15 results on '"Guié MA"'
Search Results
2. Comprehensive bioinformatic analysis reveals a fibroblast-related gene signature for the diagnosis of keloids
- Author
-
Yue Qi and GuiE Ma
- Subjects
Keloid ,Fibroblast ,Diagnostic model ,Immune cell ,Science (General) ,Q1-390 ,Social sciences (General) ,H1-99 - Abstract
Aim: A keloid is a fibroproliferative cutaneous disorder secondary to skin injury, caused by an imbalance in fibroblast proliferation and apoptosis. However, the pathogenesis is not fully understood. In this study, candidate genes for keloid were identified and used to construct a diagnostic model. Methods: Three datasets related to keloids were downloaded from NCBI Gene Expression Omnibus. Fibroblast-related genes were screened, and fibroblast scores for the samples were determined. Then, a weighted gene co-expression network analysis (WGCNA) was used to identify modules and genes associated with keloids and the fibroblast score. Differentially expressed genes (DEGs) between keloid and control samples were identified and compared with fibroblast-related genes and genes in the modules. Overlapping genes were evaluated using functional enrichment analyses. Signature genes were further screened, and a diagnostic model was constructed. Finally, correlations between immune cell frequences and signature genes were analyzed. Results: In total, 124 fibroblast-related genes were obtained, and the fibroblast score was an effective indicator of the sample type. WGCNA revealed five modules that were significantly correlated with both the disease state and fibroblast scores, including 1760 genes. Additionally, 589 DEGs were identified, including 16 that overlapped with fibroblast-related genes and genes identified in the WGCNA. These genes were related to cell proliferation and apoptosis and were involved in FoxO, Rap1, p53, Ras, MAPK, and PI3K-Akt pathways. Finally, a six fibroblast-related gene signature (CCNB1, EGFR, E2F8, BTG1, TP63, and IGF1) was identified and used for diagnostic model construction. The proportions of regulatory T cells and macrophages were significantly higher in keloid tissues than in controls. Conclusion: The established model based on CCNB1, EGFR, E2F8, BTG1, TP63, and IGF1 showed good performance and may be useful for keloid diagnosis.
- Published
- 2024
- Full Text
- View/download PDF
3. A Target Class Ligandability Evaluation of WD40 Repeat-Containing Proteins.
- Author
-
Ackloo S, Li F, Szewczyk M, Seitova A, Loppnau P, Zeng H, Xu J, Ahmad S, Arnautova YA, Baghaie AJ, Beldar S, Bolotokova A, Centrella PA, Chau I, Clark MA, Cuozzo JW, Dehghani-Tafti S, Disch JS, Dong A, Dumas A, Feng JA, Ghiabi P, Gibson E, Gilmer J, Goldman B, Green SR, Guié MA, Guilinger JP, Harms N, Herasymenko O, Houliston S, Hutchinson A, Kearnes S, Keefe AD, Kimani SW, Kramer T, Kutera M, Kwak HA, Lento C, Li Y, Liu J, Loup J, Machado RAC, Mulhern CJ, Perveen S, Righetto GL, Riley P, Shrestha S, Sigel EA, Silva M, Sintchak MD, Slakman BL, Taylor RD, Thompson J, Torng W, Underkoffler C, von Rechenberg M, Walsh RT, Watson I, Wilson DJ, Wolf E, Yadav M, Yazdi AK, Zhang J, Zhang Y, Santhakumar V, Edwards AM, Barsyte-Lovejoy D, Schapira M, Brown PJ, Halabelian L, and Arrowsmith CH
- Abstract
Target class-focused drug discovery has a strong track record in pharmaceutical research, yet public domain data indicate that many members of protein families remain unliganded. Here we present a systematic approach to scale up the discovery and characterization of small molecule ligands for the WD40 repeat (WDR) protein family. We developed a comprehensive suite of protocols for protein production, crystallography, and biophysical, biochemical, and cellular assays. A pilot hit-finding campaign using DNA-encoded chemical library selection followed by machine learning (DEL-ML) to predict ligands from virtual libraries yielded first-in-class, drug-like ligands for 7 of the 16 WDR domains screened, thus demonstrating the broader ligandability of WDRs. This study establishes a template for evaluation of protein family wide ligandability and provides an extensive resource of WDR protein biochemical and chemical tools, knowledge, and protocols to discover potential therapeutics for this highly disease-relevant, but underexplored target class.
- Published
- 2024
- Full Text
- View/download PDF
4. Identification and Evaluation of Reversible Covalent Binders to Cys55 of Bfl-1 from a DNA-Encoded Chemical Library Screen.
- Author
-
Lucas SCC, Blackwell JH, Börjesson U, Hargreaves D, Milbradt AG, Ahmed S, Bostock MJ, Guerot C, Gohlke A, Kinzel O, Lamb ML, Selmi N, Stubbs CJ, Su N, Su Q, Luo H, Xiong T, Zuo X, Bazzaz S, Bienstock C, Centrella PA, Denton KE, Gikunju D, Guié MA, Guilinger JP, Hupp C, Keefe AD, Satoh T, Zhang Y, and Rivers EL
- Abstract
Bfl-1 is overexpressed in both hematological and solid tumors; therefore, inhibitors of Bfl-1 are highly desirable. A DNA-encoded chemical library (DEL) screen against Bfl-1 identified the first known reversible covalent small-molecule ligand for Bfl-1. The binding was validated through biophysical and biochemical techniques, which confirmed the reversible covalent mechanism of action and pointed to binding through Cys55. This represented the first identification of a cyano-acrylamide reversible covalent compound from a DEL screen and highlights further opportunities for covalent drug discovery through DEL screening. A 10-fold improvement in potency was achieved through a systematic SAR exploration of the hit. The more potent analogue compound 13 was successfully cocrystallized in Bfl-1, revealing the binding mode and providing further evidence of a covalent interaction with Cys55., Competing Interests: The authors declare no competing financial interest., (© 2024 American Chemical Society.)
- Published
- 2024
- Full Text
- View/download PDF
5. Inhibitors of the Thioesterase Activity of Mycobacterium tuberculosis Pks13 Discovered Using DNA-Encoded Chemical Library Screening.
- Author
-
Krieger IV, Yalamanchili S, Dickson P, Engelhart CA, Zimmerman MD, Wood J, Clary E, Nguyen J, Thornton N, Centrella PA, Chan B, Cuozzo JW, Gengenbacher M, Guié MA, Guilinger JP, Bienstock C, Hartl H, Hupp CD, Jetson R, Satoh T, Yeoman JTS, Zhang Y, Dartois V, Schnappinger D, Keefe AD, and Sacchettini JC
- Subjects
- Animals, Humans, Mice, Bacterial Proteins antagonists & inhibitors, Bacterial Proteins chemistry, Crystallography, X-Ray, Disease Models, Animal, Drug Discovery, Drug Evaluation, Preclinical, Tuberculosis drug therapy, Tuberculosis microbiology, Antitubercular Agents chemistry, Antitubercular Agents pharmacology, Antitubercular Agents therapeutic use, Enzyme Inhibitors pharmacology, Enzyme Inhibitors chemistry, Mycobacterium tuberculosis enzymology, Mycobacterium tuberculosis drug effects, Polyketide Synthases metabolism, Polyketide Synthases chemistry, Polyketide Synthases genetics, Small Molecule Libraries chemistry, Small Molecule Libraries pharmacology, Thiolester Hydrolases antagonists & inhibitors, Thiolester Hydrolases metabolism, Thiolester Hydrolases chemistry, Thiolester Hydrolases genetics
- Abstract
DNA-encoded chemical library (DEL) technology provides a time- and cost-efficient method to simultaneously screen billions of compounds for their affinity to a protein target of interest. Here we report its use to identify a novel chemical series of inhibitors of the thioesterase activity of polyketide synthase 13 (Pks13) from Mycobacterium tuberculosis (Mtb). We present three chemically distinct series of inhibitors along with their enzymatic and Mtb whole cell potency, the measure of on-target activity in cells, and the crystal structures of inhibitor-enzyme complexes illuminating their interactions with the active site of the enzyme. One of these inhibitors showed a favorable pharmacokinetic profile and demonstrated efficacy in an acute mouse model of tuberculosis (TB) infection. These findings and assay developments will aid in the advancement of TB drug discovery.
- Published
- 2024
- Full Text
- View/download PDF
6. Discovery of Small Molecule Interleukin 17A Inhibitors with Novel Binding Mode and Stoichiometry: Optimization of DNA-Encoded Chemical Library Hits to In Vivo Active Compounds.
- Author
-
Ramos AL, Goedken ER, Frank KE, Argiriadi MA, Bazzaz S, Bian Z, Brown JTC, Centrella PA, Chen HJ, Disch JS, Donner PL, Duignan DB, Gikunju D, Greszler SN, Guié MA, Habeshian S, Hartl HE, Hein CD, Hutchins CW, Jetson R, Keefe AD, Khan H, Li HQ, Olszewski A, Ortiz Cardona BJ, Osuma A, Panchal SC, Phelan R, Qiu W, Shotwell JB, Shrestha A, Srikumaran M, Su Z, Sun C, Upadhyay AK, Wood MD, Wu H, Zhang R, Zhang Y, Zhao G, Zhu H, and Webster MP
- Subjects
- Humans, Animals, Structure-Activity Relationship, Protein Binding, Mice, Interleukin-17 metabolism, Interleukin-17 antagonists & inhibitors, Small Molecule Libraries chemistry, Small Molecule Libraries pharmacology, DNA metabolism, DNA chemistry, Drug Discovery
- Abstract
Dysregulation of IL17A drives numerous inflammatory and autoimmune disorders with inhibition of IL17A using antibodies proven as an effective treatment. Oral anti-IL17 therapies are an attractive alternative option, and several preclinical small molecule IL17 inhibitors have previously been described. Herein, we report the discovery of a novel class of small molecule IL17A inhibitors, identified via a DNA-encoded chemical library screen, and their subsequent optimization to provide in vivo efficacious inhibitors. These new protein-protein interaction (PPI) inhibitors bind in a previously undescribed mode in the IL17A protein with two copies binding symmetrically to the central cavities of the IL17A homodimer.
- Published
- 2024
- Full Text
- View/download PDF
7. Development of Potent Mcl-1 Inhibitors: Structural Investigations on Macrocycles Originating from a DNA-Encoded Chemical Library Screen.
- Author
-
Hekking KFW, Maroto S, van Kekem K, Haasjes FS, Slootweg JC, Oude Alink PGB, Dirks R, Sardana M, Bolster MG, Kuijpers B, Smith D, Doodeman R, Scheepstra M, Zech B, Mulvihill M, Renzetti LM, Babiss L, Centrella PA, Clark MA, Cuozzo JW, Guié MA, Sigel E, Habeshian S, Hupp CD, Liu J, Thomson HA, Zhang Y, Keefe AD, Müller G, and Gremmen S
- Subjects
- Humans, Myeloid Cell Leukemia Sequence 1 Protein metabolism, Apoptosis, Molecular Conformation, DNA, Cell Line, Tumor, Proto-Oncogene Proteins c-bcl-2 metabolism, Neoplasms, Antineoplastic Agents pharmacology, Antineoplastic Agents chemistry
- Abstract
Evasion of apoptosis is critical for the development and growth of tumors. The pro-survival protein myeloid cell leukemia 1 (Mcl-1) is an antiapoptotic member of the Bcl-2 family, associated with tumor aggressiveness, poor survival, and drug resistance. Development of Mcl-1 inhibitors implies blocking of protein-protein interactions, generally requiring a lengthy optimization process of large, complex molecules. Herein, we describe the use of DNA-encoded chemical library synthesis and screening to directly generate complex, yet conformationally privileged macrocyclic hits that serve as Mcl-1 inhibitors. By applying a conceptual combination of conformational analysis and structure-based design in combination with a robust synthetic platform allowing rapid analoging, we optimized in vitro potency of a lead series into the low nanomolar regime. Additionally, we demonstrate fine-tuning of the physicochemical properties of the macrocyclic compounds, resulting in the identification of lead candidates 57 / 59 with a balanced profile, which are suitable for future development toward therapeutic use.
- Published
- 2024
- Full Text
- View/download PDF
8. Discovery of a First-in-Class Small-Molecule Ligand for WDR91 Using DNA-Encoded Chemical Library Selection Followed by Machine Learning.
- Author
-
Ahmad S, Xu J, Feng JA, Hutchinson A, Zeng H, Ghiabi P, Dong A, Centrella PA, Clark MA, Guié MA, Guilinger JP, Keefe AD, Zhang Y, Cerruti T, Cuozzo JW, von Rechenberg M, Bolotokova A, Li Y, Loppnau P, Seitova A, Li YY, Santhakumar V, Brown PJ, Ackloo S, and Halabelian L
- Subjects
- Gene Library, Ligands, Machine Learning, DNA chemistry, Small Molecule Libraries pharmacology, Small Molecule Libraries chemistry
- Abstract
WD40 repeat-containing protein 91 (WDR91) regulates early-to-late endosome conversion and plays vital roles in endosome fusion, recycling, and transport. WDR91 was recently identified as a potential host factor for viral infection. We employed DNA-encoded chemical library (DEL) selection against the WDR domain of WDR91, followed by machine learning to predict ligands from the synthetically accessible Enamine REAL database. Screening of predicted compounds identified a WDR91 selective compound 1 , with a K
D of 6 ± 2 μM by surface plasmon resonance. The co-crystal structure confirmed the binding of 1 to the WDR91 side pocket, in proximity to cysteine 487, which led to the discovery of covalent analogues 18 and 19 . The covalent adduct formation for 18 and 19 was confirmed by intact mass liquid chromatography-mass spectrometry. The discovery of 1 , 18 , and 19 , accompanying structure-activity relationship, and the co-crystal structures provide valuable insights for designing potent and selective chemical tools against WDR91 to evaluate its therapeutic potential.- Published
- 2023
- Full Text
- View/download PDF
9. Discovery of Nanomolar DCAF1 Small Molecule Ligands.
- Author
-
Li ASM, Kimani S, Wilson B, Noureldin M, González-Álvarez H, Mamai A, Hoffer L, Guilinger JP, Zhang Y, von Rechenberg M, Disch JS, Mulhern CJ, Slakman BL, Cuozzo JW, Dong A, Poda G, Mohammed M, Saraon P, Mittal M, Modh P, Rathod V, Patel B, Ackloo S, Santhakumar V, Szewczyk MM, Barsyte-Lovejoy D, Arrowsmith CH, Marcellus R, Guié MA, Keefe AD, Brown PJ, Halabelian L, Al-Awar R, and Vedadi M
- Subjects
- Humans, Ligands, Carrier Proteins chemistry, Ubiquitin-Protein Ligases metabolism, Neoplasms
- Abstract
DCAF1 is a substrate receptor of two distinct E3 ligases (CRL4
DCAF1 and EDVP), plays a critical physiological role in protein degradation, and is considered a drug target for various cancers. Antagonists of DCAF1 could be used toward the development of therapeutics for cancers and viral treatments. We used the WDR domain of DCAF1 to screen a 114-billion-compound DNA encoded library (DEL) and identified candidate compounds using similarity search and machine learning. This led to the discovery of a compound (Z1391232269) with an SPR KD of 11 μM. Structure-guided hit optimization led to the discovery of OICR-8268 ( 26e ) with an SPR KD of 38 nM and cellular target engagement with EC50 of 10 μM as measured by cellular thermal shift assay (CETSA). OICR-8268 is an excellent tool compound to enable the development of next-generation DCAF1 ligands toward cancer therapeutics, further investigation of DCAF1 functions in cells, and the development of DCAF1-based PROTACs.- Published
- 2023
- Full Text
- View/download PDF
10. Novel irreversible covalent BTK inhibitors discovered using DNA-encoded chemistry.
- Author
-
Guilinger JP, Archna A, Augustin M, Bergmann A, Centrella PA, Clark MA, Cuozzo JW, Däther M, Guié MA, Habeshian S, Kiefersauer R, Krapp S, Lammens A, Lercher L, Liu J, Liu Y, Maskos K, Mrosek M, Pflügler K, Siegert M, Thomson HA, Tian X, Zhang Y, Konz Makino DL, and Keefe AD
- Subjects
- Agammaglobulinaemia Tyrosine Kinase metabolism, Crystallography, X-Ray, Dose-Response Relationship, Drug, Humans, Molecular Structure, Protein Kinase Inhibitors chemistry, Small Molecule Libraries chemistry, Structure-Activity Relationship, Agammaglobulinaemia Tyrosine Kinase antagonists & inhibitors, DNA chemistry, Drug Discovery, Protein Kinase Inhibitors pharmacology, Small Molecule Libraries pharmacology
- Abstract
Libraries of DNA-Encoded small molecules created using combinatorial chemistry and synthetic oligonucleotides are being applied to drug discovery projects across the pharmaceutical industry. The majority of reported projects describe the discovery of reversible, i.e. non-covalent, target modulators. We synthesized multiple DNA-encoded chemical libraries terminated in electrophiles and then used them to discover covalent irreversible inhibitors and report the successful discovery of acrylamide- and epoxide-terminated Bruton's Tyrosine Kinase (BTK) inhibitors. We also demonstrate their selectivity, potency and covalent cysteine engagement using a range of techniques including X-ray crystallography, thermal transition shift assay, reporter displacement assay and intact protein complex mass spectrometry. The epoxide BTK inhibitors described here are the first ever reported to utilize this electrophile for this target., (Copyright © 2021 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
11. Machine Learning on DNA-Encoded Libraries: A New Paradigm for Hit Finding.
- Author
-
McCloskey K, Sigel EA, Kearnes S, Xue L, Tian X, Moccia D, Gikunju D, Bazzaz S, Chan B, Clark MA, Cuozzo JW, Guié MA, Guilinger JP, Huguet C, Hupp CD, Keefe AD, Mulhern CJ, Zhang Y, and Riley P
- Subjects
- Epoxide Hydrolases antagonists & inhibitors, Estrogen Receptor alpha antagonists & inhibitors, Ligands, Protein Kinase Inhibitors chemistry, Proto-Oncogene Proteins c-kit antagonists & inhibitors, DNA chemistry, Drug Discovery methods, Neural Networks, Computer, Small Molecule Libraries chemistry
- Abstract
DNA-encoded small molecule libraries (DELs) have enabled discovery of novel inhibitors for many distinct protein targets of therapeutic value. We demonstrate a new approach applying machine learning to DEL selection data by identifying active molecules from large libraries of commercial and easily synthesizable compounds. We train models using only DEL selection data and apply automated or automatable filters to the predictions. We perform a large prospective study (∼2000 compounds) across three diverse protein targets: sEH (a hydrolase), ERα (a nuclear receptor), and c-KIT (a kinase). The approach is effective, with an overall hit rate of ∼30% at 30 μM and discovery of potent compounds (IC
50 < 10 nM) for every target. The system makes useful predictions even for molecules dissimilar to the original DEL, and the compounds identified are diverse, predominantly drug-like, and different from known ligands. This work demonstrates a powerful new approach to hit-finding.- Published
- 2020
- Full Text
- View/download PDF
12. Novel Nucleic Acid Binding Small Molecules Discovered Using DNA-Encoded Chemistry.
- Author
-
Litovchick A, Tian X, Monteiro MI, Kennedy KM, Guié MA, Centrella P, Zhang Y, Clark MA, and Keefe AD
- Subjects
- Cell Line, Tumor, Cell Survival, Humans, Surface Plasmon Resonance, DNA chemistry, Drug Discovery, Small Molecule Libraries
- Abstract
Inspired by the many reported successful applications of DNA-encoded chemical libraries in drug discovery projects with protein targets, we decided to apply this platform to nucleic acid targets. We used a 120-billion-compound set of 33 distinct DNA-encoded chemical libraries and affinity-mediated selection to discover binders to a panel of DNA targets. Here, we report the successful discovery of small molecules that specifically interacted with DNA G-quartets, which are stable structural motifs found in G-rich regions of genomic DNA, including in the promoter regions of oncogenes. For this study, we chose the G-quartet sequence found in the c- myc promoter as a primary target. Compounds enriched using affinity-mediated selection against this target demonstrated high-affinity binding and high specificity over DNA sequences not containing G-quartet motifs. These compounds demonstrated a moderate ability to discriminate between different G-quartet motifs and also demonstrated activity in a cell-based assay, suggesting direct target engagement in the cell. DNA-encoded chemical libraries and affinity-mediated selection are uniquely suited to discover binders to targets that have no inherent activity outside of a cellular context, and they may also be of utility in other nucleic acid structural motifs., Competing Interests: The authors declare no conflicts of interest and are all current or former employees of X-Chem Pharmaceuticals.
- Published
- 2019
- Full Text
- View/download PDF
13. Agonists and Antagonists of Protease-Activated Receptor 2 Discovered within a DNA-Encoded Chemical Library Using Mutational Stabilization of the Target.
- Author
-
Brown DG, Brown GA, Centrella P, Certel K, Cooke RM, Cuozzo JW, Dekker N, Dumelin CE, Ferguson A, Fiez-Vandal C, Geschwindner S, Guié MA, Habeshian S, Keefe AD, Schlenker O, Sigel EA, Snijder A, Soutter HT, Sundström L, Troast DM, Wiggin G, Zhang J, Zhang Y, and Clark MA
- Subjects
- Allosteric Site drug effects, Cell Line, HEK293 Cells, Humans, Ligands, Proteins genetics, Receptor, PAR-2, Receptors, G-Protein-Coupled genetics, DNA genetics, Mutation drug effects, Receptors, G-Protein-Coupled agonists, Receptors, G-Protein-Coupled antagonists & inhibitors, Small Molecule Libraries pharmacology
- Abstract
The discovery of ligands via affinity-mediated selection of DNA-encoded chemical libraries is driven by the quality and concentration of the protein target. G-protein-coupled receptors (GPCRs) and other membrane-bound targets can be difficult to isolate in their functional state and at high concentrations, and therefore have been challenging for affinity-mediated selection. Here, we report a successful selection campaign against protease-activated receptor 2 (PAR2). Using a thermo-stabilized mutant of PAR2, we conducted affinity selection using our >100-billion-compound DNA-encoded library. We observed a number of putative ligands enriched upon selection, and subsequent cellular profiling revealed these ligands to comprise both agonists and antagonists. The agonist series shared structural similarity with known agonists. The antagonists were shown to bind in a novel allosteric binding site on the PAR2 protein. This report serves to demonstrate that cell-free affinity selection against GPCRs can be achieved with mutant stabilized protein targets.
- Published
- 2018
- Full Text
- View/download PDF
14. Encoded Library Synthesis Using Chemical Ligation and the Discovery of sEH Inhibitors from a 334-Million Member Library.
- Author
-
Litovchick A, Dumelin CE, Habeshian S, Gikunju D, Guié MA, Centrella P, Zhang Y, Sigel EA, Cuozzo JW, Keefe AD, and Clark MA
- Subjects
- Oligonucleotides chemistry, Oligonucleotides genetics, Drug Discovery methods, Gene Library, Small Molecule Libraries
- Abstract
A chemical ligation method for construction of DNA-encoded small-molecule libraries has been developed. Taking advantage of the ability of the Klenow fragment of DNA polymerase to accept templates with triazole linkages in place of phosphodiesters, we have designed a strategy for chemically ligating oligonucleotide tags using cycloaddition chemistry. We have utilized this strategy in the construction and selection of a small molecule library, and successfully identified inhibitors of the enzyme soluble epoxide hydrolase.
- Published
- 2015
- Full Text
- View/download PDF
15. Programs to facilitate tuberculosis drug discovery: the tuberculosis antimicrobial acquisition and coordinating facility.
- Author
-
Goldman RC, Laughon BE, Reynolds RC, Secrist JA 3rd, Maddry JA, Guié MA, Poffenberger AC, Kwong CA, and Ananthan S
- Subjects
- Animals, Antitubercular Agents pharmacokinetics, Antitubercular Agents therapeutic use, Biological Availability, Humans, Maximum Tolerated Dose, Tuberculosis drug therapy, Antitubercular Agents pharmacology, Drug Design, Drug Evaluation, Preclinical
- Abstract
There is a real need to discover new drugs that are active on drug-resistant tuberculosis (TB), and for drugs that will shorten the time of therapy. Large pharmaceutical companies have traditionally led the quest for discovering and developing new antiinfective agents but this is not the case when it comes to diseases like tuberculosis that primarily occur in resource restricted countries. Throughout the world many research groups are actively engaged in the scientific discovery of new TB drugs. Unfortunately, most research laboratories do not have the necessary safety facilities or resources for all facets of TB drug discovery. The Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF) was established in order to make comprehensive testing services available at no cost to research laboratories with an interest in discovering new TB drugs. The TAACF is a consortium of contracts managed and funded by the National Institute of Allergy and Infectious Diseases (National Institutes of Health, Bethesda, MD) as a resource to support preclinical drug discovery and development. The core of the TAACF is the Southern Research Institute, Birmingham, AL, which supports compound acquisition, storage, medicinal chemistry, and high throughput assays. Other collaborating groups provide biological data on antimycobacterial activity and cytotoxicity, preliminary in vivo toxicity, oral bioavailability and efficacy in animal models, specialty testing (such as activity against non-replicating persistent bacteria), and assistance in technology transfer for developing comprehensive promotional packages and facilitating partnerships with pharmaceutical companies for drug development. The TAACF program and recent progress that has been publicly disclosed by suppliers is reviewed. There are many aspects promising of the program that will not be discussed due to confidentially.
- Published
- 2007
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.