1. Unified picture of measurement-induced ionization in the transmon
- Author
-
Dumas, Marie Frédérique, Groleau-Paré, Benjamin, McDonald, Alexander, Muñoz-Arias, Manuel H., Lledó, Cristóbal, D'Anjou, Benjamin, and Blais, Alexandre
- Subjects
Quantum Physics - Abstract
Despite the high measurement fidelity that can now be reached, the dispersive qubit readout of circuit quantum electrodynamics is plagued by a loss of its quantum nondemolition character and a decrease in fidelity with increased measurement strength. In this work we elucidate the nature of this dynamical process, which we refer to as transmon ionization. We develop a comprehensive framework which provides a unified physical picture of the origin of transmon ionization. This framework consists of three complementary levels of descriptions: a fully quantized transmon-resonator model, a semiclassical model where the resonator is treated as a classical drive on the transmon, and a fully classical model. Crucially, all three approaches preserve the full cosine potential of the transmon, and lead to similar predictions. This framework identifies the multiphoton resonances responsible for transmon ionization. It also allows us to efficiently compute numerical estimates of the photon number threshold for ionization, which are in remarkable agreement with recent experimental results. The set of tools developed within this work are both conceptually and computationally simple, and we expect them to become an integral part of the theoretical support of all circuit QED experiments.
- Published
- 2024