1. Pre-existing astrocytes form functional perisynaptic processes on neurons generated in the adult hippocampus
- Author
-
Valentin Schmutz, Nicolas Toni, Mari A. Virtanen, Lucas A. Mongiat, Jan Armida, Matteo Bergami, Laszlo Vutskits, Marine Krzisch, Fred H. Gage, Alejandro F. Schinder, Jacqueline Kocher-Braissant, Silvio Gabriel Temprana, Karl-Klaus Conzelmann, and Rudolf Kraftsik
- Subjects
Dendritic spine ,Patch-Clamp Techniques ,Synaptogenesis ,Hippocampus ,Hippocampal formation ,Adult neurogenesis ,Synaptic Transmission ,Mice ,Microscopy, Immunoelectron ,Neurons ,Kainic Acid ,Microscopy, Confocal ,ddc:617 ,General Neuroscience ,Neurogenesis ,purl.org/becyt/ford/3.1 [https] ,Cell biology ,Isoenzymes ,Medicina Básica ,Excitatory postsynaptic potential ,purl.org/becyt/ford/3 [https] ,Original Article ,Anatomy ,Histology ,CIENCIAS MÉDICAS Y DE LA SALUD ,Neuroscience(all) ,Dendritic Spines ,Green Fluorescent Proteins ,Neurociencias ,Animals ,Astrocytes/physiology ,Astrocytes/ultrastructure ,Bromodeoxyuridine/metabolism ,Dendritic Spines/drug effects ,Dendritic Spines/metabolism ,Excitatory Postsynaptic Potentials/drug effects ,Excitatory Postsynaptic Potentials/genetics ,Gene Expression Regulation/genetics ,Glial Fibrillary Acidic Protein/genetics ,Glial Fibrillary Acidic Protein/metabolism ,Green Fluorescent Proteins/genetics ,Green Fluorescent Proteins/metabolism ,Hippocampus/cytology ,Isoenzymes/genetics ,Isoenzymes/metabolism ,Kainic Acid/analogs & derivatives ,Kainic Acid/pharmacology ,Mice, Inbred C57BL ,Mice, Transgenic ,Neurogenesis/drug effects ,Neurogenesis/genetics ,Neurons/cytology ,Neurons/drug effects ,Phosphopyruvate Hydratase/metabolism ,Retinal Dehydrogenase/genetics ,Retinal Dehydrogenase/metabolism ,S100 Calcium Binding Protein beta Subunit/metabolism ,Synapses/physiology ,Synapses/ultrastructure ,Synaptic Transmission/drug effects ,Synaptic Transmission/genetics ,S100 Calcium Binding Protein beta Subunit ,Biology ,Neurotransmission ,Aldehyde Dehydrogenase 1 Family ,Glial Fibrillary Acidic Protein ,Dentate gyrus ,Excitatory Postsynaptic Potentials ,Retinal Dehydrogenase ,ddc:616.8 ,Bromodeoxyuridine ,Gene Expression Regulation ,Phosphopyruvate Hydratase ,Astrocytes ,Synapses ,Perisynaptic processes ,Neuroscience - Abstract
The adult dentate gyrus produces new neurons that morphologically and functionally integrate into the hippocampal network. In the adult brain, most excitatory synapses are ensheathed by astrocytic perisynaptic processes that regulate synaptic structure and function. However, these processes are formed during embryonic or early postnatal development and it is unknown whether astrocytes can also ensheathe synapses of neurons born during adulthood and, if so, whether they play a role in their synaptic transmission. Here, we used a combination of serial-section immuno-electron microscopy, confocal microscopy, and electrophysiology to examine the formation of perisynaptic processes on adult-born neurons. We found that the afferent and efferent synapses of newborn neurons are ensheathed by astrocytic processes, irrespective of the age of the neurons or the size of their synapses. The quantification of gliogenesis and the distribution of astrocytic processes on synapses formed by adult-born neurons suggest that the majority of these processes are recruited from pre-existing astrocytes. Furthermore, the inhibition of astrocytic glutamate re-uptake significantly reduced postsynaptic currents and increased paired-pulse facilitation in adult-born neurons, suggesting that perisynaptic processes modulate synaptic transmission on these cells. Finally, some processes were found intercalated between newly formed dendritic spines and potential presynaptic partners, suggesting that they may also play a structural role in the connectivity of new spines. Together, these results indicate that pre-existing astrocytes remodel their processes to ensheathe synapses of adult-born neurons and participate to the functional and structural integration of these cells into the hippocampal network. Fil: Krzisch, Marine. University of Lausanne. Department of Fundamental Neurosciences; Suiza Fil: Temprana, Silvio Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina Fil: Mongiat, Lucas Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina Fil: Armida, Jan. University of Lausanne. Department of Fundamental Neurosciences; Suiza Fil: Schmutz, Valentin. University of Lausanne. Department of Fundamental Neurosciences; Suiza Fil: Virtanen, Mari A.. Universidad de Ginebra; Suiza Fil: Kocher Braissant, Jacqueline. University of Lausanne. Department of Fundamental Neurosciences; Suiza Fil: Kraftsik, Rudolf. University of Lausanne. Department of Fundamental Neurosciences; Suiza Fil: Vutskits, Laszlo. Universidad de Ginebra; Suiza. University Hospital of Geneva. Department of Anesthesiology, Pharmacology and Intensive Care; Suiza Fil: Conzelmann, Karl Klaus. Ludwig-Maximilians University Múnich. Max von Pettenkofer Institute and Gene Center; Alemania Fil: Bergami, Matteo. University Hospital of Cologne; Alemania Fil: Gage, Fred H.. Salk Institute for Biological Studies; Estados Unidos Fil: Schinder, Alejandro Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina Fil: Toni, Nicolas. University of Lausanne. Department of Fundamental Neurosciences; Suiza
- Published
- 2021