7 results on '"Guohe Tan"'
Search Results
2. Palladium–reduced graphene oxide nanocomposites enhance neurite outgrowth and protect neurons from Ishemic stroke
- Author
-
Ping Wang, Jinling Li, Shuntang Li, Yuanyuan Liu, Jiangu Gong, Shipei He, Weifeng Wu, Guohe Tan, and Sijia Liu
- Subjects
Pd-RGO ,Neurite ,Sprouting ,Outgrowth ,OGD/R ,Ischemia/reperfusion ,Medicine (General) ,R5-920 ,Biology (General) ,QH301-705.5 - Abstract
Currently, the construction of novel biomimetic reduced graphene oxide (RGO)-based nanocomposites to induce neurite sprouting and repair the injured neurons represents a promising strategy in promoting neuronal development or treatment of cerebral anoxia or ischemia. Here, we present an effective method for constructing palladium-reduced graphene oxide (Pd-RGO) nanocomposites by covalently bonding Pd onto RGO surfaces to enhance neurite sprouting of cultured neurons. As described, the Pd-RGO nanocomposites exhibit the required physicochemical features for better biocompatibility without impacting cell viability. Primary neurons cultured on Pd-RGO nanocomposites had significantly increased number and length of neuronal processes, including both axons and dendrites, compared with the control. Western blotting showed that Pd-RGO nanocomposites improved the expression levels of growth associate protein-43 (GAP-43), as well as β-III tubulin, Tau-1, microtubule-associated protein-2 (MAP2), four proteins that are involved in regulating neurite sprouting and outgrowth. Importantly, Pd-RGO significantly promoted neurite length and complexity under oxygen-glucose deprivation/re-oxygenation (OGD/R) conditions, an in vitro cellular model of ischemic brain damage, that closely relates to neuronal GAP-43 expression. Furthermore, using the middle cerebral artery occlusion (MCAO) model in rats, we found Pd-RGO effectively reduced the infarct area, decreased neuronal apoptosis in the brain, and improved the rats’ behavioral outcomes after MCAO. Together, these results indicate the great potential of Pd-RGO nanocomposites as a novel excellent biomimetic material for neural interfacing that shed light on its applications in brain injuries.
- Published
- 2024
- Full Text
- View/download PDF
3. The long-term survival and functional maturation of human iNPC-derived neurons in the basal forebrain of cynomolgus monkeys
- Author
-
Su Feng, Ting Zhang, Wei Ke, Yujie Xiao, Zhong Guo, Chunling Lu, Shuntang Li, Zhongxin Guo, Yuanyuan Liu, Guohe Tan, Yingying Chen, Feng Yue, Yousheng Shu, Chunmei Yue, and Naihe Jing
- Abstract
Human induced neural stem/progenitor cells (iNPCs) are a promising source of cells for stem cell-based therapy. The therapeutic potential of human iNPCs has been extensively tested in animal models, including both mouse and monkey models. However, the comprehensive characterization of grafted iNPCs in the brain of non-human primates has been lagged behind. In this study, we transplanted human iNPCs into the basal forebrain of adult cynomolgus monkeys. We found that grafted iNPCs predominantly differentiated into neurons that displayed long-term survival up to 12 months. Additionally, iNPC-derived human neurons gradually matured in term of morphology and subtype differentiation. More excitingly, we observed that human neurons displayed electrophysiological activities resembling those of mature neurons, indicating the acquisition of functional membrane properties. Collectively, this study systematically characterized human iNPCs in the brain of non-human primates, and will provide invaluable clues for developing safe and effective stem cell-based therapies for different brain disorders.
- Published
- 2022
- Full Text
- View/download PDF
4. Which Factors Influence Healthy Aging? A Lesson from the Longevity Village of Bama in China.
- Author
-
Wei Zhang, Qingyun Huang, Yongxin Kang, Hao Li, and Guohe Tan
- Subjects
AGING ,GENETIC polymorphisms ,SOCIOECONOMICS - Abstract
A growing aging population is associated with increasing incidences of aging-related diseases and socioeconomic burdens. Hence, research into healthy longevity and aging is urgently needed. Longevity is an important phenomenon in healthy aging. The present review summarizes the characteristics of longevity in the elderly population in Bama, China, where the proportion of centenarians is 5.7-fold greater than the international standard. We examined the impact of genetic and environmental factors on longevity from multiple perspectives. We proposed that the phenomenon of longevity in this region is of high value for future investigations in healthy aging and aging-related disease and may provide guidance for fostering the establishment and maintenance of a healthy aging society. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
5. [The role of Bmal1 in neuronal radial migration and axonal projection of the embryonic mouse cerebral cortex]
- Author
-
Fang, Li, Qing Yun, Huang, Si Jia, Liu, Zhongxin, Guo, Xin Xin, Xiong, Lin, Gui, Hui Juan, Shu, Shao Ming, Huang, Guohe, Tan, and Yuan Yuan, Liu
- Subjects
Cerebral Cortex ,Mice ,Cell Movement ,Pregnancy ,Neurogenesis ,ARNTL Transcription Factors ,Animals ,Female ,Axons - Abstract
Normal development of the cerebral cortex is a basis for the formation and function of mammalian brains. During this process, the radial migration of cortical neurons, as well as the axon projection into specific layers, are the most important steps regulated by some transcription factors, but the underlying molecular mechanisms are still obscure. BMAL1 (brain and muscle Arnt-like protein 1) is a newly identified transcription factor that plays important roles in the circadian rhythms. It was recently found to regulate the proliferation of hippocampal neuronal progenitor/precursor cells (NPCs), implicating Bmal1 in the brain development. Here we employed both RT-RCR and real-time PCR to explore the expression pattern of the Bmal1 gene in the developing brain. We found BMAl1 is enriched in the brain cortex during the perinatal stages and peaked in P3 mouse brains. Combined with in utero electroporation and interference with RNAi, we found that reducing the expression level of Bmal1 in neurons, the radial migration of embryonic cortical neurons was largely delayed, in a gene dose-effect pattern. Moreover, reducing the level of Bmal1 expression in mouse brains, the axonal projection in the corpus callosum was also disrupted from ipsilateral to the lateral cerebral hemisphere. These findings indicate that BMAL1 is essential for the radial migration of neurons in the cerebral cortex and the axonal projection of the corpus callosum, providing insights into the molecular mechanisms of cerebral cortex development.
- Published
- 2019
6. MacroH2A1.2 deficiency leads to neural stem cell differentiation defects and autism-like behaviors.
- Author
-
Hongyan Ma, Libo Su, Wenlong Xia, Wenwen Wang, Guohe Tan, and Jianwei Jiao
- Abstract
The development of the nervous system requires precise regulation. Any disturbance in the regulation process can lead to neurological developmental diseases, such as autism and schizophrenia. Histone variants are important components of epigenetic regulation. The function and mechanisms of the macroH2A (mH2A) histone variant during brain development are unknown. Here, we show that deletion of the mH2A isoform mH2A1.2 interferes with neural stem cell differentiation in mice. Deletion of mH2A1.2 affects neurodevelopment, enhances neural progenitor cell (NPC) proliferation, and reduces NPC differentiation in the developing mouse brain. mH2A1.2-deficient mice exhibit autism-like behaviors, such as deficits in social behavior and exploratory abilities. We identify NKX2.2 as an important downstream effector gene and show that NKX2.2 expression is reduced after mH2A1.2 deletion and that overexpression of NKX2.2 rescues neuronal abnormalities caused by mH2A1.2 loss. Our study reveals that mH2A1.2 reduces the proliferation of neural progenitors and enhances neuronal differentiation during embryonic neurogenesis and that these effects are at least in part mediated by NKX2.2. These findings provide a basis for studying the relationship between mH2A1.2 and neurological disorders. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
7. Intracerebral Transplantation of Neural Stem Cells Restores Manganese-Induced Cognitive Deficits in Mice.
- Author
-
Huijuan Shu, Zhongxin Guo, Xiangren Chen, Shuya Qi, Xinxin Xiong, Shuang Xia, Qingyun Huang, Ling Lan, Jiangu Gong, Shaoming Huang, Boning Yang, and Guohe Tan
- Subjects
INTRACEREBRAL transplantation ,NEUROTOXIC agents ,COGNITIVE ability - Abstract
Manganese (Mn) is a potent neurotoxin known to cause long-lasting structural damage and progressive cognitive deficits in the brain. However, new therapeutic approaches are urgently needed since current treatments only target symptoms of Mn exposure. Recent studies have suggested a potential role for multipotent neural stem cells (NSCs) in the etiology of Mn-induced cognitive deficits. In this study, we evaluated the effect of direct intracerebral transplantation of NSCs on cognitive function of mice chronically exposed to MnCl
2 , and further explored the distribution of transplanted NSCs in brain tissues. NSCs were isolated and bilaterally injected into the hippocampal regions or lateral ventricles of Mn-exposed mice. The results showed that many transplanted cells migrated far away from the injection sites and survived in vivo in the Mn-exposed mouse brain, implying enhanced neurogenesis in the host brain. We found that NSCs transplanted into either the hippocampal regions or the lateral ventricles significantly improved spatial learning and memory function of the Mn-exposed mice in the Morris water maze. Immunofluorescence analyses indicated that some surviving NSCs differentiated into neurons or glial cells, which may have become functionally integrated into the impaired local circuits, providing a possible cellular basis for the improvement of cognitive function in NSC-transplanted mice. Taken together, our findings confirm the Mn-induced impairment of neurogenesis in the brain and underscore the potential of treating Mn exposure by NSC transplantation, providing a practical therapeutic strategy against this type of neurotoxicity. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.