1. Self-replicating RNA nanoparticle vaccine elicits protective immune responses against SARS-CoV-2
- Author
-
Guibin Lin, Huan Yan, Jing Sun, Jincun Zhao, and Yuan Zhang
- Subjects
MT: Oligonucleotides: Therapies and Applications ,Self-replicating RNA ,SARS-CoV-2 RBD ,liposome-protamine-RNA nanoparticle ,innate immune signaling ,germinal center response ,Therapeutics. Pharmacology ,RM1-950 - Abstract
The creation of safe and effective vaccines that induce potent cellular and humoral immune responses against SARS-CoV-2 is urgently needed to end the global COVID-19 epidemic. Here, we developed an alphavirus-derived self-replicating RNA (repRNA)-based vaccine platform encoding the receptor-binding domain (RBD) of SARS-CoV-2 spike glycoprotein. The repRNA triggers prolonged antigen expression compared with conventional mRNA due to the replication machinery of repRNA. To improve the delivery and vaccine efficacy of repRNA, we developed a self-assembling liposome-protamine-RNA (LPR) nanoparticle with highly efficient encapsulation and transfection of repRNA. LPR-repRNA vaccines substantially activated type I interferon response and innate immune signaling pathways. Subcutaneous immunization of LPR-repRNA-RBD led to prolonged antigen expression, stimulation of innate immune cells, and induction of germinal center response in draining lymph nodes. LPR-repRNA-RBD induced antigen-specific T cell responses and skewed cellular immunity toward an effector memory CD8+ T cell response. Immunizations with LPR-repRNA-RBD triggered the production of anti-RBD IgG antibodies and induced neutralizing antibody response against SARS-CoV-2 pseudovirus. LPR-repRNA-RBD vaccines reduced SARS-CoV-2 infection and lung inflammation in mice. Altogether, these data suggest that the LPR-repRNA platform can be a promising avenue for COVID-19 vaccine development.
- Published
- 2023
- Full Text
- View/download PDF