Jaron Kurk, C. De Breuck, Bruno Altieri, Nina A. Hatch, Helmut Dannerbauer, Thomas R. Greve, Matt J. Jarvis, I. Valtchanov, D. Coia, George K. Miley, J. I. Rawlings, Daniel Stern, H. J. A. Röttgering, Alessandro Rettura, Pieter Barthel, Arjun Dey, Attila Kovács, Brigitte Rocca-Volmerange, L. Conversi, Martin Haas, J. S. Santos, Jason R. Stevens, Edo Ibar, Dominika Wylezalek, Audrey Galametz, Joel Vernet, Rob Ivison, Guillaume Drouart, Matt Lehnert, Mark Dickinson, Miguel Sánchez-Portal, Nick Seymour, Nicole P. H. Nesvadba, Kapteyn Astronomical Institute, Space Science & Technology Department, Rutheford Appleton Laboratory, XMM-Newton Science Operations Centre, Agence Spatiale Européenne = European Space Agency (ESA), Institut d'Astrophysique de Paris (IAP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Herschel Science Centre, European Space Astronomy Centre (ESAC), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), National Optical Astronomy Observatory (NOAO), INAF - Osservatorio Astronomico di Roma (OAR), Istituto Nazionale di Astrofisica (INAF), Royal Veterinary and Agricultural University = Kongelige Veterinær- og Landbohøjskole (KVL ), Laboratoire des technologies de la microélectronique (LTM), Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), UK Astronomy Technology Centre (UK ATC), Science and Technology Facilities Council (STFC), Royal Observatory Edinburgh (ROE), University of Edinburgh, Centre for Energy Research [Budapest] (MTAE), Hungarian Academy of Sciences (MTA), Max-Planck-Institut für Extraterrestrische Physik (MPE), Galaxies, Etoiles, Physique, Instrumentation (GEPI), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Physics and Astronomy [Riverside], University of California [Riverside] (UC Riverside), University of California (UC)-University of California (UC), Leiden Observatory [Leiden], Universiteit Leiden, AUTRES, European Space Agency (ESA), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), University of California [Riverside] (UCR), University of California-University of California, and Universiteit Leiden [Leiden]
We present a detailed study of the infrared spectral energy distribution of the high-redshift radio galaxy MRC 1138-26 at z = 2.156, also known as the Spiderweb Galaxy. By combining photometry from Spitzer, Herschel and LABOCA we fit the rest-frame 5-300 um emission using a two component, starburst and active galactic nucleus (AGN), model. The total infrared (8 - 1000 um) luminosity of this galaxy is (1.97+/-0.28)x10^13 Lsun with (1.17+/-0.27) and (0.79+/-0.09)x10^13 Lsun due to the AGN and starburst components respectively. The high derived AGN accretion rate of \sim20% Eddington, and the measured star formation rate (SFR) of 1390pm150 Msun/yr, suggest that this massive system is in a special phase of rapid central black hole and host galaxy growth, likely caused by a gas rich merger in a dense environment. The accretion rate is sufficient to power both the jets and the previously observed large outflow. The high SFR and strong outflow suggest this galaxy could potentially exhaust its fuel for stellar growth in a few tens of Myr, although the likely merger of the radio galaxy with nearby satellites suggest bursts of star formation may recur again on time scales of several hundreds of Myr. The age of the radio lobes implies the jet started after the current burst of star formation, and therefore we are possibly witnessing the transition from a merger-induced starburst phase to a radio-loud AGN phase. We also note tentative evidence for [CII]158um emission. This paper marks the first results from the Herschel Galaxy Evolution Project (Project HeRGE), a systematic study of the evolutionary state of 71 high redshift, 1 < z < 5.2, radio galaxies., 11 pages, 2 figures, accepted for publication in ApJ