8 results on '"Gumba H"'
Search Results
2. An optimization of four SARS-CoV-2 qRT-PCR assays in a Kenyan laboratory to support the national COVID-19 rapid response teams.
- Author
-
Mohammed KS, de Laurent ZR, Omuoyo DO, Lewa C, Gicheru E, Cheruiyot R, Bartilol B, Mutua S, Musyoki J, Gumba H, Mwacharo J, Riako D, Mwangi SJ, Gichuki BM, Nyamako L, Karani A, Karanja H, Mugo D, Gitonga JN, Njuguna S, Gumbi W, Tawa B, Tendwa M, Cheruiyot W, Sein Y, Nyambu JK, Patta SO, Thani TS, Maitha EK, Kitole B, Mwakinangu MS, Muslih BS, Otieno JO, Nyiro JU, Kiyuka P, Ndwiga L, Wamae K, Kimani D, Makale J, Morobe JM, Osoti V, Lambisia AW, Odundo C, Mwarumba S, Mutunga M, Bejon P, Tsofa B, Agoti CN, and Ochola-Oyier LI
- Abstract
Background: The COVID-19 pandemic relies on real-time polymerase chain reaction (qRT-PCR) for the detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), to facilitate roll-out of patient care and infection control measures. There are several qRT-PCR assays with little evidence on their comparability. We report alterations to the developers' recommendations to sustain the testing capability in a resource-limited setting. Methods: We used a SARS-CoV-2 positive control RNA sample to generate several 10-fold dilution series that were used for optimization and comparison of the performance of the four qRT-PCR assays: i) Charité Berlin primer-probe set, ii) European Virus Archive - GLOBAL (EVAg) primer-probe set, iii) DAAN premixed commercial kit and iv) Beijing Genomics Institute (BGI) premixed commercial kit. We adjusted the manufacturer- and protocol-recommended reaction component volumes for these assays and assessed the impact on cycle threshold (Ct) values. Results: The Berlin and EVAg E gene and RdRp assays reported mean Ct values within range of each other across the different titrations and with less than 5% difference. The DAAN premixed kit produced comparable Ct values across the titrations, while the BGI kit improved in performance following a reduction of the reaction components. Conclusion: We achieved a 2.6-fold and 4-fold increase in the number of tests per kit for the commercial kits and the primer-probe sets, respectively. All the assays had optimal performance when the primers and probes were used at 0.375X, except for the Berlin N gene assay. The DAAN kit was a reliable assay for primary screening of SARS-CoV-2 whereas the BGI kit's performance was dependent on the volumes and concentrations of both the reaction buffer and enzyme mix. Our recommendation for SARS-CoV-2 diagnostic testing in resource-limited settings is to optimize the assays available to establish the lowest volume and suitable concentration of reagents required to produce valid results., Competing Interests: No competing interests were disclosed., (Copyright: © 2022 Mohammed KS et al.)
- Published
- 2022
- Full Text
- View/download PDF
3. Pooled testing conserves SARS-CoV-2 laboratory resources and improves test turn-around time: experience on the Kenyan Coast.
- Author
-
Agoti CN, Mutunga M, Lambisia AW, Kimani D, Cheruiyot R, Kiyuka P, Lewa C, Gicheru E, Tendwa M, Said Mohammed K, Osoti V, Makale J, Tawa B, Odundo C, Cheruiyot W, Nyamu W, Gumbi W, Mwacharo J, Nyamako L, Otieno E, Amadi D, Thoya J, Karani A, Mugo D, Musyoki J, Gumba H, Mwarumba S, M Gichuki B, Njuguna S, Riako D, Mutua S, Gitonga JN, Sein Y, Bartilol B, Mwangi SJ, O Omuoyo D, M Morobe J, de Laurent ZR, Bejon P, Ochola-Oyier LI, and Tsofa B
- Abstract
Background. International recommendations for the control of the coronavirus disease 2019 (COVID-19) pandemic emphasize the central role of laboratory testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent, at scale. The availability of testing reagents, laboratory equipment and qualified staff are important bottlenecks to achieving this. Elsewhere, pooled testing (i.e. combining multiple samples in the same reaction) has been suggested to increase testing capacities in the pandemic period. Methods. We discuss our experience with SARS-CoV-2 pooled testing using real-time reverse transcription polymerase chain reaction (RT-PCR) on the Kenyan Coast. Results. In mid-May, 2020, our RT-PCR testing capacity for SARS-CoV-2 was improved by ~100% as a result of adoption of a six-sample pooled testing strategy. This was accompanied with a concomitant saving of ~50% of SARS-CoV-2 laboratory test kits at both the RNA extraction and RT-PCR stages. However, pooled testing came with a slight decline of test sensitivity. The RT-PCR cycle threshold value (ΔCt) was ~1.59 higher for samples tested in pools compared to samples tested singly. Conclusions. Pooled testing is a useful strategy to increase SARS-CoV-2 laboratory testing capacity especially in low-income settings., Competing Interests: No competing interests were disclosed., (Copyright: © 2021 Agoti CN et al.)
- Published
- 2021
- Full Text
- View/download PDF
4. Pooled testing conserves SARS-CoV-2 laboratory resources and improves test turn-around time: experience on the Kenyan Coast.
- Author
-
Agoti CN, Mutunga M, Lambisia AW, Kimani D, Cheruiyot R, Kiyuka P, Lewa C, Gicheru E, Tendwa M, Said Mohammed K, Osoti V, Makale J, Tawa B, Odundo C, Cheruiyot W, Nyamu W, Gumbi W, Mwacharo J, Nyamako L, Otieno E, Amadi D, Thoya J, Karani A, Mugo D, Musyoki J, Gumba H, Mwarumba S, M Gichuki B, Njuguna S, Riako D, Mutua S, Gitonga JN, Sein Y, Bartilol B, Mwangi SJ, O Omuoyo D, M Morobe J, de Laurent ZR, Bejon P, Ochola-Oyier LI, and Tsofa B
- Abstract
Background. International recommendations for the control of the coronavirus disease 2019 (COVID-19) pandemic emphasize the central role of laboratory testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent, at scale. The availability of testing reagents, laboratory equipment and qualified staff are important bottlenecks to achieving this. Elsewhere, pooled testing (i.e. combining multiple samples in the same reaction) has been suggested to increase testing capacities in the pandemic period. Methods. We discuss our experience with SARS-CoV-2 pooled testing using real-time reverse transcription polymerase chain reaction (RT-PCR) on the Kenyan Coast. Results. In mid-May, 2020, our RT-PCR testing capacity for SARS-CoV-2 was improved by ~100% as a result of adoption of a six-sample pooled testing strategy. This was accompanied with a concomitant saving of ~50% of SARS-CoV-2 laboratory test kits at both the RNA extraction and RT-PCR stages. However, pooled testing came with a slight decline of test sensitivity. The RT-PCR cycle threshold value (ΔCt) was ~1.59 higher for samples tested in pools compared to samples tested singly. Conclusions. Pooled testing is a useful strategy to increase SARS-CoV-2 laboratory testing capacity especially in low-income settings., Competing Interests: No competing interests were disclosed., (Copyright: © 2020 Agoti CN et al.)
- Published
- 2020
- Full Text
- View/download PDF
5. An optimisation of four SARS-CoV-2 qRT-PCR assays in a Kenyan laboratory to support the national COVID-19 rapid response teams.
- Author
-
Mohammed KS, de Laurent ZR, Omuoyo DO, Lewa C, Gicheru E, Cheruiyot R, Bartilol B, Mutua S, Musyoki J, Gumba H, Mwacharo J, Riako D, Mwangi SJ, Gichuki BM, Nyamako L, Karani A, Karanja H, Mugo D, Gitonga JN, Njuguna S, Gumbi W, Tawa B, Tendwa M, Cheruiyot W, Sein Y, Nyambu JK, Patta SO, Thani TS, Maitha EK, Kitole B, Mwakinangu MS, Muslih BS, Otieno JO, Nyiro JU, Kiyuka P, Ndwiga L, Wamae K, Kimani D, Makale J, Morobe JM, Osoti V, Lambisia AW, Odundo C, Mwarumba S, Mutunga M, Bejon P, Tsofa B, Agoti CN, and Ochola-Oyier LI
- Abstract
Background: The global COVID-19 outbreak relies on a quantitative real-time polymerase chain reaction (qRT-PCR) for the detection of severe acute respiratory syndrome coronavirus (SARS-CoV-2), to facilitate the roll-out of patient care and infection control measures. There are several qRT-PCR assays with little evidence on their comparability. We report alterations to the developers' recommendations to sustain the testing capability in our setting, where the supply of testing reagents is limited. Methods: Standards generated from a serially-diluted positive control and previously identified positive/negative samples were used to determine the optimal volumes of the qRT-PCR reagents and to evaluate the validity and performance of four assays: Charité Berlin and European Virus Archive - GLOBAL (EVAg) primer-probe sets, and DAAN and Beijing Genomics Institute (BGI) premixed commercial kits. A multiplex and singleplex RT-PCR kit was used with the two primer-probe sets and the recommended assay volumes of the two premixed kits were altered. Results: In comparison to the multiplex RT-PCR kit, the singleplex RT-PCR kit combined with the primer-probe sets yielded consistent cycle threshold (Ct) values across the different titrations tested. The DAAN premixed kit produced comparable Ct values across the titrations, while the BGI kit showed incomparable Ct values and inconsistent results between batches using the manufacturer's recommended volumes. Conclusion: We achieved a 2.5-fold and 4-fold increase in the number of tests/kit for the premixed kits and the primer-probe sets, respectively. The primer-probe set assays were reliable and consistent, and we preferred a combination of an EVAg and a Berlin target. Any inconclusive result was repeated by different individuals following the same protocol. DAAN was a consistent and reliable assay even at lower concentrations from the stated recommendations. BGI in contrast, required dilution to improve its performance and was hence an assay that was used in combination with EVAg or Berlin targets., Competing Interests: No competing interests were disclosed., (Copyright: © 2020 Mohammed KS et al.)
- Published
- 2020
- Full Text
- View/download PDF
6. Implementing a quality management system using good clinical laboratory practice guidelines at KEMRI-CMR to support medical research.
- Author
-
Gumba H, Waichungo J, Lowe B, Mwanzu A, Musyimi R, Thitiri J, Tigoi C, Kamui M, Berkley JA, Ngetich R, Kavai S, and Kariuki S
- Abstract
Background: Good Clinical Laboratory Practice (GCLP) is a standard that helps ensure the quality and reliability of research data through principles of Good Laboratory Practice (GLP) and Good Clinical Practice (GCP). The implementation of GCLP includes careful documentation of procedures, competencies and safety measures. Implementation of GCLP is influenced by existing resources and quality systems, thus laboratories in low- and middle-income countries may face additional challenges. Methods: This paper describes implementation of GCLP at the Kenya Medical Research Institute-Center for Microbiology Research (KEMRI-CMR) as part of a quality system to support medical research. This study employed assessment, twinning (institutional mentorship) model, conducting relevant training workshops and Kaizen 5S approaches to implement an effective quality management system using GCLP standard. This was achieved through a collaboration between the KEMRI/Wellcome Trust Research Programme (KWTRP) and KEMRI-CMR. The aim was compliance and continuous monitoring to meet international GCLP standards in a way that could be replicated in other research organizations. Results: Following a baseline assessment in March 2017, training, mentorship and a cycle of quality audit and corrective action using a Kaizen 5S approach (sorting, setting in order, shining, standardizing and sustaining) was established. Laboratory personnel were trained in writing standard operating procedures and analytical plans, microbiological techniques, and good documentation practice. Mid-term and exit assessments demonstrated significant declines in non-conformances across all GCLP elements. KEMRI-CMR achieved GCLP accreditation in May 2018 by Qualogy Ltd (UK). Conclusions: Involving all the laboratory personnel in implementation of quality management system processes is critical to success. An institutional mentorship (twinning) approach shows potential for future collaborations between accredited and non-accredited organizations to accelerate the implementation of high-quality management systems and continuous improvement., Competing Interests: No competing interests were disclosed.
- Published
- 2019
- Full Text
- View/download PDF
7. Implementation of Good Clinical Laboratory Practice in an Immunology Basic Research Laboratory: The KEMRI-Wellcome Trust Research Laboratories Experience.
- Author
-
Gumba H, Musyoki J, Mosobo M, and Lowe B
- Subjects
- Accreditation, Clinical Laboratory Techniques standards, Humans, Kenya, Quality Assurance, Health Care, Reproducibility of Results, Academies and Institutes standards, Laboratories standards, Practice Guidelines as Topic
- Abstract
Objectives: Good Clinical Laboratory Practice (GCLP) is a standard that ensures quality and reliability of research data by adopting the principles of Good Laboratory Practice and Good Clinical Practice. Even though implementing a quality system in a basic research laboratory is still a contentious issue, it ensures that the research data are accurate, valid, and reliable. GCLP implementation requires proper documented procedures and safety precautions to achieve this objective., Methods: This article describes the Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Laboratories experience in the implementation of GCLP guidelines in a laboratory conducting basic research., Results: The laboratory managed to implement GCLP elements that could be applied to a basic research laboratory, such as standard operating procedures, equipment management, laboratory analytical plans, organization, and personnel. The laboratory achieved GCLP accreditation in October 2015., Conclusions: The methodology, suggestions, and comments that arose from our experience in implementing GCLP guidelines can be used by other laboratories to develop a quality system using GCLP guidelines to support medical research conducted to ensure the research data are reliable and can be easily reconstructed in other research settings.
- Published
- 2019
- Full Text
- View/download PDF
8. Implementing a quality management system using good clinical laboratory practice guidelines at KEMRI-CMR to support medical research.
- Author
-
Gumba H, Waichungo J, Lowe B, Mwanzu A, Musyimi R, Thitiri J, Tigoi C, Kamui M, Berkley JA, Ngetich R, Kavai S, and Kariuki S
- Abstract
Background: Good Clinical Laboratory Practice (GCLP) is a standard that helps ensure the quality and reliability of research data through principles of Good Laboratory Practice (GLP) and Good Clinical Practice (GCP). The implementation of GCLP includes careful documentation of procedures, competencies and safety measures. Implementation of GCLP is influenced by existing resources and quality systems, thus laboratories in low- and middle-income countries may face additional challenges. Methods: This paper describes implementation of Good Clinical Laboratory Practice (GCLP) at the Kenya Medical Research Institute-Center for Microbiology Research (KEMRI-CMR) as part of a quality system to support medical research. This study employed assessment, twinning (institutional mentorship) model, conducting relevant training workshops and Kaizen 5S approaches to implement an effective quality management system using GCLP standard. This was achieved through a collaboration between the KEMRI/Wellcome Trust Research Programme (KWTRP) and KEMRI-CMR. The aim was compliance and continuous monitoring to meet international GCLP standards in a way that could be replicated in other research organizations. Results: Following a baseline assessment in March 2017, training, mentorship and a cycle of quality audit and corrective action using a Kaizen 5S approach (sorting, setting in order, shining, standardizing and sustaining) was established. Laboratory personnel were trained in writing standard operating procedures and analytical plans, microbiological techniques, and good documentation practice. Mid-term and exit assessments demonstrated significant declines in non-conformances across all GCLP elements. KEMRI-CMR achieved GCLP accreditation in May 2018 by Qualogy Ltd (UK). Conclusions: Involving all the laboratory personnel in implementation of quality management system processes is critical to success. An institutional mentorship (twinning) approach shows potential for future collaborations between accredited and non-accredited organizations to accelerate the implementation of high-quality management systems and continuous improvement., Competing Interests: No competing interests were disclosed.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.