17 results on '"Grischek, Max"'
Search Results
2. An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles
- Author
-
Jacobsson, T. Jesper, Hultqvist, Adam, García-Fernández, Alberto, Anand, Aman, Al-Ashouri, Amran, Hagfeldt, Anders, Crovetto, Andrea, Abate, Antonio, Ricciardulli, Antonio Gaetano, Vijayan, Anuja, Kulkarni, Ashish, Anderson, Assaf Y., Darwich, Barbara Primera, Yang, Bowen, Coles, Brendan L., Perini, Carlo A. R., Rehermann, Carolin, Ramirez, Daniel, Fairen-Jimenez, David, Di Girolamo, Diego, Jia, Donglin, Avila, Elena, Juarez-Perez, Emilio J., Baumann, Fanny, Mathies, Florian, González, G. S. Anaya, Boschloo, Gerrit, Nasti, Giuseppe, Paramasivam, Gopinath, Martínez-Denegri, Guillermo, Näsström, Hampus, Michaels, Hannes, Köbler, Hans, Wu, Hua, Benesperi, Iacopo, Dar, M. Ibrahim, Bayrak Pehlivan, Ilknur, Gould, Isaac E., Vagott, Jacob N., Dagar, Janardan, Kettle, Jeff, Yang, Jie, Li, Jinzhao, Smith, Joel A., Pascual, Jorge, Jerónimo-Rendón, Jose J., Montoya, Juan Felipe, Correa-Baena, Juan-Pablo, Qiu, Junming, Wang, Junxin, Sveinbjörnsson, Kári, Hirselandt, Katrin, Dey, Krishanu, Frohna, Kyle, Mathies, Lena, Castriotta, Luigi A., Aldamasy, Mahmoud. H., Vasquez-Montoya, Manuel, Ruiz-Preciado, Marco A., Flatken, Marion A., Khenkin, Mark V., Grischek, Max, Kedia, Mayank, Saliba, Michael, Anaya, Miguel, Veldhoen, Misha, Arora, Neha, Shargaieva, Oleksandra, Maus, Oliver, Game, Onkar S., Yudilevich, Ori, Fassl, Paul, Zhou, Qisen, Betancur, Rafael, Munir, Rahim, Patidar, Rahul, Stranks, Samuel D., Alam, Shahidul, Kar, Shaoni, Unold, Thomas, Abzieher, Tobias, Edvinsson, Tomas, David, Tudur Wyn, Paetzold, Ulrich W., Zia, Waqas, Fu, Weifei, Zuo, Weiwei, Schröder, Vincent R. F., Tress, Wolfgang, Zhang, Xiaoliang, Chiang, Yu-Hsien, Iqbal, Zafar, Xie, Zhiqiang, and Unger, Eva
- Published
- 2022
- Full Text
- View/download PDF
3. Mismatch of Quasi–Fermi Level Splitting and Voc in Perovskite Solar Cells.
- Author
-
Warby, Jonathan, Shah, Sahil, Thiesbrummel, Jarla, Gutierrez‐Partida, Emilio, Lai, Huagui, Alebachew, Biruk, Grischek, Max, Yang, Fengjiu, Lang, Felix, Albrecht, Steve, Fu, Fan, Neher, Dieter, and Stolterfoht, Martin
- Subjects
SOLAR cells ,PHOTOVOLTAIC power systems ,PEROVSKITE ,OPEN-circuit voltage ,QUANTUM measurement ,QUANTUM efficiency - Abstract
Perovskite solar cells have demonstrated low non‐radiative voltage losses and open‐circuit voltages (VOCs) that often match the internal voltage in the perovskite layer, i.e. the quasi‐Femi level splitting (QFLS). However, in many cases, the VOC differs remarkably from the internal voltage, for example in devices without perfect energy alignment. In terms of recombination losses, this loss often outweighs all non‐radiative recombination losses observed in photoluminescence quantum efficiency measurements by many orders of magnitude. As such, understanding this phenomenon is of great importance for further perovskite solar cell development and tackling stability issues. The classical theory developed for Si solar cells explains the QFLS‐VOC mismatch by considering the partial resistances/conductivities for majority and minority carriers. Here, the authors demonstrate that this generic theory applies to a variety of physical mechanisms that give rise to such a mismatch. Additionally, it is found that mobile ions can contribute to a QFLS‐VOC mismatch in realistic perovskite cells, and it is demonstrated that this can explain various key observations about light soaking and aging‐induced VOC losses. The findings in this paper shine a light on well‐debated topics in the community, identify a new degradation loss, and highlight important design principles to maximize the VOC for improved perovskite solar cells. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
4. Efficiency Potential and Voltage Loss of Inorganic CsPbI2Br Perovskite Solar Cells
- Author
-
Grischek, Max, Caprioglio, Pietro, Zhang, Jiahuan, Peña-Camargo, Francisco, Sveinbjörnsson, Kári, Zu, Fengshuo, Menzel, Dorothee, Warby, Jonathan, Li, Jinzhao, Koch, Norbert, Unger, Eva, Korte, Lars, Neher, Dieter, Stolterfoht, Martin, and Albrecht, Steve
- Subjects
efficiency potentials ,CsPbI2Br ,inorganic perovskites ,solar cells ,620 Ingenieurwissenschaften und zugeordnete Tätigkeiten ,photoluminescence ,ddc:620 ,voltage losses - Abstract
Inorganic perovskite solar cells show excellent thermal stability, but the reported power conversion efficiencies are still lower than for organic–inorganic perovskites. This is mainly caused by lower open‐circuit voltages (VOCs). Herein, the reasons for the low VOC in inorganic CsPbI2Br perovskite solar cells are investigated. Intensity‐dependent photoluminescence measurements for different layer stacks reveal that n–i–p and p–i–n CsPbI2Br solar cells exhibit a strong mismatch between quasi‐Fermi level splitting (QFLS) and VOC. Specifically, the CsPbI2Br p–i–n perovskite solar cell has a QFLS–e ·VOC mismatch of 179 meV, compared with 11 meV for a reference cell with an organic–inorganic perovskite of similar bandgap. On the other hand, this study shows that the CsPbI2Br films with a bandgap of 1.9 eV have a very low defect density, resulting in an efficiency potential of 20.3% with a MeO–2PACz hole‐transporting layer and 20.8% on compact TiO2. Using ultraviolet photoelectron spectroscopy measurements, energy level misalignment is identified as a possible reason for the QFLS–e ·VOC mismatch and strategies for overcoming this VOC limitation are discussed. This work highlights the need to control the interfacial energetics in inorganic perovskite solar cells, but also gives promise for high efficiencies once this issue is resolved. Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659 Bundesministerium für Wirtschaft und Energie http://dx.doi.org/10.13039/501100006360
- Published
- 2022
- Full Text
- View/download PDF
5. Efficiency Potential and Voltage Loss of Inorganic CsPbI 2 Br Perovskite Solar Cells
- Author
-
Grischek, Max, primary, Caprioglio, Pietro, additional, Zhang, Jiahuan, additional, Peña-Camargo, Francisco, additional, Sveinbjörnsson, Kári, additional, Zu, Fengshuo, additional, Menzel, Dorothee, additional, Warby, Jonathan H., additional, Li, Jinzhao, additional, Koch, Norbert, additional, Unger, Eva, additional, Korte, Lars, additional, Neher, Dieter, additional, Stolterfoht, Martin, additional, and Albrecht, Steve, additional
- Published
- 2022
- Full Text
- View/download PDF
6. Nanostructures Enable Certified Efficiency of 29.80% in Perovskite/Silicon Tandem Solar Cells
- Author
-
Tockhorn, Philipp, primary, Becker, Christiane, additional, Cruz Bournazou, Alexandros, additional, Jäger, Klaus, additional, Lang, Felix, additional, Grischek, Max, additional, Sutter, Johannes, additional, Yoo, Danbi, additional, Stolterfoht, Martin, additional, Stannowski, Bernd, additional, Albrecht, Steve, additional, and Wagner, Philipp, additional
- Published
- 2022
- Full Text
- View/download PDF
7. Nano-optical designs enhance monolithic perovskite/silicon tandem solar cells toward 29.8% efficiency
- Author
-
Tockhorn, Philipp, primary, Sutter, Johannes, additional, Cruz, Alexandros, additional, Wagner, Philipp, additional, Jäger, Klaus, additional, Yoo, Danbi, additional, Lang, Felix, additional, Grischek, Max, additional, Li, Bor, additional, Al-Ashouri, Amran, additional, Köhnen, Eike, additional, Stolterfoht, Martin, additional, Neher, Dieter, additional, Schlatmann, Rutger, additional, Rech, Bernd, additional, Stannowski, Bernd, additional, Albrecht, Steve, additional, and Becker, Christiane, additional
- Published
- 2022
- Full Text
- View/download PDF
8. Efficiency Potential and Loss Analysis of Inorganic CsPbI2Br Perovskite Solar Cells
- Author
-
Grischek, Max, primary, Albrecht, Steve, additional, Peña-Camargo, Francisco, additional, Zhang, Jiahuan, additional, Sveinbjörnsson, Kari, additional, Zu, Fenghuo, additional, Thiesbrummel, Jarla, additional, Li, Jinzhao, additional, Näsström, Hampus, additional, Caprioglio, Pietro, additional, Márquez Prieto, José Antonio, additional, Snaith, Henry, additional, Koch, Norbert, additional, Unger, Eva, additional, Unold, Thomas, additional, Neher, Dieter, additional, Stolterfoht, Martin, additional, and Hempel, Hannes, additional
- Published
- 2022
- Full Text
- View/download PDF
9. Nanooptically Enhanced Perovskite/Silicon Tandem Solar Cells with 29.80% Power Conversion Efficiency
- Author
-
Tockhorn, Philipp, primary, Sutter, Johannes, additional, Cruz, Alexandros, additional, Wagner, Philipp, additional, Jäger, Klaus, additional, Yoo, Danbi, additional, Lang, Felix, additional, Grischek, Max, additional, Li, Bor, additional, Al-Ashouri, Amran, additional, Köhnen, Eike, additional, Stolterfoht, Martin, additional, Neher, Dieter, additional, Schlatmann, Rutger, additional, Rech, Bernd, additional, Stannowski, Bernd, additional, Albrecht, Steve, additional, and Becker, Christiane, additional
- Published
- 2022
- Full Text
- View/download PDF
10. An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles
- Author
-
Jacobsson, T. Jesper, primary, Hultqvist, Adam, additional, García-Fernández, Alberto, additional, Anand, Aman, additional, Al-Ashouri, Amran, additional, Hagfeldt, Anders, additional, Crovetto, Andrea, additional, Abate, Antonio, additional, Ricciardulli, Antonio Gaetano, additional, Vijayan, Anuja, additional, Kulkarni, Ashish, additional, Anderson, Assaf Y., additional, Darwich, Barbara Primera, additional, Yang, Bowen, additional, Coles, Brendan L., additional, Perini, Carlo A. R., additional, Rehermann, Carolin, additional, Ramirez, Daniel, additional, Fairen-Jimenez, David, additional, Di Girolamo, Diego, additional, Jia, Donglin, additional, Avila, Elena, additional, Juarez-Perez, Emilio J., additional, Baumann, Fanny, additional, Mathies, Florian, additional, González, G. S. Anaya, additional, Boschloo, Gerrit, additional, Nasti, Giuseppe, additional, Paramasivam, Gopinath, additional, Martínez-Denegri, Guillermo, additional, Näsström, Hampus, additional, Michaels, Hannes, additional, Köbler, Hans, additional, Wu, Hua, additional, Benesperi, Iacopo, additional, Dar, M. Ibrahim, additional, Bayrak Pehlivan, Ilknur, additional, Gould, Isaac E., additional, Vagott, Jacob N., additional, Dagar, Janardan, additional, Kettle, Jeff, additional, Yang, Jie, additional, Li, Jinzhao, additional, Smith, Joel A., additional, Pascual, Jorge, additional, Jerónimo-Rendón, Jose J., additional, Montoya, Juan Felipe, additional, Correa-Baena, Juan-Pablo, additional, Qiu, Junming, additional, Wang, Junxin, additional, Sveinbjörnsson, Kári, additional, Hirselandt, Katrin, additional, Dey, Krishanu, additional, Frohna, Kyle, additional, Mathies, Lena, additional, Castriotta, Luigi A., additional, Aldamasy, Mahmoud. H., additional, Vasquez-Montoya, Manuel, additional, Ruiz-Preciado, Marco A., additional, Flatken, Marion A., additional, Khenkin, Mark V., additional, Grischek, Max, additional, Kedia, Mayank, additional, Saliba, Michael, additional, Anaya, Miguel, additional, Veldhoen, Misha, additional, Arora, Neha, additional, Shargaieva, Oleksandra, additional, Maus, Oliver, additional, Game, Onkar S., additional, Yudilevich, Ori, additional, Fassl, Paul, additional, Zhou, Qisen, additional, Betancur, Rafael, additional, Munir, Rahim, additional, Patidar, Rahul, additional, Stranks, Samuel D., additional, Alam, Shahidul, additional, Kar, Shaoni, additional, Unold, Thomas, additional, Abzieher, Tobias, additional, Edvinsson, Tomas, additional, David, Tudur Wyn, additional, Paetzold, Ulrich W., additional, Zia, Waqas, additional, Fu, Weifei, additional, Zuo, Weiwei, additional, Schröder, Vincent R. F., additional, Tress, Wolfgang, additional, Zhang, Xiaoliang, additional, Chiang, Yu-Hsien, additional, Iqbal, Zafar, additional, Xie, Zhiqiang, additional, and Unger, Eva, additional
- Published
- 2021
- Full Text
- View/download PDF
11. Revealing Fundamental Efficiency Limits of Monolithic Perovskite/Silicon Tandem Photovoltaics through Subcell Characterization
- Author
-
Lang, Felix, primary, Köhnen, Eike, additional, Warby, Jonathan, additional, Xu, Ke, additional, Grischek, Max, additional, Wagner, Philipp, additional, Neher, Dieter, additional, Korte, Lars, additional, Albrecht, Steve, additional, and Stolterfoht, Martin, additional
- Published
- 2021
- Full Text
- View/download PDF
12. Efficiency Potential and Voltage Loss of Inorganic CsPbI2Br Perovskite Solar Cells.
- Author
-
Grischek, Max, Caprioglio, Pietro, Zhang, Jiahuan, Peña-Camargo, Francisco, Sveinbjörnsson, Kári, Zu, Fengshuo, Menzel, Dorothee, Warby, Jonathan H., Li, Jinzhao, Koch, Norbert, Unger, Eva, Korte, Lars, Neher, Dieter, Stolterfoht, Martin, and Albrecht, Steve
- Subjects
SOLAR cells ,PHOTOVOLTAIC power systems ,ELECTRON transport ,PEROVSKITE ,PHOTOELECTRON spectroscopy ,OPEN-circuit voltage ,ULTRAVIOLET spectroscopy - Abstract
Inorganic perovskite solar cells show excellent thermal stability, but the reported power conversion efficiencies are still lower than for organic–inorganic perovskites. This is mainly caused by lower open‐circuit voltages (VOCs). Herein, the reasons for the low VOC in inorganic CsPbI2Br perovskite solar cells are investigated. Intensity‐dependent photoluminescence measurements for different layer stacks reveal that n–i–p and p–i–n CsPbI2Br solar cells exhibit a strong mismatch between quasi‐Fermi level splitting (QFLS) and VOC. Specifically, the CsPbI2Br p–i–n perovskite solar cell has a QFLS–e ·VOC mismatch of 179 meV, compared with 11 meV for a reference cell with an organic–inorganic perovskite of similar bandgap. On the other hand, this study shows that the CsPbI2Br films with a bandgap of 1.9 eV have a very low defect density, resulting in an efficiency potential of 20.3% with a MeO–2PACz hole‐transporting layer and 20.8% on compact TiO2. Using ultraviolet photoelectron spectroscopy measurements, energy level misalignment is identified as a possible reason for the QFLS–e ·VOC mismatch and strategies for overcoming this VOC limitation are discussed. This work highlights the need to control the interfacial energetics in inorganic perovskite solar cells, but also gives promise for high efficiencies once this issue is resolved. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
13. Universal Current Losses in Perovskite Solar Cells Due to Mobile Ions
- Author
-
Thiesbrummel, Jarla, primary, Le Corre, Vincent M., additional, Peña‐Camargo, Francisco, additional, Perdigón‐Toro, Lorena, additional, Lang, Felix, additional, Yang, Fengjiu, additional, Grischek, Max, additional, Gutierrez‐Partida, Emilio, additional, Warby, Jonathan, additional, Farrar, Michael D., additional, Mahesh, Suhas, additional, Caprioglio, Pietro, additional, Albrecht, Steve, additional, Neher, Dieter, additional, Snaith, Henry J., additional, and Stolterfoht, Martin, additional
- Published
- 2021
- Full Text
- View/download PDF
14. Large-Grain Double Cation Perovskites with 18 μs Lifetime and High Luminescence Yield for Efficient Inverted Perovskite Solar Cells
- Author
-
Gutierrez-Partida, Emilio, primary, Hempel, Hannes, additional, Caicedo-Dávila, Sebastián, additional, Raoufi, Meysam, additional, Peña-Camargo, Francisco, additional, Grischek, Max, additional, Gunder, René, additional, Diekmann, Jonas, additional, Caprioglio, Pietro, additional, Brinkmann, Kai O., additional, Köbler, Hans, additional, Albrecht, Steve, additional, Riedl, Thomas, additional, Abate, Antonio, additional, Abou-Ras, Daniel, additional, Unold, Thomas, additional, Neher, Dieter, additional, and Stolterfoht, Martin, additional
- Published
- 2021
- Full Text
- View/download PDF
15. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction
- Author
-
Al-Ashouri, Amran, primary, Köhnen, Eike, additional, Li, Bor, additional, Magomedov, Artiom, additional, Hempel, Hannes, additional, Caprioglio, Pietro, additional, Márquez, José A., additional, Morales Vilches, Anna Belen, additional, Kasparavicius, Ernestas, additional, Smith, Joel A., additional, Phung, Nga, additional, Menzel, Dorothee, additional, Grischek, Max, additional, Kegelmann, Lukas, additional, Skroblin, Dieter, additional, Gollwitzer, Christian, additional, Malinauskas, Tadas, additional, Jošt, Marko, additional, Matič, Gašper, additional, Rech, Bernd, additional, Schlatmann, Rutger, additional, Topič, Marko, additional, Korte, Lars, additional, Abate, Antonio, additional, Stannowski, Bernd, additional, Neher, Dieter, additional, Stolterfoht, Martin, additional, Unold, Thomas, additional, Getautis, Vytautas, additional, and Albrecht, Steve, additional
- Published
- 2020
- Full Text
- View/download PDF
16. How To Quantify the Efficiency Potential of Neat Perovskite Films: Perovskite Semiconductors with an Implied Efficiency Exceeding 28%
- Author
-
Stolterfoht, Martin, primary, Grischek, Max, additional, Caprioglio, Pietro, additional, Wolff, Christian M., additional, Gutierrez‐Partida, Emilio, additional, Peña‐Camargo, Francisco, additional, Rothhardt, Daniel, additional, Zhang, Shanshan, additional, Raoufi, Meysam, additional, Wolansky, Jakob, additional, Abdi‐Jalebi, Mojtaba, additional, Stranks, Samuel D., additional, Albrecht, Steve, additional, Kirchartz, Thomas, additional, and Neher, Dieter, additional
- Published
- 2020
- Full Text
- View/download PDF
17. Testing the Heat Transfer of a Drain Water Heat Recovery Heat Exchanger
- Author
-
Grundén, Emma and Grischek, Max
- Subjects
Mechanical Engineering ,Maskinteknik - Abstract
This study investigates the change in thermal resistance due to fouling in drain water pipes. As insulation of houses and energy efficiency of appliances improve, the importance of Drain Water Heat Recovery (DWHR) is growing steadily. In older houses, the relative heat loss through drain water is smaller than in newly built houses, but should still be considered. For example, 17 % of the total heat loss in Swedish multi-family houses built before 1940 was transported with the drain water (Ekelin et al., 2006). The average temperature of drain blackwater is between 23 °C and 26 °C (Seybold & Brunk, 2013), and a part of its heat can be recovered in DWHR systems. This allows cold incoming water to houses and buildings to be pre-heated by drain water before it is heated in the heat pump. Depending on the system, 30 % to 75 % of the heat from drain water can be recovered (Zaloum et al., 2007b). A threat to heat exchanger performance is that additional materials, so called fouling, accumulate on the surfaces of the heat exchangers and increases its thermal resistance. This resistance can be described by a fouling resistance and can be very costly due to losses in heat transfer and required cleaning. To quantify the fouling resistance, experiments were conducted in a climate chamber on Brinellvägen 66, using a pipe that had been installed for 3 years in the sewage system from the men’s toilet on Brinellvägen 64B. The installed pipe was compared with a pipe from the same manufacturer with the same dimensions. The pipes were sealed and filled with water at about 20 °C. Thermocouples were used to measure the decrease in water temperature over time in both pipes. Based on these measurements, the difference in thermal resistance was found, using curve fitting and the Lumped Capacitance Method. The fouling resistance was quantified by comparing the thermal resistances of the test pipe with and without fouling. The main findings were firstly that fouling significantly increases the thermal resistance of aluminium pipes. Secondly, corrosion causes a significant decrease in the pipes’ thermal resistance. The combination of these effects led to a decrease of 14 % in thermal resistance in the examined system after three years compared to the time of installation. The decrease in thermal resistance due to corrosion in the test pipe was 44 % compared to the time of installation. Furthermore, the thermal resistance of the test pipe decreased by 51 % when it was cleaned from the fouling. The fouling resistance of the 0.81 mm fouling layer was found to be 0.03068 m2K/W. Denna studie undersöker den ökade termiska resistansen i avloppsrör på grund av beläggningar. Idag lägg stor vikt vid bra isolering och energieffektiv utrustning i nybyggda hus, vilket även sätter press på värmeåtervinning av avloppsvatten. Värmeåtervinningen av avloppsvatten är mindre viktig i äldre hus, då den relativa värmeförlusten av avloppsvatten är lägre än i nybyggda hus, men bör likväl tas i akt vid utvärderingen av värmeanvändning. I ett svenskt flerfamiljshus byggt före 1940 stod värmeförlusten på grund av varmt avloppsvatten för 17 % av den totala värmeförlusten (Ekelin et al., 2006). Den genomsnittliga temperaturen för svartvatten ligger på 23 °C till 26 °C (Seybold & Brunk, 2013), varav delar av värmen kan återvinnas i värmeväxlare. Detta bidrar till att det kalla ingående vattnet till värmepumpen förvärms av värmen från avloppsvattnet. Beroende på system och material kan 30 % till 75 % av värmen från avloppsvatten återvinnas (Zaloum et al., 2007b). Ett hot mot prestandan av värmeväxlare är att beläggning formas på de värmeöverförande ytorna i värmeväxlaren. Detta bidrar till en ökad termisk resistans och kan vara mycket kostsam på grund av minskning av värmeöverföring och nödvändig rengöring av anordningen. För att undersöka omfattningen av den ökade termiska resistansen utfördes en rad experiment i en klimatkammare på Brinellvägen 66. En jämförande metod användes där ett aluminiumrör, som tidigare installerats i avloppssystemet från herrarnas toalett i korridoren på Brinellvägen 64B, jämfördes med ett identiskt rör av samma tillverkare. Rören var tätade och fyllda med 20-gradigt kranvatten. Termoelement användes för att, över tid, mäta minskningen av vattentemperaturen i rören. Temperaturskillnaden användes för att beskriva skillnaden i termisk resistans genom att utföra kurvanpassning och tillämpa Lumped Capacitance Method. Skillnaden i termisk resistans mellan de båda rören antogs vara lika med beläggningens motstånd för värmeöverföring. Två huvudsakliga resultat kom av studien. Det första var att beläggning bidrar till ökad termisk resistans av aluminiumrör. Den andra var att korrosion tillsammans med andra externa faktorer orsakar en märkbar minskning av rörens termiska resistans. Totalt sett orsakade beläggningen tillsammans med korrosion en minskning av 14 % av den termiska resistansen i provröret, jämfört med den termiska resistansen vid installationstillfället. Vidare låg minskningen i termisk resistans på grund av korrosion i teströret på 44 % jämfört med den termiska resistansen vid installationstillfället och den genomsnittliga termiska resistansen av det rengjorda teströret låg på 51 % lägre än den genomsnittliga resistansen av teströret innan rengöring. Den beräknade resistansen för ett 0.81 mm tjockt lager av beläggning var 0.03068 m2K/W.
- Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.