60 results on '"Groups of Lie type"'
Search Results
2. Fusion systems on a Sylow p-subgroup of G2(pn) or PSU4(pn).
- Author
-
van Beek, Martin
- Subjects
- *
ISOMORPHISM (Mathematics) , *SYLOW subgroups - Abstract
For any prime p and S a p -group isomorphic to a Sylow p -subgroup of G 2 (p n) or PSU 4 (p n) with n ∈ N , we determine all saturated fusion systems supported on S up to isomorphism. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
3. On finite nonsolvable groups whose cyclic p-subgroups of equal order are conjugate.
- Author
-
VAN DER WAALL, Robert W. and SEZER, Sezgin
- Subjects
- *
FINITE groups , *CYCLIC groups , *SOLVABLE groups , *PRIME numbers , *CONJUGACY classes , *AUTOMORPHISM groups - Abstract
The structure of the nonsolvable (P)-groups is completely described in this article. By definition, a finite group G is called a (P)-group if any two cyclic p-subgroups of the same order are conjugate in G, whenever p is a prime number dividing the order of G. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
4. On the inductive McKay–Navarro condition for finite groups of Lie type in their defining characteristic.
- Author
-
Johansson, Birte
- Subjects
- *
FINITE groups , *AUTOMORPHISMS , *LOGICAL prediction - Abstract
The McKay–Navarro conjecture is a refinement of the McKay conjecture that additionally takes the action of some Galois automorphisms into account. We verify the inductive McKay–Navarro condition in the defining characteristic for the finite groups of Lie type with exceptional graph automorphisms, the Suzuki and Ree groups, B n (2) (n ≥ 2), and the groups of Lie type with non-generic Schur multiplier. This completes the verification of the inductive McKay–Navarro condition for the finite groups of Lie type in their defining characteristic. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
5. INTERSECTION OF CONJUGATE SOLVABLE SUBGROUPS IN FINITE CLASSICAL GROUPS.
- Author
-
BAYKALOV, ANTON A.
- Subjects
- *
FINITE groups , *SOLVABLE groups , *MAXIMAL subgroups , *CYCLIC groups , *PERMUTATION groups , *CONJUGACY classes - Abstract
The article presents the discussion on cyclicity, commutativity, nilpotence, and solvability.
- Published
- 2022
- Full Text
- View/download PDF
6. Fusion systems on a Sylow p-subgroup of SU4(p).
- Author
-
Moragues Moncho, Raul
- Subjects
- *
FINITE groups , *UNITARY groups , *LIE groups - Abstract
We determine, for p odd, all saturated fusion systems F on a Sylow p -subgroup S of the unitary group S U 4 (p) and we prove that they are all realizable by finite groups. In particular, we prove that S does not support any exotic fusion systems. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
7. Regular orbits of quasisimple linear groups I.
- Author
-
Lee, Melissa
- Subjects
- *
FINITE simple groups , *LIE groups , *REPRESENTATIONS of groups (Algebra) - Abstract
Let G ≤ GL (V) be a group with a unique subnormal quasisimple subgroup E (G) that acts absolutely irreducibly on V. A base for G acting on V is a set of vectors with trivial pointwise stabiliser in G. In this paper we determine the minimal base size of G when E (G) / Z (E (G)) is a finite simple group of Lie type in cross-characteristic. We show that G has a regular orbit on V , with specific exceptions, for which we find the base size. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
8. The Navarro refinement of the McKay conjecture for finite groups of Lie type in defining characteristic.
- Author
-
Ruhstorfer, Lucas
- Subjects
- *
LIE groups , *FINITE groups , *LOGICAL prediction , *AUTOMORPHISMS , *MATHEMATICAL proofs - Abstract
In this paper we verify Navarro's refinement of the McKay conjecture for quasi-simple groups of Lie type in their defining characteristic. Navarro's refinement takes into account the action of specific Galois automorphisms on the characters presents in the McKay conjecture [12]. Our proof of this case of the conjecture relies on a character correspondence constructed by Maslowski in [11]. Building on this we verify the inductive condition for Navarro's refinement from [14] for most groups of Lie type in defining characteristic. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
9. Turning weight multiplicities into Brauer characters.
- Author
-
Lübeck, Frank
- Subjects
- *
BRAUER groups , *LIE groups , *MULTIPLICITY (Mathematics) , *CHARACTER - Abstract
We describe two methods for computing p -modular Brauer character tables for groups of Lie type G (p f) in defining characteristic p , assuming that the ordinary character table of G (p f) is known, and the weight multiplicities of the corresponding algebraic group G are known for p -restricted highest weights. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
10. On the Bonnafé–Dat–Rouquier Morita equivalence.
- Author
-
Ruhstorfer, Lucas
- Subjects
- *
LIE groups , *ARGUMENT - Abstract
We prove that the cohomology group of a Deligne–Lusztig variety defines a Morita equivalence in a case which is not covered by the argument in [2] , specifically we consider the situation for semisimple elements in type D whose centralizer has non-cyclic component group. Some arguments use considerations already present in an unpublished note by Bonnafé, Dat and Rouquier. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
11. Representations of Unitriangular Groups
- Author
-
Le, Tung, Magaard, Kay, and Sastry, N.S. Narasimha, editor
- Published
- 2012
- Full Text
- View/download PDF
12. Fusion systems over a Sylow p-subgroup of G2(p).
- Author
-
Parker, Chris and Semeraro, Jason
- Abstract
For S a Sylow p-subgroup of the group G2(p)
for p odd, up to isomorphism of fusion systems, we determine all saturated fusion systems F on S with Op(F)=1 . For p≠7 , all such fusion systems are realized by finite groups whereas for p=7 there are 29 saturated fusion systems of which 27 are exotic. [ABSTRACT FROM AUTHOR] - Published
- 2018
- Full Text
- View/download PDF
13. On a question of C. Bonnafé on characters and multiplicity free constituents.
- Author
-
Navarro, Gabriel
- Subjects
- *
FINITE groups , *FC-groups , *GROUP theory , *MATHEMATICAL proofs , *ALGEBRA - Abstract
Abstract In 2006, C. Bonnafé posed a general question on characters of finite groups. A positive answer would have reduced drastically some proofs by G. Lusztig. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
14. Finite Simple Groups and Permutation Groups
- Author
-
Saxl, J., Hartley, B., editor, Seitz, G. M., editor, Borovik, A. V., editor, and Bryant, R. M., editor
- Published
- 1995
- Full Text
- View/download PDF
15. Subgroups of Simple Algebraic Groups and of Related Finite and Locally Finite Groups of Lie Type
- Author
-
Liebeck, M. W., Hartley, B., editor, Seitz, G. M., editor, Borovik, A. V., editor, and Bryant, R. M., editor
- Published
- 1995
- Full Text
- View/download PDF
16. The inductive McKay-Navarro condition for finite groups of Lie type
- Author
-
Johansson, Birte
- Subjects
msc:20C33 ,msc:20C15 ,local-global conjectures ,510 Mathematik ,ddc:510 ,McKay conjecture ,groups of Lie type - Abstract
In the representation theory of finite groups, the so-called local-global conjectures assert a relation between the representation theory of a finite group and one of its local subgroups. The McKay-Navarro conjecture claims that the action of a set of Galois automorphisms on certain ordinary characters of the local and global group is equivariant. Navarro, Späth, and Vallejo reduced the conjecture to a problem about simple groups in 2019 and stated an inductive condition that has to be verified for all finite simple groups. In this work, we give an introduction to the character theory of finite groups and state the McKay-Navarro conjecture and its inductive condition. Furthermore, we recall the definition of finite groups of Lie type and present results regarding their structure and their representation theory. In the second part of this work, we verify the inductive McKay-Navarro condition for various families of finite groups of Lie type. In defining characteristic, most groups have already been considered by Ruhstorfer. We show that the inductive condition also holds for the groups with exceptional graph automorphisms, the Suzuki and Ree groups, the groups \(B_n(2)\) for \(n \geq 2\), as well as for the simple groups of Lie type with non-generic Schur multiplier in their defining characteristic. This completes the verification of the inductive McKay-Navarro condition in defining characteristic. We further consider the Suzuki and Ree groups and verify the inductive condition for all primes. On the way, we show that there exists a Galois-equivariant Jordan decomposition for their irreducible characters. Moreover, we consider some families of groups of Lie type that do not admit a generic choice of a local subgroup. We show that the inductive condition is satisfied for the prime \(\ell=3\) and the groups \(\text{PSL}_3(q)\) with \(q \equiv 4, 7 \mod 9\), \(\text{PSU}_3(q)\) with \(q \equiv 2, 5 \mod 9\), and \(G_2 (q)\) with \(q \equiv 2, 4, 5, 7 \mod 9\). Further, we verify the inductive condition for the prime \(\ell=2\) and \(G_2(3^f)\) for \(f \geq 1\), \(^3 D_4(q)\), and \(^2E_6(q)\) where \(q\) is an odd prime power., In der Darstellungstheorie endlicher Gruppen stellen sogenannte lokal-globale Vermutungen einen Zusammenhang zwischen den Darstellungen einer endlichen Gruppe und einer ihrer lokalen Untergruppen her. Die McKay-Navarro-Vermutung besagt, dass die Wirkung von bestimmten Galoisautomorphismen auf einigen gewöhnlichen irreduziblen Charakteren beider Gruppen equivariant ist. Navarro, Späth und Vallejo führten diese Vermutung 2019 auf ein Problem über endliche einfache Gruppen zurück und formulierten eine induktive Bedingung, die für alle endlichen einfachen Gruppen überprüft werden muss. In dieser Arbeit geben wir eine kurze Einführung in die Charaktertheorie endlicher Gruppen und formulieren die McKay-Navarro-Vermutung sowie ihre induktive Bedingung. Außerdem stellen wir endliche Gruppen vom Lie-Typ und wichtige Resultate über ihre Charaktertheorie vor. Im zweiten Teil wird die induktive McKay-Navarro-Bedingung für verschiedene Familien endlicher Gruppen vom Lie-Typ nachgewiesen. In definierender Charakteristik wurde die Bedingung für die meisten Gruppen bereits von Ruhstorfer betrachtet. Wir zeigen, dass die Gruppen mit exzeptionellen Graphautomorphismen, die Suzuki- und Ree-Gruppen, \(B_n(2)\) für \(n \geq 2\) und die einfachen Gruppen mit exzeptionellem Schur-Multiplikator die induktive Bedingung in ihrer definierenden Charakteristik erfüllen. Dies schließt den Fall der definierenden Charakteristik ab. Außerdem betrachten wir die Suzuki- und Ree-Gruppen und weisen die induktive Bedingung für alle Primzahlen nach. Dabei zeigen wir, dass es eine Galois-equivariante Jordan-Zerlegung für ihre irreduziblen Charaktere gibt. Zudem betrachten wir einige Familien von Gruppen, die keine generische Wahl einer lokalen Untergruppe zulassen. Wir zeigen, dass die Gruppen \(\text{PSL}_3(q)\) mit \(q \equiv 4, 7 \mod 9\), \(\text{PSU}_3(q)\) mit \(q \equiv 2, 5 \mod 9\) und \(G_2 (q)\) mit \(q \equiv 2, 4, 5, 7 \mod 9\) die induktive Bedingung für die Primzahl \(\ell=3\) erfüllen. Außerdem weisen wir die induktive Bedingung für \(\ell=2\) und die Gruppen \(G_2(3^f)\) mit \(f \geq 1\), \(^3 D_4(q)\) und \(^2E_6(q)\) für ungerade Primpotenzen \(q\) nach.
- Published
- 2022
- Full Text
- View/download PDF
17. PRODUCTS OF SYLOW SUBGROUPS IN SUZUKI AND REE GROUPS.
- Author
-
Smolensky, Andrei
- Subjects
SYLOW subgroups ,GROUP theory ,PROOF theory ,MATHEMATICAL decomposition ,CHARACTERISTIC functions - Abstract
An explicit and elementary proof is given to the fact that Suzuki and Ree groups can be decomposed into the product of 4 of their Sylow p-subgroups, where p is the defining characteristic. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
18. Supercharacters of unipotent groups defined by involutions.
- Author
-
Andrews, Scott
- Subjects
- *
GROUP theory , *ORTHOGONALIZATION , *SET theory , *PARTITIONS (Mathematics) , *SYMPLECTIC groups - Abstract
We construct supercharacter theories of finite unipotent groups in the orthogonal, symplectic and unitary types. Our method utilizes group actions in a manner analogous to that of Diaconis and Isaacs in their construction of supercharacters of algebra groups. The resulting supercharacter theories agree with those of André and Neto in the case of the unipotent orthogonal and symplectic groups and generalize to a large collection of subgroups. In the unitary group case, we describe the supercharacters and superclasses in terms of labeled set partitions and calculate the supercharacter table. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
19. On finite groups isospectral to simple classical groups.
- Author
-
Vasil'ev, A.V.
- Subjects
- *
FINITE groups , *SPECTRAL theory , *DIMENSION theory (Algebra) , *MATHEMATICAL bounds , *NONABELIAN groups - Abstract
The spectrum ω ( G ) of a finite group G is the set of element orders of G . Finite groups G and H are isospectral if their spectra coincide. Suppose that L is a simple classical group of sufficiently large dimension (the lower bound varies for different types of groups but is at most 62) defined over a finite field of characteristic p . It is proved that a finite group G isospectral to L cannot have a nonabelian composition factor which is a group of Lie type defined over a field of characteristic distinct from p . Together with a series of previous results this implies that every finite group G isospectral to L is ‘close’ to L . Namely, if L is a linear or unitary group, then L ⩽ G ⩽ Aut L , in particular, there are only finitely many such groups G for given L . If L is a symplectic or orthogonal group, then G has a unique nonabelian composition factor S and, for given L , there are at most 3 variants for S (including S ≃ L ). [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
20. Characterizing Finite Quasisimple Groups by Their Complex Group Algebras.
- Author
-
Nguyen, Hung and Tong-Viet, Hung
- Abstract
A finite group L is said to be quasisimple if L is perfect and L/ Z( L) is nonabelian simple, in which case we also say that L is a cover of L/Z( L). It has been proved recently (Nguyen, Israel J Math, ) that a quasisimple classical group L is uniquely determined up to isomorphism by the structure of ${{\mathbb C}} L$, the complex group algebra of L, when L/Z( L) is not isomorphic to PSL(4) or PSU(3). In this paper, we establish the similar result for these two open cases and also for covers with nontrivial center of simple groups of exceptional Lie type and sporadic groups. Together with the main results of Tong-Viet (Monatsh Math 166(3-4):559-577, , Algebr Represent Theor 15:379-389, ), we obtain that every quasisimple group except covers of the alternating groups is uniquely determined up to isomorphism by the structure of its complex group algebra. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
21. Overgroup lattices in finite groups of Lie type containing a parabolic.
- Author
-
Aschbacher, Michael
- Subjects
- *
GROUP theory , *LATTICE theory , *FINITE groups , *MATHEMATICAL proofs , *MAXIMAL functions , *MATHEMATICAL analysis - Abstract
Abstract: The main theorem is a step in a program to show there exist finite lattices that are not an interval in the lattice of subgroups of any finite group. As part of the proof of the main theorem, we prove a theorem on the structure of maximal parabolics in finite groups of Lie type, which is of independent interest. [Copyright &y& Elsevier]
- Published
- 2013
- Full Text
- View/download PDF
22. Computing split maximal toral subalgebras of Lie algebras over fields of small characteristic
- Author
-
Roozemond, Dan
- Subjects
- *
LIE algebras , *LINEAR algebraic groups , *MAXIMAL subgroups , *HEURISTIC algorithms , *ALGORITHMS , *GROUP theory - Abstract
Abstract: Important subalgebras of a Lie algebra of an algebraic group are its toral subalgebras, or equivalently (over fields of characteristic 0) its Cartan subalgebras. Of great importance among these are ones that are split: their action on the Lie algebra splits completely over the field of definition. While algorithms to compute split maximal toral subalgebras exist and have been implemented (Ryba, 2007; Cohen and Murray, 2009), these algorithms fail when the Lie algebra is defined over a field of characteristic 2 or 3. We present heuristic algorithms that, given a reductive Lie algebra L over a finite field of characteristic 2 or 3, find a split maximal toral subalgebra of L. Together with earlier work (Cohen and Roozemond, 2009) these algorithms are very useful for the recognition of reductive Lie algebras over such fields. [Copyright &y& Elsevier]
- Published
- 2013
- Full Text
- View/download PDF
23. EQUIVALENCES BETWEEN FUSION SYSTEMS OF FINITE GROUPS OF LIE TYPE.
- Author
-
BROTO, CARLES, MØLLER, JESPER M., and OLIVER, BOB
- Subjects
- *
HOMOTOPY theory , *FINITE groups , *GROUP theory , *EQUIVALENCE classes (Set theory) , *SET theory - Abstract
The article discusses a paper that aims at using methods from homotopy theory to prove that some pairs of fusion systems of finite groups of Lie type are isotypically equivalent. It gives the formulations for the authors' main theorem resulting from the methods followed, comparing the fusion of groups of Lie type with different defining characteristics. Also included are a few proven cases of isotypical equivalences between fusion systems of classical groups.
- Published
- 2012
- Full Text
- View/download PDF
24. Recognizing the characteristic of a simple group of Lie type from its Probabilistic Zeta function
- Author
-
Patassini, Massimiliano
- Subjects
- *
LIE groups , *PROBABILITY theory , *ZETA functions , *FINITE simple groups , *POLYNOMIALS , *FINITE groups , *DIRICHLET series - Abstract
Abstract: We find a method to recognize the characteristic of a simple group of Lie type G from its Dirichlet polynomial . This is enough to complete the proof of the following statement: if G is a simple group, H is a finite group and , then . [Copyright &y& Elsevier]
- Published
- 2011
- Full Text
- View/download PDF
25. Recognising simplicity of black-box groups by constructing involutions and their centralisers
- Author
-
Parker, Christopher W. and Wilson, Robert A.
- Subjects
- *
GROUP theory , *LIE groups , *FINITE fields , *MATRIX groups , *MONTE Carlo method , *POLYNOMIALS - Abstract
Abstract: We investigate the complexity of constructing involutions and their centralisers in groups of Lie type over finite fields of odd order, and discuss applications to the problem of deciding whether a matrix group, or a black-box group of known characteristic, is simple. We show that if the characteristic is odd, then simplicity can be recognised in Monte Carlo polynomial time. [Copyright &y& Elsevier]
- Published
- 2010
- Full Text
- View/download PDF
26. A NEW CONSTRUCTION OF THE REE GROUPS OF TYPE 2G2.
- Author
-
Wilson, Robert A.
- Subjects
FINITE simple groups ,LIE algebras ,LINEAR algebraic groups ,MAXIMAL subgroups ,MATHEMATICAL analysis - Abstract
We give a new elementary construction of Ree's family of finite simple groups of type
2 G2 , which avoids the need for the machinery of Lie algebras and algebraic groups. We prove that the groups we construct are simple of order q3 (q3 +1)(q-1) and act doubly transitively on an explicit set of q3 + 1 points, where q = 32k+1 . Moreover, our construction is practical in the sense that generators for the groups and many of their maximal subgroups may easily be obtained. [ABSTRACT FROM AUTHOR]- Published
- 2010
- Full Text
- View/download PDF
27. Another new approach to the small Ree groups.
- Author
-
Wilson, Robert
- Abstract
A new elementary construction of the small Ree groups is described. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
28. A simple construction of the Ree groups of type 2 F 4
- Author
-
Wilson, Robert A.
- Subjects
- *
FINITE simple groups , *LIE algebras , *MAXIMAL subgroups , *AUTOMORPHISMS , *MATHEMATICAL analysis - Abstract
Abstract: We give an elementary construction of Ree''s family of finite simple groups , avoiding the need for the machinery of Lie algebras, algebraic groups, or buildings. We calculate the group orders and prove simplicity from first principles. Moreover, this is a practical construction in the sense that it gives an explicit description of the generalized octagon, and from it generators for many of the maximal subgroups may be easily obtained. [Copyright &y& Elsevier]
- Published
- 2010
- Full Text
- View/download PDF
29. Computing Chevalley bases in small characteristics
- Author
-
Cohen, Arjeh M. and Roozemond, Dan
- Subjects
- *
CHEVALLEY groups , *COMPUTATIONAL mathematics , *LIE algebras , *ALGEBRAIC fields , *ROOT systems (Algebra) , *CONJUGACY classes , *ISOMORPHISM (Mathematics) - Abstract
Abstract: Let L be the Lie algebra of a simple algebraic group defined over a field and let H be a split maximal toral subalgebra of L. Then L has a Chevalley basis with respect to H. If , it is known how to find it. In this paper, we treat the remaining two characteristics. To this end, we present a few new methods, implemented in Magma, which vary from the computation of centralizers of one root space in another to the computation of a specific part of the Lie algebra of derivations of L. [Copyright &y& Elsevier]
- Published
- 2009
- Full Text
- View/download PDF
30. Primitive flag-transitive generalized hexagons and octagons
- Author
-
Schneider, Csaba and Van Maldeghem, Hendrik
- Subjects
- *
POLYGONS , *GAUSS-Bonnet theorem , *GENERALIZED polygons , *HEPTAGON , *HEXAGONS - Abstract
Abstract: Suppose that an automorphism group G acts flag-transitively on a finite generalized hexagon or octagon , and suppose that the action on both the point and line set is primitive. We show that G is an almost simple group of Lie type, that is, the socle of G is a simple Chevalley group. [Copyright &y& Elsevier]
- Published
- 2008
- Full Text
- View/download PDF
31. Root filtration spaces from Lie algebras and abstract root groups
- Author
-
Cohen, Arjeh M. and Ivanyos, Gábor
- Subjects
- *
MATHEMATICAL analysis , *LIE algebras , *LINEAR algebra , *LIE groups - Abstract
Abstract: Both Timmesfeld''s abstract root subgroups and simple Lie algebras generated by extremal elements lead to root filtration spaces: synthetically defined geometries on points and lines which can be characterized as root shadow spaces of buildings. Here we show how to obtain the root filtration space axioms from root subgroups and classical Lie algebras. [Copyright &y& Elsevier]
- Published
- 2006
- Full Text
- View/download PDF
32. Carter subgroups in finite groups
- Author
-
Tamburini, M.C. and Vdovin, E.P.
- Subjects
- *
FINITE groups , *LIE groups , *UNITARY groups - Abstract
Let
F be the class of finite groups which contain nonconjugate Carter subgroups and assume thatF is nonempty. Then it has been shown that a member ofF , of minimal order, should be an almost simple groupA . In this paper, using CFSG, we restrict the possibilities for suchA : in particular we show thatA cannot be simple, except possibly when it is a unitary group. [Copyright &y& Elsevier]- Published
- 2002
- Full Text
- View/download PDF
33. Mod p Reducibility of Unramified Representations of Finite Groups of Lie Type.
- Author
-
Tiep, Pham Huu and Zalesskii, A. E.
- Subjects
FINITE groups ,FC-groups ,GROUP theory ,COLLEGE teachers ,TEACHERS - Abstract
Dedicated to the memory of Professor A. I. KostrikinThe main problem under discussion is to determine, for quasi-simple groups of Lie type G, irreducible representations φ of G that remain irreducible under reduction modulo the natural prime p. The method is new. It works only for p >3 and for representations φ that can be realized over an unramified extension of Qp, the field of p -adic numbers. Under these assumptions, the main result says that the trivial and the Steinberg representations of G are the only representations in question provided G is not of type A1. This is not true for G=SL(2, p). The paper contains a result of independent interest on infinitesimally irrreducible representations ρ of G over an algebraically closed field of characteristic p. Assuming that G is not of rank 1 and G≠ G2(5), it is proved that either the Jordan normal form of a root element contains a block of size d with 1
- Published
- 2002
- Full Text
- View/download PDF
34. Most Words are Geometrically Almost Uniform
- Author
-
Michael Larsen
- Subjects
Finite group ,word maps ,Algebra and Number Theory ,Distribution (number theory) ,14G15 ,MathematicsofComputing_GENERAL ,Group Theory (math.GR) ,20P05 ,random walks on finite simple groups ,Combinatorics ,20P0 (Primary) 11G25, 14G15, 20G40 (Secondary) ,FOS: Mathematics ,11G25 ,20G40 ,Classification of finite simple groups ,Limit (mathematics) ,Tuple ,Random variable ,Mathematics - Group Theory ,groups of Lie type ,Word (group theory) ,Mathematics - Abstract
If w is a word in d>1 letters and G is a finite group, evaluation of w on a uniformly randomly chosen d-tuple in G gives a random variable with values in G, which may or may not be uniform. It is known that if G ranges over finite simple groups of given root system and characteristic, a positive proportion of words w give a distribution which approaches uniformity in the limit as |G| goes to infinity. In this paper, we show that the proportion is in fact 1., 13 pages
- Published
- 2019
35. Recognizing the characteristic of a simple group of Lie type from its Probabilistic Zeta function
- Author
-
Massimiliano Patassini
- Subjects
Finite group ,Algebra and Number Theory ,Outer automorphism group ,Alternating group ,Characteristic ,Probabilistic Zeta function ,Simple groups ,Combinatorics ,Algebra ,Groups of Lie type ,Matrix group ,Group of Lie type ,Symmetric group ,Unitary group ,Simple group ,Mathematics - Abstract
We find a method to recognize the characteristic of a simple group of Lie type G from its Dirichlet polynomial P G ( s ) . This is enough to complete the proof of the following statement: if G is a simple group, H is a finite group and P G ( s ) = P H ( s ) , then H / Frat ( H ) ≅ G .
- Published
- 2011
- Full Text
- View/download PDF
36. A simple construction of the Ree groups of type 2F4
- Author
-
Robert A. Wilson
- Subjects
Algebra and Number Theory ,Simple Lie group ,High Energy Physics::Lattice ,Simple groups ,Generalised octagon ,Ree group ,Representation theory ,Statistics::Computation ,Algebra ,Groups of Lie type ,Group of Lie type ,Simple group ,Ree groups ,Classification of finite simple groups ,E8 ,Group theory ,Mathematics - Abstract
We give an elementary construction of Ree's family of finite simple groups F 4 2 ( q ) , avoiding the need for the machinery of Lie algebras, algebraic groups, or buildings. We calculate the group orders and prove simplicity from first principles. Moreover, this is a practical construction in the sense that it gives an explicit description of the generalized octagon, and from it generators for many of the maximal subgroups may be easily obtained.
- Published
- 2010
- Full Text
- View/download PDF
37. Computing Chevalley bases in small characteristics
- Author
-
Dan Roozemond, Aaron Cohen, and Discrete Algebra and Geometry
- Subjects
Chevalley basis ,Discrete mathematics ,Pure mathematics ,Algebra and Number Theory ,Simple Lie group ,Subalgebra ,Cartan subalgebra ,Universal enveloping algebra ,Mathematics - Rings and Algebras ,Graded Lie algebra ,Lie conformal algebra ,Isomorphism problems ,Groups of Lie type ,Rings and Algebras (math.RA) ,Lie algebras ,Algebraic group ,FOS: Mathematics ,Chevalley bases ,Toral subalgebras ,Mathematics::Representation Theory ,17B45, 20Gxx, 68W30 ,Conjugacy problems ,Algorithms ,Mathematics - Abstract
Let L be the Lie algebra of a simple algebraic group defined over a field F and let H be a split Cartan subalgebra of L. Then L has a Chevalley basis with respect to H. If the characteristic of F is not 2 or 3, it is known how to find it. In this paper, we treat the remaining two characteristics. To this end, we present a few new methods, implemented in Magma, which vary from the computation of centralisers of one root space in another to the computation of a specific part of the Lie algebra of derivations of $L$., 22 pages
- Published
- 2009
38. Primitive flag-transitive generalized hexagons and octagons
- Author
-
Hendrik Van Maldeghem and Csaba Schneider
- Subjects
Almost simple groups ,Quasisimple group ,Primitive permutation group ,Group Theory (math.GR) ,Flag-transitivity ,Theoretical Computer Science ,Combinatorics ,O'Nan–Scott Theorem ,Mathematics::Group Theory ,Primitive permutation groups ,Group of Lie type ,Symmetric group ,FOS: Mathematics ,Mathematics - Combinatorics ,Discrete Mathematics and Combinatorics ,Mathematics::Representation Theory ,Mathematics ,Generalized polygons ,Simple Lie group ,05B25,20B15, 20B25 ,Generalized octagons ,Alternating group ,Outer automorphism group ,Generalized hexagons ,Groups of Lie type ,Inner automorphism ,Computational Theory and Mathematics ,Combinatorics (math.CO) ,Mathematics - Group Theory - Abstract
Suppose that an automorphism group $G$ acts flag-transitively on a finite generalized hexagon or octagon $\cS$, and suppose that the action on both the point and line set is primitive. We show that $G$ is an almost simple group of Lie type, that is, the socle of $G$ is a simple Chevalley group., forgot to upload the appendices in version 1, and this is rectified in version 2. erased cross-ref keys in version 3. Minor revision in version 4 to implement the suggestion by the referee (new section at the end, extended acknowledgment, simpler proof for Lemma 4.2)
- Published
- 2008
- Full Text
- View/download PDF
39. Root filtration spaces from Lie algebras and abstract root groups
- Author
-
Gábor Ivanyos, Aaron Cohen, and Discrete Algebra and Geometry
- Subjects
Discrete mathematics ,Pure mathematics ,Algebra and Number Theory ,Simple Lie group ,Killing form ,Kac–Moody algebra ,Representation theory ,Lie conformal algebra ,Adjoint representation of a Lie algebra ,Groups of Lie type ,Representation of a Lie group ,Lie algebras ,Abstract root groups ,Shadow spaces ,Lie theory ,Buildings ,Mathematics - Abstract
Both Timmesfeld's abstract root subgroups and simple Lie algebras generated by extremal elements lead to root filtration spaces: synthetically defined geometries on points and lines which can be characterized as root shadow spaces of buildings. Here we show how to obtain the root filtration space axioms from root subgroups and classical Lie algebras.
- Published
- 2006
- Full Text
- View/download PDF
40. Split BN-pairs of rank 2: the octagons
- Author
-
Katrin Tent
- Subjects
Mathematics(all) ,Group (mathematics) ,Generalized polygons ,General Mathematics ,Simple Lie group ,BN-pairs ,Moufang polygons ,Combinatorics ,Nilpotent ,Groups of Lie type ,Group of Lie type ,Rank (graph theory) ,Buildings ,Mathematics - Abstract
Let G be a group with an irreducible spherical BN-pair of rank 2 where B contains a normal nilpotent subgroup U with B = U ( B ∩ N ). Then G is essentially a group of Lie type. This completes the classification of split BN-pairs of rank 2, generalizing the corresponding result for finite groups due to Fong and Seitz.
- Published
- 2004
- Full Text
- View/download PDF
41. On the Dirichlet polynomial of the simple groups of Lie type
- Author
-
Patassini, Massimiliano
- Subjects
Settore MAT/02 - Algebra ,Dirichlet polynomial, probabilistic zeta function, simple groups, groups of Lie type, contractibility, order complex, simplicial complex, irreducibility, classical groups ,irreducibility ,Dirichlet polynomial ,simplicial complex ,classical groups ,contractibility ,simple groups ,order complex ,probabilistic zeta function ,groups of Lie type - Published
- 2011
42. Факторизации на някои групи от лиев тип и лиев ранг 4
- Author
-
Gentcheva, Elenka and Gentchev, Tsanko
- Subjects
Groups of Lie Type ,Factorizations of Groups ,Finite Simple Groups - Abstract
Еленка Генчева, Цанко Генчев В настоящата работа се разглеждат крайни прости групи G , които могат да се представят като произведение на две свои собствени неабелеви прости подгрупи A и B. Всяко такова представяне G = AB е прието да се нарича факторизация на G, а тъй като множителите A и B са избрани да бъдат прости подгрупи на G, то разглежданите факторизации са известни още като прости факторизации на G. Тук се предполага, че G е проста група от лиев тип и лиев ранг 4 над крайно поле GF (q). Ключови думи: крайни прости групи, групи от лиев тип, факторизации на групи. In this paper we consider simple groups G which can be represented as a product of two their proper non-Abelian simple subgroups A and B. The representation G = AB is called a (simple) factorization of G. *2000 Mathematics Subject Classification: primary 20D06, 20D40; secondary 20G40.
- Published
- 2010
43. Recognising simplicity of black-box groups by constructing involutions and their centralisers
- Author
-
Robert A. Wilson and Christopher Parker
- Subjects
Algebra and Number Theory ,Group (mathematics) ,media_common.quotation_subject ,Computational group theory ,Algebra ,Finite field ,Groups of Lie type ,Matrix group ,Group of Lie type ,Simple (abstract algebra) ,Order (group theory) ,Simplicity ,Mathematics ,media_common - Abstract
We investigate the complexity of constructing involutions and their centralisers in groups of Lie type over finite fields of odd order, and discuss applications to the problem of deciding whether a matrix group, or a black-box group of known characteristic, is simple. We show that if the characteristic is odd, then simplicity can be recognised in Monte Carlo polynomial time.
- Full Text
- View/download PDF
44. Carter subgroups in finite groups
- Author
-
E.P. Vdovin and M. C. Tamburini
- Subjects
p-group ,Discrete mathematics ,Classical group ,Algebra and Number Theory ,Carter subgroups ,Sporadic group ,Non-abelian group ,Combinatorics ,Groups of Lie type ,Group of Lie type ,Locally finite group ,Symmetric group ,Simple group ,Centralizers of elements ,Mathematics - Abstract
Let F be the class of finite groups which contain nonconjugate Carter subgroups and assume that F is nonempty. Then it has been shown that a member of F , of minimal order, should be an almost simple group A. In this paper, using CFSG, we restrict the possibilities for such A: in particular we show that A cannot be simple, except possibly when it is a unitary group.
- Full Text
- View/download PDF
45. Carter subgroups of projective linear groups
- Author
-
DI MARTINO, L, Tamburini Bellani, M, DI MARTINO, LINO GIUSEPPE, Tamburini Bellani, MC, DI MARTINO, L, Tamburini Bellani, M, DI MARTINO, LINO GIUSEPPE, and Tamburini Bellani, MC
- Published
- 1987
46. The inductive McKay-Navarro condition for finite groups of Lie type
- Author
-
Johansson, Birte and Johansson, Birte
- Abstract
In the representation theory of finite groups, the so-called local-global conjectures assert a relation between the representation theory of a finite group and one of its local subgroups. The McKay-Navarro conjecture claims that the action of a set of Galois automorphisms on certain ordinary characters of the local and global group is equivariant. Navarro, Späth, and Vallejo reduced the conjecture to a problem about simple groups in 2019 and stated an inductive condition that has to be verified for all finite simple groups. In this work, we give an introduction to the character theory of finite groups and state the McKay-Navarro conjecture and its inductive condition. Furthermore, we recall the definition of finite groups of Lie type and present results regarding their structure and their representation theory. In the second part of this work, we verify the inductive McKay-Navarro condition for various families of finite groups of Lie type. In defining characteristic, most groups have already been considered by Ruhstorfer. We show that the inductive condition also holds for the groups with exceptional graph automorphisms, the Suzuki and Ree groups, the groups \(B_n(2)\) for \(n \geq 2\), as well as for the simple groups of Lie type with non-generic Schur multiplier in their defining characteristic. This completes the verification of the inductive McKay-Navarro condition in defining characteristic. We further consider the Suzuki and Ree groups and verify the inductive condition for all primes. On the way, we show that there exists a Galois-equivariant Jordan decomposition for their irreducible characters. Moreover, we consider some families of groups of Lie type that do not admit a generic choice of a local subgroup. We show that the inductive condition is satisfied for the prime \(\ell=3\) and the groups \(\text{PSL}_3(q)\) with \(q \equiv 4, 7 \mod 9\), \(\text{PSU}_3(q)\) with \(q \equiv 2, 5 \mod 9\), and \(G_2 (q)\) with \(q \equiv 2, 4, 5, 7 \mod 9\). Further, In der Darstellungstheorie endlicher Gruppen stellen sogenannte lokal-globale Vermutungen einen Zusammenhang zwischen den Darstellungen einer endlichen Gruppe und einer ihrer lokalen Untergruppen her. Die McKay-Navarro-Vermutung besagt, dass die Wirkung von bestimmten Galoisautomorphismen auf einigen gewöhnlichen irreduziblen Charakteren beider Gruppen equivariant ist. Navarro, Späth und Vallejo führten diese Vermutung 2019 auf ein Problem über endliche einfache Gruppen zurück und formulierten eine induktive Bedingung, die für alle endlichen einfachen Gruppen überprüft werden muss. In dieser Arbeit geben wir eine kurze Einführung in die Charaktertheorie endlicher Gruppen und formulieren die McKay-Navarro-Vermutung sowie ihre induktive Bedingung. Außerdem stellen wir endliche Gruppen vom Lie-Typ und wichtige Resultate über ihre Charaktertheorie vor. Im zweiten Teil wird die induktive McKay-Navarro-Bedingung für verschiedene Familien endlicher Gruppen vom Lie-Typ nachgewiesen. In definierender Charakteristik wurde die Bedingung für die meisten Gruppen bereits von Ruhstorfer betrachtet. Wir zeigen, dass die Gruppen mit exzeptionellen Graphautomorphismen, die Suzuki- und Ree-Gruppen, \(B_n(2)\) für \(n \geq 2\) und die einfachen Gruppen mit exzeptionellem Schur-Multiplikator die induktive Bedingung in ihrer definierenden Charakteristik erfüllen. Dies schließt den Fall der definierenden Charakteristik ab. Außerdem betrachten wir die Suzuki- und Ree-Gruppen und weisen die induktive Bedingung für alle Primzahlen nach. Dabei zeigen wir, dass es eine Galois-equivariante Jordan-Zerlegung für ihre irreduziblen Charaktere gibt. Zudem betrachten wir einige Familien von Gruppen, die keine generische Wahl einer lokalen Untergruppe zulassen. Wir zeigen, dass die Gruppen \(\text{PSL}_3(q)\) mit \(q \equiv 4, 7 \mod 9\), \(\text{PSU}_3(q)\) mit \(q \equiv 2, 5 \mod 9\) und \(G_2 (q)\) mit \(q \equiv 2, 4, 5, 7 \mod 9\) die induktive Bedingung für die Primzahl \(\ell=3\) erfüllen. Auß
47. The inductive McKay-Navarro condition for finite groups of Lie type
- Author
-
Johansson, Birte and Johansson, Birte
- Abstract
In the representation theory of finite groups, the so-called local-global conjectures assert a relation between the representation theory of a finite group and one of its local subgroups. The McKay-Navarro conjecture claims that the action of a set of Galois automorphisms on certain ordinary characters of the local and global group is equivariant. Navarro, Späth, and Vallejo reduced the conjecture to a problem about simple groups in 2019 and stated an inductive condition that has to be verified for all finite simple groups. In this work, we give an introduction to the character theory of finite groups and state the McKay-Navarro conjecture and its inductive condition. Furthermore, we recall the definition of finite groups of Lie type and present results regarding their structure and their representation theory. In the second part of this work, we verify the inductive McKay-Navarro condition for various families of finite groups of Lie type. In defining characteristic, most groups have already been considered by Ruhstorfer. We show that the inductive condition also holds for the groups with exceptional graph automorphisms, the Suzuki and Ree groups, the groups \(B_n(2)\) for \(n \geq 2\), as well as for the simple groups of Lie type with non-generic Schur multiplier in their defining characteristic. This completes the verification of the inductive McKay-Navarro condition in defining characteristic. We further consider the Suzuki and Ree groups and verify the inductive condition for all primes. On the way, we show that there exists a Galois-equivariant Jordan decomposition for their irreducible characters. Moreover, we consider some families of groups of Lie type that do not admit a generic choice of a local subgroup. We show that the inductive condition is satisfied for the prime \(\ell=3\) and the groups \(\text{PSL}_3(q)\) with \(q \equiv 4, 7 \mod 9\), \(\text{PSU}_3(q)\) with \(q \equiv 2, 5 \mod 9\), and \(G_2 (q)\) with \(q \equiv 2, 4, 5, 7 \mod 9\). Further, In der Darstellungstheorie endlicher Gruppen stellen sogenannte lokal-globale Vermutungen einen Zusammenhang zwischen den Darstellungen einer endlichen Gruppe und einer ihrer lokalen Untergruppen her. Die McKay-Navarro-Vermutung besagt, dass die Wirkung von bestimmten Galoisautomorphismen auf einigen gewöhnlichen irreduziblen Charakteren beider Gruppen equivariant ist. Navarro, Späth und Vallejo führten diese Vermutung 2019 auf ein Problem über endliche einfache Gruppen zurück und formulierten eine induktive Bedingung, die für alle endlichen einfachen Gruppen überprüft werden muss. In dieser Arbeit geben wir eine kurze Einführung in die Charaktertheorie endlicher Gruppen und formulieren die McKay-Navarro-Vermutung sowie ihre induktive Bedingung. Außerdem stellen wir endliche Gruppen vom Lie-Typ und wichtige Resultate über ihre Charaktertheorie vor. Im zweiten Teil wird die induktive McKay-Navarro-Bedingung für verschiedene Familien endlicher Gruppen vom Lie-Typ nachgewiesen. In definierender Charakteristik wurde die Bedingung für die meisten Gruppen bereits von Ruhstorfer betrachtet. Wir zeigen, dass die Gruppen mit exzeptionellen Graphautomorphismen, die Suzuki- und Ree-Gruppen, \(B_n(2)\) für \(n \geq 2\) und die einfachen Gruppen mit exzeptionellem Schur-Multiplikator die induktive Bedingung in ihrer definierenden Charakteristik erfüllen. Dies schließt den Fall der definierenden Charakteristik ab. Außerdem betrachten wir die Suzuki- und Ree-Gruppen und weisen die induktive Bedingung für alle Primzahlen nach. Dabei zeigen wir, dass es eine Galois-equivariante Jordan-Zerlegung für ihre irreduziblen Charaktere gibt. Zudem betrachten wir einige Familien von Gruppen, die keine generische Wahl einer lokalen Untergruppe zulassen. Wir zeigen, dass die Gruppen \(\text{PSL}_3(q)\) mit \(q \equiv 4, 7 \mod 9\), \(\text{PSU}_3(q)\) mit \(q \equiv 2, 5 \mod 9\) und \(G_2 (q)\) mit \(q \equiv 2, 4, 5, 7 \mod 9\) die induktive Bedingung für die Primzahl \(\ell=3\) erfüllen. Auß
48. The inductive McKay-Navarro condition for finite groups of Lie type
- Author
-
Johansson, Birte and Johansson, Birte
- Abstract
In the representation theory of finite groups, the so-called local-global conjectures assert a relation between the representation theory of a finite group and one of its local subgroups. The McKay-Navarro conjecture claims that the action of a set of Galois automorphisms on certain ordinary characters of the local and global group is equivariant. Navarro, Späth, and Vallejo reduced the conjecture to a problem about simple groups in 2019 and stated an inductive condition that has to be verified for all finite simple groups. In this work, we give an introduction to the character theory of finite groups and state the McKay-Navarro conjecture and its inductive condition. Furthermore, we recall the definition of finite groups of Lie type and present results regarding their structure and their representation theory. In the second part of this work, we verify the inductive McKay-Navarro condition for various families of finite groups of Lie type. In defining characteristic, most groups have already been considered by Ruhstorfer. We show that the inductive condition also holds for the groups with exceptional graph automorphisms, the Suzuki and Ree groups, the groups \(B_n(2)\) for \(n \geq 2\), as well as for the simple groups of Lie type with non-generic Schur multiplier in their defining characteristic. This completes the verification of the inductive McKay-Navarro condition in defining characteristic. We further consider the Suzuki and Ree groups and verify the inductive condition for all primes. On the way, we show that there exists a Galois-equivariant Jordan decomposition for their irreducible characters. Moreover, we consider some families of groups of Lie type that do not admit a generic choice of a local subgroup. We show that the inductive condition is satisfied for the prime \(\ell=3\) and the groups \(\text{PSL}_3(q)\) with \(q \equiv 4, 7 \mod 9\), \(\text{PSU}_3(q)\) with \(q \equiv 2, 5 \mod 9\), and \(G_2 (q)\) with \(q \equiv 2, 4, 5, 7 \mod 9\). Further, In der Darstellungstheorie endlicher Gruppen stellen sogenannte lokal-globale Vermutungen einen Zusammenhang zwischen den Darstellungen einer endlichen Gruppe und einer ihrer lokalen Untergruppen her. Die McKay-Navarro-Vermutung besagt, dass die Wirkung von bestimmten Galoisautomorphismen auf einigen gewöhnlichen irreduziblen Charakteren beider Gruppen equivariant ist. Navarro, Späth und Vallejo führten diese Vermutung 2019 auf ein Problem über endliche einfache Gruppen zurück und formulierten eine induktive Bedingung, die für alle endlichen einfachen Gruppen überprüft werden muss. In dieser Arbeit geben wir eine kurze Einführung in die Charaktertheorie endlicher Gruppen und formulieren die McKay-Navarro-Vermutung sowie ihre induktive Bedingung. Außerdem stellen wir endliche Gruppen vom Lie-Typ und wichtige Resultate über ihre Charaktertheorie vor. Im zweiten Teil wird die induktive McKay-Navarro-Bedingung für verschiedene Familien endlicher Gruppen vom Lie-Typ nachgewiesen. In definierender Charakteristik wurde die Bedingung für die meisten Gruppen bereits von Ruhstorfer betrachtet. Wir zeigen, dass die Gruppen mit exzeptionellen Graphautomorphismen, die Suzuki- und Ree-Gruppen, \(B_n(2)\) für \(n \geq 2\) und die einfachen Gruppen mit exzeptionellem Schur-Multiplikator die induktive Bedingung in ihrer definierenden Charakteristik erfüllen. Dies schließt den Fall der definierenden Charakteristik ab. Außerdem betrachten wir die Suzuki- und Ree-Gruppen und weisen die induktive Bedingung für alle Primzahlen nach. Dabei zeigen wir, dass es eine Galois-equivariante Jordan-Zerlegung für ihre irreduziblen Charaktere gibt. Zudem betrachten wir einige Familien von Gruppen, die keine generische Wahl einer lokalen Untergruppe zulassen. Wir zeigen, dass die Gruppen \(\text{PSL}_3(q)\) mit \(q \equiv 4, 7 \mod 9\), \(\text{PSU}_3(q)\) mit \(q \equiv 2, 5 \mod 9\) und \(G_2 (q)\) mit \(q \equiv 2, 4, 5, 7 \mod 9\) die induktive Bedingung für die Primzahl \(\ell=3\) erfüllen. Auß
49. The inductive McKay-Navarro condition for finite groups of Lie type
- Author
-
Johansson, Birte and Johansson, Birte
- Abstract
In the representation theory of finite groups, the so-called local-global conjectures assert a relation between the representation theory of a finite group and one of its local subgroups. The McKay-Navarro conjecture claims that the action of a set of Galois automorphisms on certain ordinary characters of the local and global group is equivariant. Navarro, Späth, and Vallejo reduced the conjecture to a problem about simple groups in 2019 and stated an inductive condition that has to be verified for all finite simple groups. In this work, we give an introduction to the character theory of finite groups and state the McKay-Navarro conjecture and its inductive condition. Furthermore, we recall the definition of finite groups of Lie type and present results regarding their structure and their representation theory. In the second part of this work, we verify the inductive McKay-Navarro condition for various families of finite groups of Lie type. In defining characteristic, most groups have already been considered by Ruhstorfer. We show that the inductive condition also holds for the groups with exceptional graph automorphisms, the Suzuki and Ree groups, the groups \(B_n(2)\) for \(n \geq 2\), as well as for the simple groups of Lie type with non-generic Schur multiplier in their defining characteristic. This completes the verification of the inductive McKay-Navarro condition in defining characteristic. We further consider the Suzuki and Ree groups and verify the inductive condition for all primes. On the way, we show that there exists a Galois-equivariant Jordan decomposition for their irreducible characters. Moreover, we consider some families of groups of Lie type that do not admit a generic choice of a local subgroup. We show that the inductive condition is satisfied for the prime \(\ell=3\) and the groups \(\text{PSL}_3(q)\) with \(q \equiv 4, 7 \mod 9\), \(\text{PSU}_3(q)\) with \(q \equiv 2, 5 \mod 9\), and \(G_2 (q)\) with \(q \equiv 2, 4, 5, 7 \mod 9\). Further, In der Darstellungstheorie endlicher Gruppen stellen sogenannte lokal-globale Vermutungen einen Zusammenhang zwischen den Darstellungen einer endlichen Gruppe und einer ihrer lokalen Untergruppen her. Die McKay-Navarro-Vermutung besagt, dass die Wirkung von bestimmten Galoisautomorphismen auf einigen gewöhnlichen irreduziblen Charakteren beider Gruppen equivariant ist. Navarro, Späth und Vallejo führten diese Vermutung 2019 auf ein Problem über endliche einfache Gruppen zurück und formulierten eine induktive Bedingung, die für alle endlichen einfachen Gruppen überprüft werden muss. In dieser Arbeit geben wir eine kurze Einführung in die Charaktertheorie endlicher Gruppen und formulieren die McKay-Navarro-Vermutung sowie ihre induktive Bedingung. Außerdem stellen wir endliche Gruppen vom Lie-Typ und wichtige Resultate über ihre Charaktertheorie vor. Im zweiten Teil wird die induktive McKay-Navarro-Bedingung für verschiedene Familien endlicher Gruppen vom Lie-Typ nachgewiesen. In definierender Charakteristik wurde die Bedingung für die meisten Gruppen bereits von Ruhstorfer betrachtet. Wir zeigen, dass die Gruppen mit exzeptionellen Graphautomorphismen, die Suzuki- und Ree-Gruppen, \(B_n(2)\) für \(n \geq 2\) und die einfachen Gruppen mit exzeptionellem Schur-Multiplikator die induktive Bedingung in ihrer definierenden Charakteristik erfüllen. Dies schließt den Fall der definierenden Charakteristik ab. Außerdem betrachten wir die Suzuki- und Ree-Gruppen und weisen die induktive Bedingung für alle Primzahlen nach. Dabei zeigen wir, dass es eine Galois-equivariante Jordan-Zerlegung für ihre irreduziblen Charaktere gibt. Zudem betrachten wir einige Familien von Gruppen, die keine generische Wahl einer lokalen Untergruppe zulassen. Wir zeigen, dass die Gruppen \(\text{PSL}_3(q)\) mit \(q \equiv 4, 7 \mod 9\), \(\text{PSU}_3(q)\) mit \(q \equiv 2, 5 \mod 9\) und \(G_2 (q)\) mit \(q \equiv 2, 4, 5, 7 \mod 9\) die induktive Bedingung für die Primzahl \(\ell=3\) erfüllen. Auß
50. Carter subgroups of projective linear groups
- Author
-
DI MARTINO, LINO GIUSEPPE, Tamburini Bellani, MC, DI MARTINO, L, and Tamburini Bellani, M
- Subjects
Projective linear group ,group of diagonal matrices ,MAT/02 - ALGEBRA ,groups of Lie type ,Carter subgroup - Published
- 1987
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.