Iva Guberovic, Sarah Hurtado-Bagès, Ciro Rivera-Casas, Gunnar Knobloch, Roberto Malinverni, Vanesa Valero, Michelle M. Leger, Jesús García, Jerome Basquin, Marta Gómez de Cedrón, Marta Frigolé-Vivas, Manjinder S. Cheema, Ainhoa Pérez, Juan Ausió, Ana Ramírez de Molina, Xavier Salvatella, Iñaki Ruiz-Trillo, Jose M. Eirin-Lopez, Andreas G. Ladurner, Marcus Buschbeck, Max Planck Society, Universidad de Barcelona, Ministerio de Economía y Competitividad (España), Comunidad de Madrid, La Caixa, and Generalitat de Catalunya
NAD metabolism is essential for all forms of life. Compartmental regulation of NAD consumption, especially between the nucleus and the mitochondria, is required for energy homeostasis. However, how compartmental regulation evolved remains unclear. In the present study, we investigated the evolution of the macrodomain-containing histone variant macroH2A1.1, an integral chromatin component that limits nuclear NAD consumption by inhibiting poly(ADP-ribose) polymerase 1 in vertebrate cells. We found that macroH2A originated in premetazoan protists. The crystal structure of the macroH2A macrodomain from the protist Capsaspora owczarzaki allowed us to identify highly conserved principles of ligand binding and pinpoint key residue substitutions, selected for during the evolution of the vertebrate stem lineage. Metabolic characterization of the Capsaspora lifecycle suggested that the metabolic function of macroH2A was associated with nonproliferative stages. Taken together, we provide insight into the evolution of a chromatin element involved in compartmental NAD regulation, relevant for understanding its metabolism and potential therapeutic applications., For technical support, we thank the research service facilities of IJC and IGTP, the Crystallization Facility of the Max Planck Institute of Biochemistry, the ICTS NMR facility from the Scientific and Technological Centres of the University of Barcelona and Biophysics Core Facility of BMC-LMU. I.G. was a fellow of the Marie Skłodowska Curie Training network ‘ChroMe’ (H2020-MSCA-ITN-2015-675610, awarded to M.B. and A.G.L.). The project was further supported by national grants (nos. RTI2018-094005-B-I00 and BFU2015-66559-P from FEDER/Ministerio de Ciencia e Innovación—Agencia Estatal de Investigación to M.B.). Research in the participating labs was further supported by the following grants: the Marie Skłodowska Curie Training network ‘INTERCEPT-MDS’ no. H2020-MSCA-ITN-2020-953407 (to M.B.), MINECO-ISCIII no. PIE16/00011 (to M.B.); the Deutsche José Carreras Leukämie Stiftung DJCLS (no. 14R/2018 to M.B.), AGAUR (no. 2017-SGR-305 to M.B.), Fundació La Marató de TV3 (no. 257/C/2019 to M.B.), German Research Foundation Project (ID 213249687—SFB 1064 and Project ID 325871075—SFB 1309 to A.G.L.), the Spanish Ministry of Science (PID2019-110183RB-C21 to A.R.M.), Community of Madrid (P2018/BAA-4343-ALIBIRD2020-CM to A.R.M), Ramón Areces Foundation (to A.R.M.), National Science Foundation (EF-1921402 to J.M.E.L.), 2015 International Doctoral Fellowship La Caixa-Severo Ochoa (to M.F.V.), Marie Skłodowska-Curie Individual Fellowship (no. 747789 to M.M.L.), Juan de la Cierva-Incorporación (IJC2018-036657-I to M.M.L., ERC-2012-CoG-616960 to I.R.T.), MINECO (BFU2017-90114-P to I.R.T.), AGAUR (2017-SGR-324 to X.S.) and MINECO (BIO2015-70092-R and ERC-2014-CoG-648201 to X.S.). Research at the IJC is supported by the ‘La Caixa’ Foundation, Fundació Internacional Josep Carreras, Celgene Spain and the CERCA Programme/Generalitat de Catalunya.