1. Seismological Indicators of Geologically Inferred Fault Maturity
- Author
-
Guo, Huiyun, Lay, Thorne, and Brodsky, Emily E
- Subjects
Earth Sciences ,Geology ,Geophysics ,Geochemistry - Abstract
Abstract: Variations in fault zone maturity have intermittently been invoked to explain variations in some seismological observations for large earthquakes. However, the lack of a unified geological definition of fault maturity makes quantitative assessment of its importance difficult. We evaluate the degree of empirical correlation between geological and geometric measurements commonly invoked as indicative of fault zone maturity and remotely measured seismological source parameters of 34MW ≥ 6.0 shallow strike‐slip events. Metrics based on surface rupture segmentation, such as number of segments and surface rupture azimuth changes, correlate best with seismic source attributes while the correlations with cumulative fault slip are weaker. Average rupture velocity shows the strongest correlation with metrics of maturity, followed by relative aftershock productivity. Mature faults have relatively lower aftershock productivity and higher rupture velocity. A more complex relation is found with moment‐scaled radiated energy. There appears to be distinct behavior of very immature events which radiate modest seismic energy, while intermediate mature faults have events with higher moment‐scaled radiated energy and very mature faults with increasing cumulative slip tend to have events with reduced moment‐scaled radiated energy. These empirical comparisons establish that there are relationships between remote seismological observations and fault system maturity that can help to understand variations in seismic hazard among different fault environments and to assess the relative maturity of inaccessible or blind fault systems for which direct observations of maturity are very limited.
- Published
- 2023