1. Construction and analysis of a Vibrio cholerae delta-aminolevulinic acid auxotroph which confers protective immunity in a rabbit model.
- Author
-
Rijpkema SG, Bik EM, Jansen WH, Gielen H, Versluis LF, Stouthamer AH, Guinée PA, and Mooi FR
- Subjects
- Animals, Rabbits, Vaccination, Vibrio cholerae growth & development, Vibrio cholerae metabolism, Aminolevulinic Acid metabolism, Bacterial Vaccines immunology, Vibrio cholerae immunology
- Abstract
Vibrio cholerae CVD101 is a very effective live vaccine. Although this strain does not produce active cholera toxin because of a mutation in the gene for the cholera toxin A subunit, it still shows residual pathogenicity. To attenuate CVD101 further, we set out to isolate derivatives of CVD101 which were limited in their ability to proliferate in vivo. Two delta-aminolevulinic acid auxotrophs of CVD101, designated V286 and V287, were isolated by transposon mutagenesis and penicillin enrichment. Southern blotting revealed that the mutants differed with respect to the location of the transposon insertion. Under aerobic conditions, in the absence of delta-aminolevulinic acid, both mutants showed diminished growth compared with CVD101. The growth of V286 was most severely affected. Microaerophilic growth of both mutants was less affected. Competition experiments with a rabbit model showed that strain V286 was found in numbers 10(3)- to 10(4)-fold lower than its parental strain. This observation indicates that strain V286 is impaired in its ability to colonize the rabbit intestine. It also supports an important role for aerobic growth in the colonization of the intestine by V. cholerae. Vaccination of rabbits with a single dose of strain V286 resulted in full protection against challenge with a virulent strain. Strain V286 was not shed from rabbits in a cultivatable form. Our results suggest that delta-aminolevulinic acid auxotrophy can attenuate V. cholerae by limiting its ability to colonize without affecting its capacity to induce protective immunity. Furthermore, this type of mutation may prevent the spread of V. cholerae vaccine strains in the environment.
- Published
- 1992
- Full Text
- View/download PDF