenesis ,Unfolded Protein Response ,Unfolded protein response ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,medicine.symptom ,Reactive Oxygen Species ,030217 neurology & neurosurgery - Abstract
International audience; Innate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-like receptor (TLR) stimulation shifts intracellular metabolism toward glycolysis, while anti-inflammatory signals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect the immune response is unknown. We demonstrate that TLR-dependent responses of dendritic cells (DCs) are exacerbated by a high-fatty-acid (FA) metabolic environment. FAs suppress the TLR-induced hexokinase activity and perturb tricarboxylic acid cycle metabolism. These metabolic changes enhance mitochondrial reactive oxygen species (mtROS) production and, in turn, the unfolded protein response (UPR), leading to a distinct transcriptomic signature with IL-23 as hallmark. Interestingly, chemical or genetic suppression of glycolysis was sufficient to induce this specific immune response. Conversely, reducing mtROS production or DC-specific deficiency in XBP1 attenuated IL-23 expression and skin inflammation in an IL-23-dependent model of psoriasis. Thus, fine-tuning of innate immunity depends on optimization of metabolic demands and minimization of mtROS-induced UPR.
- Published
- 2019
8. Hepatic PPARα is critical in the metabolic adaptation to sepsis
- Author
-
Nathalie Hennuyer, Bruno Derudas, Fanny Lalloyer, Céline Gheeraert, Vanessa Legry, Emmanuelle Vallez, Emmanuel Bouchaert, Hélène Dehondt, Bart Staels, Yann Deleye, Dieter Mesotten, Steve Lancel, Greet Van den Berghe, Céline Cudejko, Hervé Guillou, Réjane Paumelle, Sébastien Fleury, Alexandra Montagner, Kristiaan Wouters, Anne Tailleux, Joel T. Haas, Lies Langouche, Jonathan Vanhoutte, Eric Baugé, Pierre Gourdy, David Dombrowicz, Sarra Smati, Walter Wahli, Arnaud Polizzi, Sarah Anissa Hannou, Récepteurs nucléaires, maladies cardiovasculaires et diabète - U 1011 (RNMCD), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Institut National de la Santé et de la Recherche Médicale (INSERM), Department of Intensive care Medicine, Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), Maastricht University [Maastricht], Toxicologie Intégrative & Métabolisme (ToxAlim-TIM), ToxAlim (ToxAlim), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole d'Ingénieurs de Purpan (INPT - EI Purpan), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Recherche Agronomique (INRA), Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), Center for Integrative Genomics - Institute of Bioinformatics, Génopode (CIG), Swiss Institute of Bioinformatics [Lausanne] (SIB), Université de Lausanne (UNIL)-Université de Lausanne (UNIL), Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), European Project: 694717,H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) ,ImmunoBile(2016), Récepteurs nucléaires, maladies cardiovasculaires et diabète (EGID), Université de Lille, Droit et Santé-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Nanyang Technological University [Singapour], Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Ecole Nationale Vétérinaire de Toulouse (ENVT), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Ecole d'Ingénieurs de Purpan (INP - PURPAN), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Recherche Agronomique (INRA)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Lausanne = University of Lausanne (UNIL)-Université de Lausanne = University of Lausanne (UNIL), Derudas, Marie-Hélène, Bile acid, immune-metabolism, lipid and glucose homeostasis - ImmunoBile - - H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) 2016-09-01 - 2021-08-31 - 694717 - VALID, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Ecole Nationale Vétérinaire de Toulouse (ENVT), Université Fédérale Toulouse Midi-Pyrénées-Ecole d'Ingénieurs de Purpan (INPT - EI Purpan), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Interne Geneeskunde, RS: CARIM - R3 - Vascular biology, RS: Carim - V01 Vascular complications of diabetes and metabolic syndrome, and Lee Kong Chian School of Medicine (LKCMedicine)
- Subjects
0301 basic medicine ,BACTERIAL ,Peroxisome proliferator-activated receptor ,nuclear receptors ,PROTECTS ,sepsis ,Mice ,0302 clinical medicine ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Nuclear receptors ,Ketogenesis ,GENE-EXPRESSION ,chemistry.chemical_classification ,Fatty Acids ,INTENSIVE INSULIN THERAPY ,Bacterial Infections ,Adaptation, Physiological ,3. Good health ,Liver ,SURVIVAL ,[SDV.MHEP.MI] Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,030211 gastroenterology & hepatology ,lipids (amino acids, peptides, and proteins) ,hepatocytes ,medicine.symptom ,medicine.medical_specialty ,FATTY-ACID OXIDATION ,Inflammation ,Article ,Sepsis ,03 medical and health sciences ,Internal medicine ,medicine ,[SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Animals ,Humans ,Medicine [Science] ,PPAR alpha ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,TOLERANCE ,Hepatology ,business.industry ,Lipid metabolism ,Lipid signaling ,medicine.disease ,Mice, Inbred C57BL ,030104 developmental biology ,Endocrinology ,Glucose ,Metabolism ,chemistry ,PROLIFERATOR-ACTIVATED RECEPTORS ,inflammation ,Metabolic control analysis ,Hepatocytes ,Steatosis ,business ,metabolism - Abstract
Background & Aims: Although the role of inflammation to combat infection is known, the contribution of metabolic changes in response to sepsis is poorly understood. Sepsis induces the release of lipid mediators, many of which activate nuclear receptors such as the peroxisome proliferator-activated receptor (PPAR)alpha, which controls both lipid metabolism and inflammation. We aimed to elucidate the previously unknown role of hepatic PPAR alpha in the response to sepsis.Methods: Sepsis was induced by intraperitoneal injection of Escherichia coli in different models of cell-specific PPAR alpha-deficiency and their controls. The systemic and hepatic metabolic response was analyzed using biochemical, transcriptomic and functional assays. PPAR alpha expression was analyzed in livers from elective surgery and critically ill patients and correlated with hepatic gene expression and blood parameters.Results: Both whole body and non-hematopoietic PPAR alpha-deficiency in mice decreased survival upon bacterial infection. Livers of septic PPAR alpha-deficient mice displayed an impaired metabolic shift from glucose to lipid utilization resulting in more severe hypoglycemia, impaired induction of hyperketonemia and increased steatosis due to lower expression of genes involved in fatty acid catabolism and ketogenesis. Hepatocyte-specific deletion of PPAR alpha impaired the metabolic response to sepsis and was sufficient to decrease survival upon bacterial infection. Hepatic PPAR alpha expression was lower in critically ill patients and correlated positively with expression of lipid metabolism genes, but not with systemic inflammatory markers.Conclusion: During sepsis, PPAR alpha-deficiency in hepatocytes is deleterious as it impairs the adaptive metabolic shift from glucose to FA utilization. Metabolic control by PPAR alpha in hepatocytes plays a key role in the host defense against infection.Lay summary: As the main cause of death in critically ill patients, sepsis remains a major health issue lacking efficacious therapies. While current clinical literature suggests an important role for inflammation, metabolic aspects of sepsis have mostly been overlooked. Here, we show that mice with an impaired metabolic response, due to deficiency of the nuclear receptor PPAR alpha in the liver, exhibit enhanced mortality upon bacterial infection despite a similar inflammatory response, suggesting that metabolic interventions may be a viable strategy for improving sepsis outcomes. (C) 2019 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
- Published
- 2019
9. The RBM14/CoAA-interacting, long intergenic non-coding RNA Paral1 regulates adipogenesis and coactivates the nuclear receptor PPARγ
- Author
-
François F, Firmin, Frederik, Oger, Céline, Gheeraert, Julie, Dubois-Chevalier, Anne-Sophie, Vercoutter-Edouart, Fawaz, Alzaid, Claire, Mazuy, Hélène, Dehondt, Jeremy, Alexandre, Bruno, Derudas, Quentin, Dhalluin, Maheul, Ploton, Alexandre, Berthier, Eloise, Woitrain, Tony, Lefebvre, Nicolas, Venteclef, François, Pattou, Bart, Staels, Jérôme, Eeckhoute, Philippe, Lefebvre, Récepteurs nucléaires, maladies cardiovasculaires et diabète (EGID), Université de Lille, Droit et Santé-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 (UGSF), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Fédération de Recherche Biochimie Structurale et Fonctionnelle des Assemblages Biomoléculaires (FRABio - CNRS FR3688), Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Recherche translationelle sur le diabète (EGID), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Institut Européen de Génomique du Diabète - EGID, Récepteurs nucléaires, maladies cardiovasculaires et diabète - U 1011 (RNMCD), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Institut National de la Santé et de la Recherche Médicale (INSERM), Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576 (UGSF), Institut National de la Recherche Agronomique (INRA)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Biochimie Structurale et Fonctionnelle des Assemblages Biomoléculaires - CNRS FR3688 (FRABio), Université de Lille-Centre National de la Recherche Scientifique (CNRS), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Recherche translationnelle sur le diabète - U 1190 (RTD), Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Derudas, Marie-Hélène, and École Pratique des Hautes Études (EPHE)
- Subjects
Adult ,Transcription, Genetic ,[SDV]Life Sciences [q-bio] ,lcsh:Medicine ,Article ,Body Mass Index ,Mice ,Adipocytes ,Animals ,Humans ,Obesity ,lcsh:Science ,Cell Nucleus ,Inflammation ,Adipogenesis ,lcsh:R ,Intracellular Signaling Peptides and Proteins ,Mesenchymal Stem Cells ,3T3 Cells ,Middle Aged ,PPAR gamma ,[SDV] Life Sciences [q-bio] ,Disease Models, Animal ,Female ,RNA, Long Noncoding ,lcsh:Q ,Transcription Factors - Abstract
International audience; Adipocyte differentiation and function relies on a network of transcription factors, which is disrupted in obesity-associated low grade, chronic inflammation leading to adipose tissue dysfunction. In this context, there is a need for a thorough understanding of the transcriptional regulatory network involved in adipose tissue pathophysiology. Recent advances in the functional annotation of the genome has highlighted the role of non-coding RNAs in cellular differentiation processes in coordination with transcription factors. Using an unbiased genome-wide approach, we identified and characterized a novel long intergenic non-coding RNA (lincRNA) strongly induced during adipocyte differentiation. This lincRNA favors adipocyte differentiation and coactivates the master adipogenic regulator peroxisome proliferator-activated receptor gamma (PPARγ) through interaction with the paraspeckle component and hnRNP-like RNA binding protein 14 (RBM14/NCoAA), and was therefore called PPARγ-activator RBM14-associated lncRNA (Paral1). Paral1 expression is restricted to adipocytes and decreased in humans with increasing body mass index. A decreased expression was also observed in diet-induced or genetic mouse models of obesity and this down-regulation was mimicked in vitro by TNF treatment. In conclusion, we have identified a novel component of the adipogenic transcriptional regulatory network defining the lincRNA Paral1 as an obesity-sensitive regulator of adipocyte differentiation and function.
- Published
- 2017
10. The logic of transcriptional regulator recruitment architecture at cis-regulatory modules controlling liver functions
- Author
-
Jason S. Carroll, Nathalie Hennuyer, Bruno Derudas, Eric Baugé, Parisa Mazrooei, Aurélien A. Sérandour, Julie Dubois-Chevalier, Jérôme Eeckhoute, Bart Staels, Guillemette Marot, Philippe Lefebvre, Mathieu Lupien, Céline Gheeraert, Vanessa Dubois, Penderia Guillaume, Hélène Dehondt, Réjane Paumelle, Claire Mazuy, Université de Lille, Droit et Santé, Récepteurs nucléaires, maladies cardiovasculaires et diabète - U 1011 (RNMCD), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Department of Medical Biophysics (MBP), University of Toronto, University of Cambridge [UK] (CAM), MOdel for Data Analysis and Learning (MODAL), Laboratoire Paul Painlevé (LPP), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Evaluation des technologies de santé et des pratiques médicales - ULR 2694 (METRICS), Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-École polytechnique universitaire de Lille (Polytech Lille), European Project: 694717,H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) ,ImmunoBile(2016), Carroll, Jason [0000-0003-3643-0080], Apollo - University of Cambridge Repository, Marot, Guillemette, Bile acid, immune-metabolism, lipid and glucose homeostasis - ImmunoBile - - H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) 2016-09-01 - 2021-08-31 - 694717 - VALID, CHU Lille, INSERM, Inserm, Université de Lille, Récepteurs nucléaires, Maladies Cardiovasculaires et Diabète (EGID) - U1011, Récepteurs nucléaires, maladies cardiovasculaires et diabète - U 1011 [RNMCD], METRICS : Evaluation des technologies de santé et des pratiques médicales - ULR 2694, Department of Medical Biophysics [MBP], University of Cambridge [UK] [CAM], Evaluation des technologies de santé et des pratiques médicales - ULR 2694 [METRICS], Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Institut National de la Santé et de la Recherche Médicale (INSERM), Laboratoire Paul Painlevé - UMR 8524 (LPP), and Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-École polytechnique universitaire de Lille (Polytech Lille)
- Subjects
0301 basic medicine ,Transcription, Genetic ,Cytoplasmic and Nuclear/deficiency ,[SDV]Life Sciences [q-bio] ,Receptors, Cytoplasmic and Nuclear ,Mice ,0302 clinical medicine ,[STAT.ML]Statistics [stat]/Machine Learning [stat.ML] ,Receptors ,Transcriptional regulation ,Regulatory Elements, Transcriptional ,Genetics (clinical) ,Epigenomics ,Cis-regulatory module ,Regulation of gene expression ,Mice, Knockout ,PPAR alpha/deficiency ,[STAT.ME] Statistics [stat]/Methodology [stat.ME] ,[SDV.BIBS] Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,Genome ,Genomics ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,[SDV] Life Sciences [q-bio] ,Liver ,Transcriptional ,Transcription ,[STAT.ME]Statistics [stat]/Methodology [stat.ME] ,Algorithms ,Liver/metabolism ,Knockout ,Computational biology ,PPAR alpha/genetics ,Biology ,03 medical and health sciences ,Genetic ,Genetics ,Animals ,PPAR alpha ,Enhancer ,Gene ,Gene Expression Profiling ,fungi ,Regulatory Elements ,[STAT.ML] Statistics [stat]/Machine Learning [stat.ML] ,Genomics/methods ,Gene expression profiling ,030104 developmental biology ,Gene Expression Regulation ,Cytoplasmic and Nuclear/genetics ,030217 neurology & neurosurgery - Abstract
Control of gene transcription relies on concomitant regulation by multiple transcriptional regulators (TRs). However, how recruitment of a myriad of TRs is orchestrated at cis-regulatory modules (CRMs) to account for coregulation of specific biological pathways is only partially understood. Here, we have used mouse liver CRMs involved in regulatory activities of the hepatic TR, NR1H4 (FXR; farnesoid X receptor), as our model system to tackle this question. Using integrative cistromic, epigenomic, transcriptomic, and interactomic analyses, we reveal a logical organization where trans-regulatory modules (TRMs), which consist of subsets of preferentially and coordinately corecruited TRs, assemble into hierarchical combinations at hepatic CRMs. Different combinations of TRMs add to a core TRM, broadly found across the whole landscape of CRMs, to discriminate promoters from enhancers. These combinations also specify distinct sets of CRM differentially organized along the genome and involved in regulation of either housekeeping/cellular maintenance genes or liver-specific functions. In addition to these TRMs which we define as obligatory, we show that facultative TRMs, such as one comprising core circadian TRs, are further recruited to selective subsets of CRMs to modulate their activities. TRMs transcend TR classification into ubiquitous versus liver-identity factors, as well as TR grouping into functional families. Hence, hierarchical superimpositions of obligatory and facultative TRMs bring about independent transcriptional regulatory inputs defining different sets of CRMs with logical connection to regulation of specific gene sets and biological pathways. Altogether, our study reveals novel principles of concerted transcriptional regulation by multiple TRs at CRMs.
- Published
- 2017
11. Glucose sensing O-GlcNAcylation pathway regulates the nuclear bile acid receptor farnesoid X receptor (FXR)
- Author
-
Claire Mazuy, Tony Lefebvre, Wahiba Berrabah, Anne Tailleux, Maheul Ploton, Philippe Lefebvre, Jérôme Eeckhoute, Jeremy Alexandre, Emmanuel Bouchaert, Hélène Dehondt, Bart Staels, Pierrette Aumercier, Céline Gheeraert, and Sandrine Caron
- Subjects
0303 health sciences ,Hepatology ,Bile acid ,Glycogen ,medicine.drug_class ,Pentose phosphate pathway ,Biology ,G protein-coupled bile acid receptor ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Nuclear receptor ,Biochemistry ,chemistry ,030220 oncology & carcinogenesis ,medicine ,Glycolysis ,Farnesoid X receptor ,Signal transduction ,030304 developmental biology - Abstract
Bile acid metabolism is intimately linked to the control of energy homeostasis and glucose and lipid metabolism. The nuclear receptor farnesoid X receptor (FXR) plays a major role in the enterohepatic cycling of bile acids, but the impact of nutrients on bile acid homeostasis is poorly characterized. Metabolically active hepatocytes cope with increases in intracellular glucose concentrations by directing glucose into storage (glycogen) or oxidation (glycolysis) pathways, as well as to the pentose phosphate shunt and the hexosamine biosynthetic pathway. Here we studied whether the glucose nonoxidative hexosamine biosynthetic pathway modulates FXR activity. Our results show that FXR interacts with and is O-GlcNAcylated by O-GlcNAc transferase in its N-terminal AF1 domain. Increased FXR O-GlcNAcylation enhances FXR gene expression and protein stability in a cell type-specific manner. High glucose concentrations increased FXR O-GlcNAcylation, hence its protein stability and transcriptional activity by inactivating corepressor complexes, which associate in a ligand-dependent manner with FXR, and increased FXR binding to chromatin. Finally, in vivo fasting-refeeding experiments show that FXR undergoes O-GlcNAcylation in fed conditions associated with increased direct FXR target gene expression and decreased liver bile acid content. Conclusion: FXR activity is regulated by glucose fluxes in hepatocytes through a direct posttranslational modification catalyzed by the glucose-sensing hexosamine biosynthetic pathway. (Hepatology 2014;59:2022–2033)
- Published
- 2014
12. Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk
- Author
-
Geoffrey Porez, Fleur Lien, Hélène Dehondt, Alain Van Dorsselaer, Hélène Diemer, Emmanuel Bouchaert, Alexandre Berthier, Alexandre Patrice, Bart Staels, Jelena Kamilic, Céline Gheeraert, Albert K. Groen, Jeremy Alexandre, Anthony Lucas, François Pattou, Maheul Ploton, Janne Prawitt, Philippe Lefebvre, Sophie Colin, Christophe Rachez, Center for Liver, Digestive and Metabolic Diseases (CLDM), and Lifestyle Medicine (LM)
- Subjects
Male ,Transcription, Genetic ,Receptors, Cytoplasmic and Nuclear ,TRANSCRIPTIONAL ACTIVITY ,Homeostasis ,Glucose homeostasis ,Intestinal Mucosa ,Phosphorylation ,Promoter Regions, Genetic ,Enterohepatic circulation ,POSTTRANSLATIONAL MODIFICATIONS ,Bile acid ,ACTIVATED PROTEIN-KINASE ,Hep G2 Cells ,General Medicine ,G protein-coupled bile acid receptor ,Metformin ,Intestines ,Liver ,LIVER-INJURY ,Signal transduction ,FARNESOID-X-RECEPTOR ,Protein Binding ,Signal Transduction ,Research Article ,Transcriptional Activation ,ORPHAN NUCLEAR RECEPTOR ,medicine.medical_specialty ,medicine.drug_class ,CELLULAR-ENERGY ,Molecular Sequence Data ,Cholestasis, Intrahepatic ,Biology ,Bile Acids and Salts ,Cholestasis ,Internal medicine ,medicine ,Animals ,Humans ,Hypoglycemic Agents ,Amino Acid Sequence ,Adenylate Kinase ,AMPK ,Biological Transport ,Ribonucleotides ,Aminoimidazole Carboxamide ,medicine.disease ,Mice, Inbred C57BL ,OBSTRUCTIVE CHOLESTASIS ,MICE ,Endocrinology ,Trans-Activators ,Farnesoid X receptor ,GLUCOSE-HOMEOSTASIS ,Caco-2 Cells ,Protein Processing, Post-Translational - Abstract
The nuclear bile acid receptor farnesoid X receptor (FXR) is an important transcriptional regulator of bile acid, lipid, and glucose metabolism. FXR is highly expressed in the liver and intestine and controls the synthesis and enterohepatic circulation of bile e acids. However, little is known about FXR-associated proteins that contribute to metabolic regulation. Here, we performed a mass spectrometry-based search for FXR-interacting proteins in human hepatoma cells and identified AMPK as a coregulator of FXR. FXR interacted with the nutrient-sensitive kinase AMPK in the cytoplasm of target cells and was phosphorylated in its hinge domain. In cultured human and murine hepatocytes and enterocytes, pharmacological activation of AMPK inhibited FXR transcriptional activity and prevented FXR coactivator recruitment to promoters of FXR-regulated genes. Furthermore, treatment with AMPK activators, including the antidiabetic biguanide metformin, inhibited FXR agonist induction of FXR target genes in mouse liver and intestine. In a mouse model of intrahepatic cholestasis, metformin treatment induced FXR phosphorylation, perturbed bile acid homeostasis, and worsened liver injury. Together, our data indicate that AMPK directly phosphorylates and regulates FXR transcriptional activity to precipitate liver injury under conditions favoring cholestasis.
- Published
- 2014
13. Author Correction: Transcriptional network analysis implicates altered hepatic immune function in NASH development and resolution
- Author
-
Luisa Vonghia, Eloise Woitrain, Olivier Molendi-Coste, Hélène Dehondt, Philippe Lefebvre, Denis A. Mogilenko, Ann Driessen, Samuel Pic, Sébastien Fleury, Bruno Derudas, Luc Van Gaal, David Dombrowicz, Bart Staels, Sven Francque, Céline Gheeraert, Lucie Ducrocq-Geoffroy, Artemii Nikitin, An Verrijken, Audrey Deprince, and Joel T. Haas
- Subjects
Computer science ,Physiology (medical) ,Endocrinology, Diabetes and Metabolism ,Resolution (electron density) ,Internal Medicine ,Cell Biology ,Computational biology ,Network analysis - Abstract
In the version of this article initially published, ANR grant ANR-16-RHUS-0006 to author Joel T. Haas was not included in the Acknowledgements. The error has been corrected in the HTML and PDF versions of the article.
- Published
- 2019
14. Mitochondrial Dysfunction as an Arrhythmogenic Substrate
- Author
-
Philippe Lefebvre, Augustin Coisne, Mohamed Koussa, Bart Staels, Isabelle Remy-Jouet, Dominique Lacroix, Remi Neviere, Georges Fayad, Hélène Dehondt, Eric Boulanger, Farid Zerimech, Xavier Marechal, Thomas Modine, David Montaigne, and Christopher Hurt
- Subjects
education.field_of_study ,medicine.medical_specialty ,business.industry ,Population ,Atrial fibrillation ,Mitochondrion ,medicine.disease ,Cardiac surgery ,Mitochondrial permeability transition pore ,Internal medicine ,Heart rate ,medicine ,Cardiology ,Sinus rhythm ,Carnitine ,Cardiology and Cardiovascular Medicine ,education ,business ,medicine.drug - Abstract
Objectives This study sought to provide bedside evidence of the potential link between cardiac mitochondrial dysfunction and arrhythmia as reported in bench studies. Background Atrial fibrillation (AF) is a frequent complication of cardiac surgery. Underlying mechanisms of post-operative atrial fibrillation (POAF) remain largely unknown. Because cardiac mitochondrial dysfunction has been reported in clinical conditions with a high risk of POAF, we investigated whether a causal link exists between POAF onset and pre-operative function of cardiac mitochondria. Methods Pre-operative mitochondrial respiration and calcium retention capacity, respiratory complex activity, and myocardial oxidative stress were quantified in right atrial tissue from 104 consecutive patients with metabolic syndrome, in sinus rhythm, and undergoing coronary artery bypass graft surgery. Results In this high-risk population, POAF occurred in 44% of patients. Decreased pre-operative mitochondrial respiration and increased sensitivity to calcium-induced mitochondrial permeability transition pore opening were significantly associated with POAF. Adenosine diphosphate–stimulated mitochondrial respiration supported by palmitoyl- l -carnitine was significantly lower in POAF patients and remained independently associated with AF onset after adjustment for age, body mass index, heart rate, beta-blocker use, and statin medication (multivariate logistic regression coefficient per unit = −0.314 ± 0.144; p = 0.028). Gene expression profile analysis identified a general downregulation of the mitochondria/oxidative phosphorylation gene cluster in pre-operative atrial tissue of patients in whom AF developed. Conclusions Our prospective study identifies an association between pre-operative mitochondrial dysfunction of the atrial myocardium and AF occurrence after cardiac surgery in patients with metabolic disease, providing novel insights into the link between mitochondria and arrhythmias in patients.
- Published
- 2013
15. The logic of transcriptional regulator recruitment architecture at
- Author
-
Julie, Dubois-Chevalier, Vanessa, Dubois, Hélène, Dehondt, Parisa, Mazrooei, Claire, Mazuy, Aurélien A, Sérandour, Céline, Gheeraert, Penderia, Guillaume, Eric, Baugé, Bruno, Derudas, Nathalie, Hennuyer, Réjane, Paumelle, Guillemette, Marot, Jason S, Carroll, Mathieu, Lupien, Bart, Staels, Philippe, Lefebvre, and Jérôme, Eeckhoute
- Subjects
Mice, Knockout ,Genome ,Transcription, Genetic ,Gene Expression Profiling ,Research ,fungi ,Receptors, Cytoplasmic and Nuclear ,Genomics ,Mice ,Gene Expression Regulation ,Liver ,Animals ,PPAR alpha ,Regulatory Elements, Transcriptional ,Algorithms - Abstract
Control of gene transcription relies on concomitant regulation by multiple transcriptional regulators (TRs). However, how recruitment of a myriad of TRs is orchestrated at cis-regulatory modules (CRMs) to account for coregulation of specific biological pathways is only partially understood. Here, we have used mouse liver CRMs involved in regulatory activities of the hepatic TR, NR1H4 (FXR; farnesoid X receptor), as our model system to tackle this question. Using integrative cistromic, epigenomic, transcriptomic, and interactomic analyses, we reveal a logical organization where trans-regulatory modules (TRMs), which consist of subsets of preferentially and coordinately corecruited TRs, assemble into hierarchical combinations at hepatic CRMs. Different combinations of TRMs add to a core TRM, broadly found across the whole landscape of CRMs, to discriminate promoters from enhancers. These combinations also specify distinct sets of CRM differentially organized along the genome and involved in regulation of either housekeeping/cellular maintenance genes or liver-specific functions. In addition to these TRMs which we define as obligatory, we show that facultative TRMs, such as one comprising core circadian TRs, are further recruited to selective subsets of CRMs to modulate their activities. TRMs transcend TR classification into ubiquitous versus liver-identity factors, as well as TR grouping into functional families. Hence, hierarchical superimpositions of obligatory and facultative TRMs bring about independent transcriptional regulatory inputs defining different sets of CRMs with logical connection to regulation of specific gene sets and biological pathways. Altogether, our study reveals novel principles of concerted transcriptional regulation by multiple TRs at CRMs.
- Published
- 2016
16. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells
- Author
-
Kadiombo Bantubungi, Yasmine Sebti, Emilie Dorchies, Emmanuelle Vallez, Nathalie Hennuyer, Olivier Briand, Sophie Lestavel, Alessia Perino, Anne Tailleux, Philippe Marchetti, Jerome Kluza, Philippe Lefebvre, Robert Caiazzo, Sama I. Sayin, Cheryl A. Brighton, Sarah Ducastel, Véronique Touche, Fiona M. Gribble, Hélène Dehondt, Bart Staels, Mohamed-Sami Trabelsi, Frank Reimann, Valeria Spinelli, Janne Prawitt, Fredrik Bäckhed, Kristina Schoonjans, Mehdi Daoudi, François Pattou, Gregory Baud, and Sandrine Caron
- Subjects
Blood Glucose ,Colesevelam Hydrochloride ,Mice, Obese ,Receptors, Cytoplasmic and Nuclear ,General Physics and Astronomy ,Enteroendocrine cell ,Proglucagon ,Receptors, G-Protein-Coupled ,Mice ,Glucagon-Like Peptide 1 ,Insulin-Secreting Cells ,Insulin Secretion ,Insulin ,Glucose homeostasis ,glucose ,Intestinal Mucosa ,Mice, Knockout ,Multidisciplinary ,Basic Helix-Loop-Helix Leucine Zipper Transcription Factors ,Anticholesteremic Agents ,Nuclear Proteins ,glycolysis ,G protein-coupled bile acid receptor ,Glucagon-like peptide-1 ,3. Good health ,Intestines ,Jejunum ,Signal Transduction ,medicine.medical_specialty ,Colon ,Enteroendocrine Cells ,Biology ,Diet, High-Fat ,Article ,General Biochemistry, Genetics and Molecular Biology ,Bile Acids and Salts ,Ileum ,Internal medicine ,medicine ,Animals ,Humans ,Secretion ,Obesity ,RNA, Messenger ,intestine ,Sequestering Agents ,bile acids ,General Chemistry ,Endocrinology ,Nuclear receptor ,Farnesoid X receptor ,pharmacology ,Transcription Factors - Abstract
Bile acids are signalling molecules, which activate the transmembrane receptor TGR5 and the nuclear receptor FXR. BA sequestrants (BAS) complex bile acids in the intestinal lumen and decrease intestinal FXR activity. The BAS-BA complex also induces glucagon-like peptide-1 (GLP-1) production by L cells which potentiates beta-cell glucose-induced insulin secretion. Whether FXR is expressed in L cells and controls GLP-1 production is unknown. Here, we show that FXR activation in L cells decreases proglucagon expression by interfering with the glucose-responsive factor Carbohydrate-Responsive Element Binding Protein (ChREBP) and GLP-1 secretion by inhibiting glycolysis. In vivo, FXR deficiency increases GLP-1 gene expression and secretion in response to glucose hence improving glucose metabolism. Moreover, treatment of ob/ob mice with the BAS colesevelam increases intestinal proglucagon gene expression and improves glycaemia in a FXR-dependent manner. These findings identify the FXR/GLP-1 pathway as a new mechanism of BA control of glucose metabolism and a pharmacological target for type 2 diabetes.
- Published
- 2015
17. Screening strategy to generate cell specific recombination: a case report with the RIP-Cre mice
- Author
-
Emmanuelle Vallez, Sandrine Caron, Valeria Spinelli, Emilie Dorchies, Hélène Dehondt, Anne Tailleux, Céline Martin, Bart Staels, and Mohamed-Sami Trabelsi
- Subjects
Genetics ,Cell specific ,Mice, Knockout ,Recombination, Genetic ,Strain (chemistry) ,Integrases ,Transgene ,Computational biology ,Biology ,Molecular medicine ,Polymerase Chain Reaction ,Mice, Inbred C57BL ,Islets of Langerhans ,Mice ,Germ Cells ,Knockout mouse ,Animals ,Animal Science and Zoology ,Agronomy and Crop Science ,Gene ,Function (biology) ,Recombination ,Alleles ,Biotechnology - Abstract
Conditional gene knockout technology is a powerful tool to study the function of a gene in a specific tissue, organ or cell lineage. The most commonly used procedure applies the Cre-LoxP strategy, where the choice of the Cre driver promoter is critical to determine the efficiency and specificity of the system. However, a considered choice of an appropriate promoter does not always protect against the risk of unwanted recombination and the consequent deletion of the gene in other tissues than the desired one(s), due to phenomena of non-specific activation of the Cre transgene. Furthermore, the causes of these phenomena are not completely understood and this can potentially affect every strain of Cre-mice. In our study on the deletion of a same gene in two different tissues, we show that the incidence rate of non-specific recombination in unwanted tissues depends on the Cre driver strain, ranging from 100 %, rendering it useless (aP2-Cre strain), to ~5 %, which is still compatible with their use (RIP-Cre strain). The use of a simple PCR strategy conceived to detect this occurrence is indispensable when producing a tissue-specific knockout mouse. Therefore, when choosing the Cre-driver promoter, researchers not only have to be careful about its tissue-specificity and timing of activation, but should also include a systematical screening in order to exclude mice in which atypical recombination has occurred and to limit the unnecessary use of laboratory animals in uninterpretable experiments.
- Published
- 2015
18. Transcriptional Regulation of Apolipoprotein A5 Gene Expression by the Nuclear Receptor RORα
- Author
-
Bart Staels, Audrey Helleboid-Chapman, Len A. Pennacchio, Hélène Dehondt, Jean-Charles Fruchart, Annelise Genoux, Geneviève Martin, Jamila Fruchart-Najib, Christian Duhem, and Dean W. Hum
- Subjects
Transcriptional Activation ,medicine.medical_specialty ,Carcinoma, Hepatocellular ,Apolipoprotein B ,Receptors, Cytoplasmic and Nuclear ,Receptor tyrosine kinase-like orphan receptor ,Receptors, Cell Surface ,Biology ,Apolipoproteins A ,Receptor Tyrosine Kinase-like Orphan Receptors ,Adenoviridae ,Mice ,Mice, Neurologic Mutants ,Cell Line, Tumor ,Internal medicine ,Gene expression ,medicine ,Transcriptional regulation ,Animals ,Homeostasis ,Humans ,RNA, Messenger ,Promoter Regions, Genetic ,Gene ,Triglycerides ,Liver Neoplasms ,Receptor Protein-Tyrosine Kinases ,Nuclear Receptor Subfamily 1, Group F, Member 1 ,Triglyceride homeostasis ,Atherosclerosis ,Mice, Inbred C57BL ,Apolipoproteins ,Endocrinology ,Nuclear receptor ,Apolipoprotein A-V ,Trans-Activators ,biology.protein ,Cardiology and Cardiovascular Medicine - Abstract
Objective— The newly identified apolipoprotein A5 ( APOA5 ), selectively expressed in the liver, is a crucial determinant of plasma triglyceride levels. Because elevated plasma triglyceride concentrations constitute an independent risk factor for cardiovascular diseases, it is important to understand how the expression of this gene is regulated. In the present study, we identified the retinoic acid receptor-related orphan receptor-α (RORα) as a regulator of human APOA5 gene expression. Methods and Results— Using electromobility shift assays, we first demonstrated that RORα1 and RORα4 proteins can bind specifically to a direct repeat 1 site present at the position −272/−260 in the APOA5 gene promoter. In addition, using transient cotransfection experiments in HepG2 and HuH7 cells, we demonstrated that both RORα1 and RORα4 strongly increase APOA5 promoter transcriptional activity in a dose-dependent manner. Finally, adenoviral overexpression of hRORα in HepG2 cells led to enhanced hAPOA5 mRNA accumulation. We show that the homologous region in mouse apoa5 promoter is not functional. Moreover, we show that in staggerer mice, apoa5 gene is not affected by RORα. Conclusions— These findings identify RORα1 and RORα4 as transcriptional activators of human APOA5 gene expression. These data suggest an additional important physiological role for RORα in the regulation of genes involved in lipid homeostasis and probably in the development of atherosclerosis.
- Published
- 2005
19. The Liver X Receptor Ligand T0901317 Down-regulates APOA5 Gene Expression through Activation of SREBP-1c
- Author
-
Hélène Dehondt, Jean-Charles Fruchart, Dean W. Hum, Maxime Nowak, Heidelinde Jakel, Emanuelle Moitrot, Len A. Pennacchio, and Jamila Fruchart-Najib
- Subjects
Small interfering RNA ,Hydrocarbons, Fluorinated ,Apolipoprotein B ,Molecular Sequence Data ,Down-Regulation ,Mice, Transgenic ,Retinoid X receptor ,Response Elements ,Transfection ,digestive system ,Biochemistry ,Mice ,Cell Line, Tumor ,polycyclic compounds ,Animals ,Humans ,RNA, Messenger ,Promoter Regions, Genetic ,Liver X receptor ,Receptor ,Molecular Biology ,Apolipoproteins A ,Triglycerides ,Regulation of gene expression ,Sulfonamides ,Messenger RNA ,Base Sequence ,biology ,Anticholesteremic Agents ,food and beverages ,Cell Biology ,Molecular biology ,DNA-Binding Proteins ,Mice, Inbred C57BL ,Apolipoproteins ,Gene Expression Regulation ,Apolipoprotein A-V ,CCAAT-Enhancer-Binding Proteins ,biology.protein ,Sterol Regulatory Element Binding Protein 1 ,Female ,lipids (amino acids, peptides, and proteins) ,Transcription Factors - Abstract
Alterations in the expression of the recently discovered apolipoprotein A5 gene strongly affect plasma triglyceride levels. In this study, we investigated the contribution of APOA5 to the liver X receptor (LXR) ligand-mediated effect on plasma triglyceride levels. Following treatment with the LXR ligand T0901317, we found that APOA5 mRNA levels were decreased in hepatoma cell lines. The observation that no down-regulation of APOA5 promoter activity was obtained by LXR-retinoid X receptor (RXR) co-transfection prompted us to explore the possible involvement of the known LXR target gene SREBP-1c (sterol regulatory element-binding protein 1c). In fact, we found that co-transfection with the active form of SREBP-1c down-regulated APOA5 promoter activity in a dose-dependent manner. We then scanned the human APOA5 promoter sequence and identified two putative E-box elements that were able to bind specifically SREBP-1c in gel-shift assays and were shown to be functional by mutation analysis. Subsequent suppression of SREBP-1 mRNA through small interfering RNA interference abolished the decrease of APOA5 mRNA in response to T0901317. Finally, administration of T0901317 to hAPOA5 transgenic mice revealed a significant decrease of APOA5 mRNA in liver tissue and circulating apolipoprotein AV protein in plasma, confirming that the described down-regulation also occurs in vivo. Taken together, our results demonstrate that APOA5 gene expression is regulated by the LXR ligand T0901317 in a negative manner through SREBP-1c. These findings may provide a new mechanism responsible for the elevation of plasma triglyceride levels by LXR ligands and support the development of selective LXR agonists, not affecting SREBP-1c, as beneficial modulators of lipid metabolism.
- Published
- 2004
20. Apolipoprotein A5, a Crucial Determinant of Plasma Triglyceride Levels, Is Highly Responsive to Peroxisome Proliferator-activated Receptor α Activators
- Author
-
Philippe Gervois, Hélène Dehondt, Bart Staels, Ngoc Vu-Dac, Maxime Nowak, Jean-Charles Fruchart, Eric Baugé, Edward M. Rubin, Len A. Pennacchio, Heidi Jakel, and Jamila Fruchart-Najib
- Subjects
medicine.medical_specialty ,Transcription, Genetic ,Apolipoprotein B ,Molecular Sequence Data ,Response element ,Receptors, Cytoplasmic and Nuclear ,Peroxisome proliferator-activated receptor ,Biology ,Response Elements ,Transfection ,Biochemistry ,chemistry.chemical_compound ,Fenofibrate ,Internal medicine ,medicine ,Humans ,Cloning, Molecular ,Luciferases ,Promoter Regions, Genetic ,Receptor ,Molecular Biology ,Apolipoproteins A ,Cells, Cultured ,Triglycerides ,Hypolipidemic Agents ,chemistry.chemical_classification ,Base Sequence ,Triglyceride ,Cell Biology ,Peroxisome ,Recombinant Proteins ,Apolipoproteins ,Pyrimidines ,Endocrinology ,Gene Expression Regulation ,chemistry ,Apolipoprotein A-V ,Hepatocytes ,biology.protein ,Peroxisome Proliferators ,Peroxisome proliferator-activated receptor alpha ,Transcription Factors ,medicine.drug - Abstract
The recently discovered APOA5 gene has been shown in humans and mice to be important in determining plasma triglyceride levels, a major cardiovascular disease risk factor. apoAV represents the first described apolipoprotein where overexpression lowers triglyceride levels. Since fibrates represent a commonly used therapy for lowering plasma triglycerides in humans, we investigated their ability to modulate APOA5 gene expression and consequently influence plasma triglyceride levels. Human primary hepatocytes treated with Wy 14,643 or fenofibrate displayed a strong induction of APOA5 mRNA. Deletion and mutagenesis analyses of the proximal APOA5 promoter firmly demonstrate the presence of a functional peroxisome proliferator-activated receptor response element. These findings demonstrate that APOA5 is a highly responsive peroxisome proliferator-activated receptor alpha target gene and support its role as a major mediator for how fibrates reduce plasma triglycerides in humans.
- Published
- 2003
21. Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes.: Transrepression of ChREBP by FXR
- Author
-
Philippe Lefebvre, Olivier Briand, Fleur Lien, Hélène Dehondt, Emilie Dorchies, Catherine Postic, Sandrine Caron, Bertrand Cariou, Bart Staels, Maheul Ploton, Carolina Huaman Samanez, Julie Dumont, Récepteurs nucléaires, maladies cardiovasculaires et diabète - U 1011 (RNMCD), Institut Pasteur de Lille, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Institut Cochin (IC UM3 (UMR 8104 / U1016)), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), unité de recherche de l'institut du thorax UMR1087 UMR6291 (ITX), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN), This work was supported by Grants from the EU Grant HEPADIP (N° 018734), the Region Nord-Pas-de-Calais/FEDER, the Agence Nationale de la Recherche (No. 11 BSV1 032 01) and 'European Genomic Institute for Diabetes' (E.G.I.D., ANR-10-LABX-46)., Récepteurs nucléaires, maladies cardiovasculaires et diabète ( EGID ), Université de Lille, Droit et Santé-Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Institut Pasteur de Lille, Réseau International des Instituts Pasteur ( RIIP ) -Réseau International des Instituts Pasteur ( RIIP ) -Centre Hospitalier Régional Universitaire [Lille] ( CHRU Lille ), Institut Cochin ( UM3 (UMR 8104 / U1016) ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), unité de recherche de l'institut du thorax UMR1087 UMR6291 ( ITX ), Centre National de la Recherche Scientifique ( CNRS ) -Université de Nantes ( UN ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Unité de recherche de l'institut du thorax (ITX-lab), and Centre National de la Recherche Scientifique (CNRS)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
Sialoglycoproteins ,Pyruvate Kinase ,Receptors, Cytoplasmic and Nuclear ,Biology ,Cell Line ,Histones ,03 medical and health sciences ,Mice ,0302 clinical medicine ,Glucose homeostasis ,Animals ,Humans ,Nuclear Receptor Co-Repressor 2 ,p300-CBP Transcription Factors ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Carbohydrate-responsive element-binding protein ,Promoter Regions, Genetic ,Molecular Biology ,Transcription factor ,[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,030304 developmental biology ,Regulation of gene expression ,0303 health sciences ,Binding Sites ,Basic Helix-Loop-Helix Leucine Zipper Transcription Factors ,Lysine ,Cell Biology ,Articles ,G protein-coupled bile acid receptor ,Peptide Fragments ,Hepatocyte nuclear factors ,Protein Transport ,Glucose ,Biochemistry ,Gene Expression Regulation ,Hepatocyte Nuclear Factor 4 ,Liver ,030220 oncology & carcinogenesis ,Hepatocytes ,Farnesoid X receptor ,Glycolysis ,Pyruvate kinase - Abstract
International audience; The glucose-activated transcription factor carbohydrate response element binding protein (ChREBP) induces the expression of hepatic glycolytic and lipogenic genes. The farnesoid X receptor (FXR) is a nuclear bile acid receptor controlling bile acid, lipid, and glucose homeostasis. FXR negatively regulates hepatic glycolysis and lipogenesis in mouse liver. The aim of this study was to determine whether FXR regulates the transcriptional activity of ChREBP in human hepatocytes and to unravel the underlying molecular mechanisms. Agonist-activated FXR inhibits glucose-induced transcription of several glycolytic genes, including the liver-type pyruvate kinase gene (L-PK), in the immortalized human hepatocyte (IHH) and HepaRG cell lines. This inhibition requires the L4L3 region of the L-PK promoter, known to bind the transcription factors ChREBP and hepatocyte nuclear factor 4α (HNF4α). FXR interacts directly with ChREBP and HNF4α proteins. Analysis of the protein complex bound to the L4L3 region reveals the presence of ChREBP, HNF4α, FXR, and the transcriptional coactivators p300 and CBP at high glucose concentrations. FXR activation does not affect either FXR or HNF4α binding to the L4L3 region but does result in the concomitant release of ChREBP, p300, and CBP and in the recruitment of the transcriptional corepressor SMRT. Thus, FXR transrepresses the expression of genes involved in glycolysis in human hepatocytes.
- Published
- 2013
22. Glucose sensing O-GlcNAcylation pathway regulates the nuclear bile acid receptor farnesoid X receptor (FXR)
- Author
-
Wahiba, Berrabah, Pierrette, Aumercier, Céline, Gheeraert, Hélène, Dehondt, Emmanuel, Bouchaert, Jérémy, Alexandre, Maheul, Ploton, Claire, Mazuy, Sandrine, Caron, Anne, Tailleux, Jérôme, Eeckhoute, Tony, Lefebvre, Bart, Staels, and Philippe, Lefebvre
- Subjects
Male ,Acylation ,Receptors, Cytoplasmic and Nuclear ,Hexosamines ,Hep G2 Cells ,N-Acetylglucosaminyltransferases ,Bile Acids and Salts ,Mice, Inbred C57BL ,Pentose Phosphate Pathway ,Mice ,Glucose ,Gene Expression Regulation ,Hepatocytes ,Animals ,Humans ,Signal Transduction - Abstract
Bile acid metabolism is intimately linked to the control of energy homeostasis and glucose and lipid metabolism. The nuclear receptor farnesoid X receptor (FXR) plays a major role in the enterohepatic cycling of bile acids, but the impact of nutrients on bile acid homeostasis is poorly characterized. Metabolically active hepatocytes cope with increases in intracellular glucose concentrations by directing glucose into storage (glycogen) or oxidation (glycolysis) pathways, as well as to the pentose phosphate shunt and the hexosamine biosynthetic pathway. Here we studied whether the glucose nonoxidative hexosamine biosynthetic pathway modulates FXR activity. Our results show that FXR interacts with and is O-GlcNAcylated by O-GlcNAc transferase in its N-terminal AF1 domain. Increased FXR O-GlcNAcylation enhances FXR gene expression and protein stability in a cell type-specific manner. High glucose concentrations increased FXR O-GlcNAcylation, hence its protein stability and transcriptional activity by inactivating corepressor complexes, which associate in a ligand-dependent manner with FXR, and increased FXR binding to chromatin. Finally, in vivo fasting-refeeding experiments show that FXR undergoes O-GlcNAcylation in fed conditions associated with increased direct FXR target gene expression and decreased liver bile acid content.FXR activity is regulated by glucose fluxes in hepatocytes through a direct posttranslational modification catalyzed by the glucose-sensing hexosamine biosynthetic pathway.
- Published
- 2013
23. The human hepatocyte cell lines IHH and HepaRG: models to study glucose, lipid and lipoprotein metabolism
- Author
-
Véronique Clavey, Nathalie Hennuyer, Olivier Briand, Folkert Kuipers, Isabelle Duplan, Sandrine Caron, Hélène Dehondt, Carolina Huaman Samanez, Bart Staels, and Center for Liver, Digestive and Metabolic Diseases (CLDM)
- Subjects
EXPRESSION ,medicine.medical_specialty ,LIVER ,ELEMENT-BINDING PROTEIN-1C ,Physiology ,medicine.medical_treatment ,glucose metabolism ,Carbohydrate metabolism ,Biology ,Transfection ,Models, Biological ,Cell Line ,Physiology (medical) ,Internal medicine ,lipid metabolism ,medicine ,Humans ,Glycolysis ,TRANSCRIPTION FACTOR ,RNA, Small Interfering ,Apolipoproteins B ,Regulation of gene expression ,Human hepatocyte cell lines ,Glucokinase ,Insulin ,Colforsin ,Gluconeogenesis ,Lipid metabolism ,General Medicine ,IN-VITRO ,HEPG2 CELLS ,INSULIN ,Metabolic pathway ,Endocrinology ,Glucose ,Gene Expression Regulation ,Hepatocytes ,SECRETION ,NUCLEAR RECEPTORS ,GLUCOKINASE - Abstract
Metabolic diseases reach epidemic proportions. A better knowledge of the associated alterations in the metabolic pathways in the liver is necessary. These studies need in vitro human cell models. Several human hepatoma models are used, but the response of many metabolic pathways to physiological stimuli is often lost. Here, we characterize two human hepatocyte cell lines, IHH and HepaRG, by analysing the expression and regulation of genes involved in glucose and lipid metabolism. Our results show that the glycolysis pathway is activated by glucose and insulin in both lines. Gluconeogenesis gene expression is induced by forskolin in IHH cells and inhibited by insulin in both cell lines. The lipogenic pathway is regulated by insulin in IHH cells. Finally, both cell lines secrete apolipoprotein B-containing lipoproteins, an effect promoted by increasing glucose concentrations. These two human cell lines are thus interesting models to study the regulation of glucose and lipid metabolism.
- Published
- 2012
24. Apolipoprotein A-V modulates insulin secretion in pancreatic beta-cells through its interaction with midkine
- Author
-
Stéphane Helleboid, Hélène Dehondt, Emmanuelle Moitrot, Hervé Drobecq, Jean-Charles Fruchart, Corinne Rommens, Jamila Fruchart-Najib, Maxime Nowak, Audrey Helleboid-Chapman, and Laurent Héliot
- Subjects
Physiology ,medicine.medical_treatment ,Cell ,Molecular Sequence Data ,Endocytosis ,Cell surface receptor ,Cell Line, Tumor ,Insulin-Secreting Cells ,Insulin Secretion ,medicine ,Animals ,Immunoprecipitation ,Insulin ,Secretion ,Amino Acid Sequence ,RNA, Small Interfering ,Midkine ,biology ,Transfection ,Molecular biology ,Recombinant Proteins ,Rats ,Cytosol ,medicine.anatomical_structure ,Apolipoproteins ,Apolipoprotein A-V ,Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ,biology.protein ,Cytokines ,lipids (amino acids, peptides, and proteins) ,Protein Binding - Abstract
Apolipoprotein A-V is an important determinant of plasma triglyceride level in both humans and mice. This study showed the physiological impact of apoA-V on insulin secretion in rat pancreatic beta-cells (INS-1 cells). In order to precise the mechanism of action, binding experiments coupled to mass spectrometry were performed to identify a potential membrane receptor. Results showed an interaction between apoA-V and midkine protein. Confocal microscopy confirmed the plasma membrane co-localisation of this two-proteins after the treatment of INS-1 cells with the apo-AV recombinant protein and indicated that the cell surface midkine could be involved in apoA-V endocytosis, since these two proteins were co-translocated at the plasma membrane or in the cytosol compartment. This co-localisation is correlated with an increase in insulin secretion in a dose dependant manner during short incubation period. Reduction of midkine expression by small interfering RNA duplexes revealed a decrease in the ability of these transfected cells to secrete insulin in presence of apoA-V. Competition experiments for the apoA-V-midkine binding at the cell surface using antibody directed against midkine is able to influence INS-1 cell function as insulin secretion. Our results showed apoA-V ability to enhance insulin secretion in beta-cells and provide evidence of an internalization pathway involving the midkine as partner.
- Published
- 2009
25. Modification post-transcriptionelle et régulation de l’activité du récepteur nucléaire FXR par une protéine kinase
- Author
-
V. Lardeux, C. Gheeraert, Philippe Lefebvre, F. Lien, Christophe Rachez, Hélène Dehondt, Bart Staels, B. Céline, and M.E. Bouchaert
- Subjects
Endocrinology ,Endocrinology, Diabetes and Metabolism ,General Medicine - Published
- 2012
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.