24 results on '"Grave de Peralta Menendez R"'
Search Results
2. Coding of saliency by ensemble bursting in the amygdala of primates
- Author
-
Gonzalez Andino, S. L., primary and Grave de Peralta Menendez, R., additional
- Published
- 2012
- Full Text
- View/download PDF
3. Non‐stationary distributed source approximation: An alternative to improve localization procedures
- Author
-
Gonzalez Andino, S.L., primary, Grave de Peralta Menendez, R., additional, Lantz, C.M., additional, Blank, O., additional, Michel, C. M., additional, and Landis, T., additional
- Published
- 2001
- Full Text
- View/download PDF
4. Imaging the electrical activity of the brain: ELECTRA
- Author
-
Grave de Peralta Menendez, R., primary, Gonzalez Andino, S.L., additional, Morand, S., additional, Michel, C.M., additional, and Landis, T., additional
- Published
- 2000
- Full Text
- View/download PDF
5. Measuring the complexity of time series: An application to neurophysiological signals
- Author
-
Gonzalez Andino, S.L., primary, Grave de Peralta Menendez, R., additional, Thut, G., additional, Spinelli, L., additional, Blanke, O., additional, Michel, C.M., additional, and Landis, T., additional
- Published
- 2000
- Full Text
- View/download PDF
6. The resolution-field concept
- Author
-
Lütkenhöner, B., primary and Grave de Peralta Menendez, R., additional
- Published
- 1997
- Full Text
- View/download PDF
7. Measuring the complexity of time series: an application to neurophysiological signals
- Author
-
Gonzalez Andino, S. L., Grave de Peralta Menendez, R., Thut, G., Spinelli, L., Blanke, O., Michel, C. M., Seeck, M., and Landis, T.
- Subjects
Quantitative Biology::Neurons and Cognition - Abstract
Measures of signal complexity can be used to distinguish neurophysiological activation from noise in those neuroimaging techniques where we record variations of brain activity with time, e.g., fMRI, EEG, ERP. In this paper we explore a recently developed approach to calculate a quantitative measure of deterministic signal complexity and information content: The Renyi number. The Renyi number is by definition an entropy, i.e., a classically used measure of disorder in physical systems, and is calculated in this paper over the basis of the time frequency representation (TFRs) of the measured signals. When calculated in this form, the Renyi entropy (RE) indirectly characterizes the complexity of a signal by providing an approximate counting of the number of separated elementary atoms that compose the time series in the time frequency plane. In this sense, this measure conforms closely to our visual notion of complexity since low complexity values are obtained for signals formed by a small number of "components". The most remarkable properties of this measure are twofold: 1) It does not rely on assumptions about the time series such as stationarity or gaussianity and 2) No model of the neural process under study is required, e.g., no hemodynamic response model for fMRI. The method is illustrated in this paper using fMRI, intracranial ERPs and intracranial potentials estimated from scalp recorded ERPs through an inverse solution (ELECTRA). The main theoretical and practical drawbacks of this measure, especially its dependence of the selected TFR, are discussed. Also the capability of this approach to produce, with less restrictive hypothesis, results comparable to those obtained with more standard methods but is emphasized.
8. Identifying the neural networks subserving specific neural processes
- Author
-
Gonzalez Andino, S.L., primary, Grave de Peralta Menendez, R., additional, and Morand, S., additional
- Full Text
- View/download PDF
9. Basic limitations of linear inverse solutions: a case study
- Author
-
Grave de Peralta Menendez, R., primary and Gonzalez Andino, S.L., additional
- Full Text
- View/download PDF
10. Identifying the neural networks subserving specific neural processes.
- Author
-
Gonzalez Andino, S.L., Grave de Peralta Menendez, R., and Morand, S.
- Published
- 1998
- Full Text
- View/download PDF
11. Basic limitations of linear inverse solutions: a case study.
- Author
-
Grave de Peralta Menendez, R. and Gonzalez Andino, S.L.
- Published
- 1998
- Full Text
- View/download PDF
12. Electrical Neuroimaging with Irrotational Sources.
- Author
-
Grave de Peralta Menendez R and Gonzalez Andino S
- Subjects
- Algorithms, Anisotropy, Electrophysiology, Humans, Models, Statistical, Poisson Distribution, Software, Brain pathology, Electroencephalography methods, Image Processing, Computer-Assisted methods, Neuroimaging methods
- Abstract
This paper discusses theoretical aspects of the modeling of the sources of the EEG (i.e., the bioelectromagnetic inverse problem or source localization problem). Using the Helmholtz decomposition (HD) of the current density vector (CDV) of the primary current into an irrotational (I) and a solenoidal (S) part we show that only the irrotational part can contribute to the EEG measurements. In particular we present for the first time the HD of a dipole and of a pure irrotational source. We show that, for both kinds of sources, I extends all over the space independently of whether the source is spatially concentrated (as the dipole) or not. However, the divergence remains confined to a region coinciding with the expected location of the sources, confirming that it is the divergence rather than the CDV that really defines the spatial extension of the generators, from where it follows that an irrotational source model (ELECTRA) is always physiologically meaningful as long as the divergence remains confined to the brain. Finally we show that the irrotational source model remains valid for the most general electrodynamics model of the EEG in inhomogeneous anisotropic dispersive media and thus far beyond the (quasi) static approximation.
- Published
- 2015
- Full Text
- View/download PDF
13. Abstracts of Presentations at the International Conference on Basic and Clinical Multimodal Imaging (BaCI), a Joint Conference of the International Society for Neuroimaging in Psychiatry (ISNIP), the International Society for Functional Source Imaging (ISFSI), the International Society for Bioelectromagnetism (ISBEM), the International Society for Brain Electromagnetic Topography (ISBET), and the EEG and Clinical Neuroscience Society (ECNS), in Geneva, Switzerland, September 5-8, 2013.
- Author
-
He BJ, Nolte G, Nagata K, Takano D, Yamazaki T, Fujimaki Y, Maeda T, Satoh Y, Heckers S, George MS, Lopes da Silva F, de Munck JC, Van Houdt PJ, Verdaasdonk RM, Ossenblok P, Mullinger K, Bowtell R, Bagshaw AP, Keeser D, Karch S, Segmiller F, Hantschk I, Berman A, Padberg F, Pogarell O, Scharnowski F, Karch S, Hümmer S, Keeser D, Paolini M, Kirsch V, Koller G, Rauchmann B, Kupka M, Blautzik J, Pogarell O, Razavi N, Jann K, Koenig T, Kottlow M, Hauf M, Strik W, Dierks T, Gotman J, Vulliemoz S, Lu Y, Zhang H, Yang L, Worrell G, He B, Gruber O, Piguet C, Hubl D, Homan P, Kindler J, Dierks T, Kim K, Steinhoff U, Wakai R, Koenig T, Kottlow M, Melie-García L, Mucci A, Volpe U, Prinster A, Salvatore M, Galderisi S, Linden DE, Brandeis D, Schroeder CE, Kayser C, Panzeri S, Kleinschmidt A, Ritter P, Walther S, Haueisen J, Lau S, Flemming L, Sonntag H, Maess B, Knösche TR, Lanfer B, Dannhauer M, Wolters CH, Stenroos M, Haueisen J, Wolters C, Aydin U, Lanfer B, Lew S, Lucka F, Ruthotto L, Vorwerk J, Wagner S, Ramon C, Guan C, Ang KK, Chua SG, Kuah WK, Phua KS, Chew E, Zhou H, Chuang KH, Ang BT, Wang C, Zhang H, Yang H, Chin ZY, Yu H, Pan Y, Collins L, Mainsah B, Colwell K, Morton K, Ryan D, Sellers E, Caves K, Throckmorton S, Kübler A, Holz EM, Zickler C, Sellers E, Ryan D, Brown K, Colwell K, Mainsah B, Caves K, Throckmorton S, Collins L, Wennberg R, Ahlfors SP, Grova C, Chowdhury R, Hedrich T, Heers M, Zelmann R, Hall JA, Lina JM, Kobayashi E, Oostendorp T, van Dam P, Oosterhof P, Linnenbank A, Coronel R, van Dessel P, de Bakker J, Rossion B, Jacques C, Witthoft N, Weiner KS, Foster BL, Miller KJ, Hermes D, Parvizi J, Grill-Spector K, Recanzone GH, Murray MM, Haynes JD, Richiardi J, Greicius M, De Lucia M, Müller KR, Formisano E, Smieskova R, Schmidt A, Bendfeldt K, Walter A, Riecher-Rössler A, Borgwardt S, Fusar-Poli P, Eliez S, Schmidt A, Sekihara K, Nagarajan SS, Schoffelen JM, Guggisberg AG, Nolte G, Balazs S, Kermanshahi K, Kiesenhofer W, Binder H, Rattay F, Antal A, Chaieb L, Paulus W, Bodis-Wollner I, Maurer K, Fein G, Camchong J, Johnstone J, Cardenas-Nicolson V, Fiederer LD, Lucka F, Yang S, Vorwerk J, Dümpelmann M, Cosandier-Rimélé D, Schulze-Bonhage A, Aertsen A, Speck O, Wolters CH, Ball T, Fuchs M, Wagner M, Kastner J, Tech R, Dinh C, Haueisen J, Baumgarten D, Hämäläinen MS, Lau S, Vogrin SJ, D'Souza W, Haueisen J, Cook MJ, Custo A, Van De Ville D, Vulliemoz S, Grouiller F, Michel CM, Malmivuo J, Aydin U, Vorwerk J, Küpper P, Heers M, Kugel H, Wellmer J, Kellinghaus C, Scherg M, Rampp S, Wolters C, Storti SF, Boscolo Galazzo I, Del Felice A, Pizzini FB, Arcaro C, Formaggio E, Mai R, Manganotti P, Koessler L, Vignal J, Cecchin T, Colnat-Coulbois S, Vespignani H, Ramantani G, Maillard L, Rektor I, Kuba R, Brázdil M, Chrastina J, Rektorova I, van Mierlo P, Carrette E, Strobbe G, Montes-Restrepo V, Vonck K, Vandenberghe S, Ahmed B, Brodely C, Carlson C, Kuzniecky R, Devinsky O, French J, Thesen T, Bénis D, David O, Lachaux JP, Seigneuret E, Krack P, Fraix V, Chabardès S, Bastin J, Jann K, Gee D, Kilroy E, Cannon T, Wang DJ, Hale JR, Mayhew SD, Przezdzik I, Arvanitis TN, Bagshaw AP, Plomp G, Quairiaux C, Astolfi L, Michel CM, Mayhew SD, Mullinger KJ, Bagshaw AP, Bowtell R, Francis ST, Schouten AC, Campfens SF, van der Kooij H, Koles Z, Lind J, Flor-Henry P, Wirth M, Haase CM, Villeneuve S, Vogel J, Jagust WJ, Kambeitz-Ilankovic L, Simon-Vermot L, Gesierich B, Duering M, Ewers M, Rektorova I, Krajcovicova L, Marecek R, Mikl M, Bracht T, Horn H, Strik W, Federspiel A, Schnell S, Höfle O, Stegmayer K, Wiest R, Dierks T, Müller TJ, Walther S, Surmeli T, Ertem A, Eralp E, Kos IH, Skrandies W, Flüggen S, Klein A, Britz J, Díaz Hernàndez L, Ro T, Michel CM, Lenartowicz A, Lau E, Rodriguez C, Cohen MS, Loo SK, Di Lorenzo G, Pagani M, Monaco L, Daverio A, Giannoudas I, La Porta P, Verardo AR, Niolu C, Fernandez I, Siracusano A, Flor-Henry P, Lind J, Koles Z, Bollmann S, Ghisleni C, O'Gorman R, Poil SS, Klaver P, Michels L, Martin E, Ball J, Eich-Höchli D, Brandeis D, Salisbury DF, Murphy TK, Butera CD, Mathalon DH, Fryer SL, Kiehl KA, Calhoun VC, Pearlson GD, Roach BJ, Ford JM, McGlashan TH, Woods SW, Volpe U, Merlotti E, Vignapiano A, Montefusco V, Plescia GM, Gallo O, Romano P, Mucci A, Galderisi S, Mingoia G, Langbein K, Dietzek M, Wagner G, Smesny, Scherpiet S, Maitra R, Gaser C, Sauer H, Nenadic I, Gonzalez Andino S, Grave de Peralta Menendez R, Grave de Peralta Menendez R, Sanchez Vives M, Rebollo B, Gonzalez Andino S, Frølich L, Andersen TS, Mørup M, Belfiore P, Gargiulo P, Ramon C, Vanhatalo S, Cho JH, Vorwerk J, Wolters CH, Knösche TR, Watanabe T, Kawabata Y, Ukegawa D, Kawabata S, Adachi Y, Sekihara K, Sekihara K, Nagarajan SS, Wagner S, Aydin U, Vorwerk J, Herrmann C, Burger M, Wolters C, Lucka F, Aydin U, Vorwerk J, Burger M, Wolters C, Bauer M, Trahms L, Sander T, Faber PL, Lehmann D, Gianotti LR, Pascual-Marqui RD, Milz P, Kochi K, Kaneko S, Yamashita S, Yana K, Kalogianni K, Vardy AN, Schouten AC, van der Helm FC, Sorrentino A, Luria G, Aramini R, Hunold A, Funke M, Eichardt R, Haueisen J, Gómez-Aguilar F, Vázquez-Olvera S, Cordova-Fraga T, Castro-López J, Hernández-Gonzalez MA, Solorio-Meza S, Sosa-Aquino M, Bernal-Alvarado JJ, Vargas-Luna M, Vorwerk J, Magyari L, Ludewig J, Oostenveld R, Wolters CH, Vorwerk J, Engwer C, Ludewig J, Wolters C, Sato K, Nishibe T, Furuya M, Yamashiro K, Yana K, Ono T, Puthanmadam Subramaniyam N, Hyttinen J, Lau S, Güllmar D, Flemming L, Haueisen J, Sonntag H, Vorwerk J, Wolters CH, Grasedyck L, Haueisen J, Maeß B, Freitag S, Graichen U, Fiedler P, Strohmeier D, Haueisen J, Stenroos M, Hauk O, Grigutsch M, Felber M, Maess B, Herrmann B, Strobbe G, van Mierlo P, Vandenberghe S, Strobbe G, Cárdenas-Peña D, Montes-Restrepo V, van Mierlo P, Castellanos-Dominguez G, Vandenberghe S, Lanfer B, Paul-Jordanov I, Scherg M, Wolters CH, Ito Y, Sato D, Kamada K, Kobayashi T, Dalal SS, Rampp S, Willomitzer F, Arold O, Fouladi-Movahed S, Häusler G, Stefan H, Ettl S, Zhang S, Zhang Y, Li H, Kong X, Montes-Restrepo V, Strobbe G, van Mierlo P, Vandenberghe S, Wong DD, Bidet-Caulet A, Knight RT, Crone NE, Dalal SS, Birot G, Spinelli L, Vulliémoz S, Seeck M, Michel CM, Emory H, Wells C, Mizrahi N, Vogrin SJ, Lau S, Cook MJ, Karahanoglu FI, Grouiller F, Caballero-Gaudes C, Seeck M, Vulliemoz S, Van De Ville D, Spinelli L, Megevand P, Genetti M, Schaller K, Michel C, Vulliemoz S, Seeck M, Genetti M, Tyrand R, Grouiller F, Vulliemoz S, Spinelli L, Seeck M, Schaller K, Michel CM, Grouiller F, Heinzer S, Delattre B, Lazeyras F, Spinelli L, Pittau F, Seeck M, Ratib O, Vargas M, Garibotto V, Vulliemoz S, Vogrin SJ, Bailey CA, Kean M, Warren AE, Davidson A, Seal M, Harvey AS, Archer JS, Papadopoulou M, Leite M, van Mierlo P, Vonck K, Boon P, Friston K, Marinazzo D, Ramon C, Holmes M, Koessler L, Rikir E, Gavaret M, Bartolomei F, Vignal JP, Vespignani H, Maillard L, Centeno M, Perani S, Pier K, Lemieux L, Clayden J, Clark C, Pressler R, Cross H, Carmichael DW, Spring A, Bessemer R, Pittman D, Aghakhani Y, Federico P, Pittau F, Grouiller F, Vulliémoz S, Gotman J, Badier JM, Bénar CG, Bartolomei F, Cruto C, Chauvel P, Gavaret M, Brodbeck V, van Leeuwen T, Tagliazzuchi E, Melloni L, Laufs H, Griskova-Bulanova I, Dapsys K, Klein C, Hänggi J, Jäncke L, Ehinger BV, Fischer P, Gert AL, Kaufhold L, Weber F, Marchante Fernandez M, Pipa G, König P, Sekihara K, Hiyama E, Koga R, Iannilli E, Michel CM, Bartmuss AL, Gupta N, Hummel T, Boecker R, Holz N, Buchmann AF, Blomeyer D, Plichta MM, Wolf I, Baumeister S, Meyer-Lindenberg A, Banaschewski T, Brandeis D, Laucht M, Natahara S, Ueno M, Kobayashi T, Kottlow M, Bänninger A, Koenig T, Schwab S, Koenig T, Federspiel A, Dierks T, Jann K, Natsukawa H, Kobayashi T, Tüshaus L, Koenig T, Kottlow M, Achermann P, Wilson RS, Mayhew SD, Assecondi S, Arvanitis TN, Bagshaw AP, Darque A, Rihs TA, Grouiller F, Lazeyras F, Ha-Vinh Leuchter R, Caballero C, Michel CM, Hüppi PS, Hauser TU, Hunt LT, Iannaccone R, Stämpfli P, Brandeis D, Dolan RJ, Walitza S, Brem S, Graichen U, Eichardt R, Fiedler P, Strohmeier D, Freitag S, Zanow F, Haueisen J, Lordier L, Grouiller F, Van de Ville D, Sancho Rossignol A, Cordero I, Lazeyras F, Ansermet F, Hüppi P, Schläpfer A, Rubia K, Brandeis D, Di Lorenzo G, Pagani M, Monaco L, Daverio A, Giannoudas I, Verardo AR, La Porta P, Niolu C, Fernandez I, Siracusano A, Tamura K, Karube C, Mizuba T, Matsufuji M, Takashima S, Iramina K, Assecondi S, Ostwald D, Bagshaw AP, Marecek R, Brazdil M, Lamos M, Slavícek T, Marecek R, Jan J, Meier NM, Perrig W, Koenig T, Minami T, Noritake Y, Nakauchi S, Azuma K, Minami T, Nakauchi S, Rodriguez C, Lenartowicz A, Cohen MS, Rodriguez C, Lenartowicz A, Cohen MS, Iramina K, Kinoshita H, Tamura K, Karube C, Kaneko M, Ide J, Noguchi Y, Cohen MS, Douglas PK, Rodriguez CM, Xia HJ, Zimmerman EM, Konopka CJ, Epstein PS, Konopka LM, Giezendanner S, Fisler M, Soravia L, Andreotti J, Wiest R, Dierks T, Federspiel A, Razavi N, Federspiel A, Dierks T, Hauf M, Jann K, Kamada K, Sato D, Ito Y, Okano K, Mizutani N, Kobayashi T, Thelen A, Murray M, Pastena L, Formaggio E, Storti SF, Faralli F, Melucci M, Gagliardi R, Ricciardi L, Ruffino G, Coito A, Macku P, Tyrand R, Astolfi L, He B, Wiest R, Seeck M, Michel C, Plomp G, Vulliemoz S, Fischmeister FP, Glaser J, Schöpf V, Bauer H, Beisteiner R, Deligianni F, Centeno M, Carmichael DW, Clayden J, Mingoia G, Langbein K, Dietzek M, Wagner G, Smesny S, Scherpiet S, Maitra R, Gaser C, Sauer H, Nenadic I, Dürschmid S, Zaehle T, Pannek H, Chang HF, Voges J, Rieger J, Knight RT, Heinze HJ, Hinrichs H, Tsatsishvili V, Cong F, Puoliväli T, Alluri V, Toiviainen P, Nandi AK, Brattico E, Ristaniemi T, Grieder M, Crinelli RM, Jann K, Federspiel A, Wirth M, Koenig T, Stein M, Wahlund LO, Dierks T, Atsumori H, Yamaguchi R, Okano Y, Sato H, Funane T, Sakamoto K, Kiguchi M, Tränkner A, Schindler S, Schmidt F, Strauß M, Trampel R, Hegerl U, Turner R, Geyer S, Schönknecht P, Kebets V, van Assche M, Goldstein R, van der Meulen M, Vuilleumier P, Richiardi J, Van De Ville D, Assal F, Wozniak-Kwasniewska A, Szekely D, Harquel S, Bougerol T, David O, Bracht T, Jones DK, Horn H, Müller TJ, Walther S, Sos P, Klirova M, Novak T, Brunovsky M, Horacek J, Bares M, Hoschl C C, Fellhauer I, Zöllner FG, Schröder J, Kong L, Essig M, Schad LR, Arrubla J, Neuner I, Hahn D, Boers F, Shah NJ, Neuner I, Arrubla J, Hahn D, Boers F, Jon Shah N, Suriya Prakash M, Sharma R, Kawaguchi H, Kobayashi T, Fiedler P, Griebel S, Biller S, Fonseca C, Vaz F, Zentner L, Zanow F, Haueisen J, Rochas V, Rihs T, Thut G, Rosenberg N, Landis T, Michel C, Moliadze V, Schmanke T, Lyzhko E, Bassüner S, Freitag C, Siniatchkin M, Thézé R, Guggisberg AG, Nahum L, Schnider A, Meier L, Friedrich H, Jann K, Landis B, Wiest R, Federspiel A, Strik W, Dierks T, Witte M, Kober SE, Neuper C, Wood G, König R, Matysiak A, Kordecki W, Sieluzycki C, Zacharias N, Heil P, Wyss C, Boers F, Arrubla J, Dammers J, Kawohl W, Neuner I, Shah NJ, Braboszcz C, Cahn RB, Levy J, Fernandez M, Delorme A, Rosas-Martinez L, Milne E, Zheng Y, Urakami Y, Kawamura K, Washizawa Y, Hiyoshi K, Cichocki A, Giroud N, Dellwo V, Meyer M, Rufener KS, Liem F, Dellwo V, Meyer M, Jones-Rounds JD, Raizada R, Staljanssens W, Strobbe G, van Mierlo P, Van Holen R, Vandenberghe S, Pefkou M, Becker R, Michel C, Hervais-Adelman A, He W, Brock J, Johnson B, Ohla K, Hitz K, Heekeren K, Obermann C, Huber T, Juckel G, Kawohl W, Gabriel D, Comte A, Henriques J, Magnin E, Grigoryeva L, Ortega JP, Haffen E, Moulin T, Pazart L, Aubry R, Kukleta M, Baris Turak B, Louvel J, Crespo-Garcia M, Cantero JL, Atienza M, Connell S, Kilborn K, Damborská A, Brázdil M, Rektor I, Kukleta M, Koberda JL, Bienkiewicz A, Koberda I, Koberda P, Moses A, Tomescu M, Rihs T, Britz J, Custo A, Grouiller F, Schneider M, Debbané M, Eliez S, Michel C, Wang GY, Kydd R, Wouldes TA, Jensen M, Russell BR, Dissanayaka N, Au T, Angwin A, O'Sullivan J, Byrne G, Silburn P, Marsh R, Mellic G, Copland D, Bänninger A, Kottlow M, Díaz Hernàndez L, Koenig T, Díaz Hernàndez L, Bänninger A, Koenig T, Hauser TU, Iannaccone R, Mathys C, Ball J, Drechsler R, Brandeis D, Walitza S, Brem S, Boeijinga PH, Pang EW, Valica T, Macdonald MJ, Oh A, Lerch JP, Anagnostou E, Di Lorenzo G, Pagani M, Monaco L, Daverio A, Verardo AR, Giannoudas I, La Porta P, Niolu C, Fernandez I, Siracusano A, Shimada T, Matsuda Y, Monkawa A, Monkawa T, Hashimoto R, Watanabe K, Kawasaki Y, Matsuda Y, Shimada T, Monkawa T, Monkawa A, Watanabe K, Kawasaki Y, Stegmayer K, Horn H, Federspiel A, Razavi N, Bracht T, Laimböck K, Strik W, Dierks T, Wiest R, Müller TJ, Walther S, Koorenhof LJ, Swithenby SJ, Martins-Mourao A, Rihs TA, Tomescu M, Song KW, Custo A, Knebel JF, Murray M, Eliez S, Michel CM, Volpe U, Merlotti E, Vignapiano A, Montefusco V, Plescia GM, Gallo O, Romano P, Mucci A, Galderisi S, Laimboeck K, Jann K, Walther S, Federspiel A, Wiest R, Strik W, and Horn H
- Published
- 2013
- Full Text
- View/download PDF
14. Spatiotemporal scales and links between electrical neuroimaging modalities.
- Author
-
Gonzalez Andino SL, Perrig S, and Grave de Peralta Menendez R
- Subjects
- Electroencephalography methods, Humans, Magnetoencephalography methods, Models, Neurological, Nerve Net physiology, Neurons physiology, Brain physiology, Functional Neuroimaging methods
- Abstract
Recordings of brain electrophysiological activity provide the most direct reflect of neural function. Information contained in these signals varies as a function of the spatial scale at which recordings are done: from single cell recording to large scale macroscopic fields, e.g., scalp EEG. Microscopic and macroscopic measurements and models in Neuroscience are often in conflict. Solving this conflict might require the developments of a sort of bio-statistical physics, a framework for relating the microscopic properties of individual cells to the macroscopic or bulk properties of neural circuits. Such a framework can only emerge in Neuroscience from the systematic analysis and modeling of the diverse recording scales from simultaneous measurements. In this article we briefly review the different measurement scales and models in modern neuroscience to try to identify the sources of conflict that might ultimately help to create a unified theory of brain electromagnetic fields. We argue that seen the different recording scales, from the single cell to the large scale fields measured by the scalp electroencephalogram, as derived from a unique physical magnitude--the electric potential that is measured in all cases--might help to conciliate microscopic and macroscopic models of neural function as well as the animal and human neuroscience literature.
- Published
- 2011
- Full Text
- View/download PDF
15. EEG/MEG source imaging: methods, challenges, and open issues.
- Author
-
Wendel K, Väisänen O, Malmivuo J, Gencer NG, Vanrumste B, Durka P, Magjarević R, Supek S, Pascu ML, Fontenelle H, and Grave de Peralta Menendez R
- Abstract
We present the four key areas of research-preprocessing, the volume conductor, the forward problem, and the inverse problem-that affect the performance of EEG and MEG source imaging. In each key area we identify prominent approaches and methodologies that have open issues warranting further investigation within the community, challenges associated with certain techniques, and algorithms necessitating clarification of their implications. More than providing definitive answers we aim to identify important open issues in the quest of source localization.
- Published
- 2009
- Full Text
- View/download PDF
16. Methods for determining frequency- and region-dependent relationships between estimated LFPs and BOLD responses in humans.
- Author
-
Martuzzi R, Murray MM, Meuli RA, Thiran JP, Maeder PP, Michel CM, Grave de Peralta Menendez R, and Gonzalez Andino SL
- Subjects
- Adult, Algorithms, Cerebral Cortex physiology, Cerebrovascular Circulation physiology, Data Interpretation, Statistical, Electroencephalography statistics & numerical data, Electrophysiology, Female, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging statistics & numerical data, Male, Photic Stimulation, Visual Cortex physiology, Young Adult, Electroencephalography methods, Evoked Potentials physiology, Magnetic Resonance Imaging methods, Oxygen blood
- Abstract
The relationship between electrophysiological and functional magnetic resonance imaging (fMRI) signals remains poorly understood. To date, studies have required invasive methods and have been limited to single functional regions and thus cannot account for possible variations across brain regions. Here we present a method that uses fMRI data and singe-trial electroencephalography (EEG) analyses to assess the spatial and spectral dependencies between the blood-oxygenation-level-dependent (BOLD) responses and the noninvasively estimated local field potentials (eLFPs) over a wide range of frequencies (0-256 Hz) throughout the entire brain volume. This method was applied in a study where human subjects completed separate fMRI and EEG sessions while performing a passive visual task. Intracranial LFPs were estimated from the scalp-recorded data using the ELECTRA source model. We compared statistical images from BOLD signals with statistical images of each frequency of the eLFPs. In agreement with previous studies in animals, we found a significant correspondence between LFP and BOLD statistical images in the gamma band (44-78 Hz) within primary visual cortices. In addition, significant correspondence was observed at low frequencies (<14 Hz) and also at very high frequencies (>100 Hz). Effects within extrastriate visual areas showed a different correspondence that not only included those frequency ranges observed in primary cortices but also additional frequencies. Results therefore suggest that the relationship between electrophysiological and hemodynamic signals thus might vary both as a function of frequency and anatomical region.
- Published
- 2009
- Full Text
- View/download PDF
17. Bayesian models of mentalizing.
- Author
-
Grave de Peralta Menendez R, Achaïbou A, Bessière P, Vuilleumier P, and Gonzalez Andino S
- Subjects
- Adult, Electroencephalography, Emotions physiology, Female, Humans, Male, Nonlinear Dynamics, Photic Stimulation, Reaction Time, Bayes Theorem, Brain physiology, Brain Mapping, Mental Processes physiology
- Abstract
Surprisingly effortless is the human capacity known as "mentalizing", i.e., the ability to explain and predict the behavior of others by attributing to them independent mental states, such as beliefs, desires, emotions or intentions. This capacity is, among other factors, dependent on the correct anticipation of the dynamics of facially expressed emotions based on our beliefs and experience. Important information about the neural processes involved in mentalizing can be derived from dynamic recordings of neural activity such as the EEG. We here exemplify how the so-called Bayesian probabilistic models can help us to model the neural dynamic involved in the perception of clips that evolve from neutral to emotionally laden faces. Contrasting with conventional models, in Bayesian models, probabilities can be used to dynamically update beliefs based on new incoming information. Our results show that a reproducible model of the neural dynamic involved in the appraisal of facial expression can be derived from the grand mean ERP over five subjects. One of the two models used to predict the individual subject dynamic yield correct estimates for four of the five subjects analyzed. These results encourage the future use of Bayesian formalism to build more detailed models able to describe the single trial dynamic.
- Published
- 2008
- Full Text
- View/download PDF
18. Electrical neuroimaging based on biophysical constraints.
- Author
-
Grave de Peralta Menendez R, Murray MM, Michel CM, Martuzzi R, and Gonzalez Andino SL
- Subjects
- Dominance, Cerebral physiology, Evoked Potentials physiology, Humans, Linear Models, Motor Cortex physiology, Nerve Net physiology, Reaction Time physiology, Biophysics methods, Brain Mapping methods, Cerebral Cortex physiology, Electroencephalography methods, Image Processing, Computer-Assisted methods, Imaging, Three-Dimensional methods, Mathematical Computing, Models, Neurological, Psychomotor Performance physiology
- Abstract
This paper proposes and implements biophysical constraints to select a unique solution to the bioelectromagnetic inverse problem. It first shows that the brain's electric fields and potentials are predominantly due to ohmic currents. This serves to reformulate the inverse problem in terms of a restricted source model permitting noninvasive estimations of Local Field Potentials (LFPs) in depth from scalp-recorded data. Uniqueness in the solution is achieved by a physically derived regularization strategy that imposes a spatial structure on the solution based upon the physical laws that describe electromagnetic fields in biological media. The regularization strategy and the source model emulate the properties of brain activity's actual generators. This added information is independent of both the recorded data and head model and suffices for obtaining a unique solution compatible with and aimed at analyzing experimental data. The inverse solution's features are evaluated with event-related potentials (ERPs) from a healthy subject performing a visuo-motor task. Two aspects are addressed: the concordance between available neurophysiological evidence and inverse solution results, and the functional localization provided by fMRI data from the same subject under identical experimental conditions. The localization results are spatially and temporally concordant with experimental evidence, and the areas detected as functionally activated in both imaging modalities are similar, providing indices of localization accuracy. We conclude that biophysically driven inverse solutions offer a novel and reliable possibility for studying brain function with the temporal resolution required to advance our understanding of the brain's functional networks.
- Published
- 2004
- Full Text
- View/download PDF
19. Noninvasive localization of electromagnetic epileptic activity. II. Demonstration of sublobar accuracy in patients with simultaneous surface and depth recordings.
- Author
-
Lantz G, Grave de Peralta Menendez R, Gonzalez Andino S, and Michel CM
- Subjects
- Adult, Female, Humans, Image Processing, Computer-Assisted, Imaging, Three-Dimensional, Magnetic Resonance Imaging, Male, Brain Mapping methods, Electromagnetic Phenomena, Epilepsy physiopathology, Temporal Lobe physiopathology
- Abstract
Seven patients with complex partial epileptic seizures undergoing invasive video/EEG-monitoring were investigated with a combination of 10 subdural strip electrode contacts (subtemporal + lateral temporal), and 22 extracranial recording sites. In each patient spikes with different intracranial distributions were identified, and for those with similar distributions the extracranial activity was averaged. A new inverse solution method called EPIFOCUS (Grave et al. 2001, this issue) was used to reconstruct the sources of both single and averaged spikes in a standard 3D-MRI, and a statistical analysis was performed in order to demonstrate location differences between spikes with different intracranial distributions. The results revealed significantly more anterior and ventral source locations for subtemporal compared to lateral temporal spikes. Within the subtemporal group, medial spikes had more mesial and dorsal locations compared to lateral ones. In the lateral temporal group, more anterior and ventral locations were obtained for anterior compared to posterior spikes. The results demonstrate the applicability of EPIFOCUS in the localization of sources in the temporal lobe with sublobar accuracy. This possibility may become important in the future, for instance in identifying cases where amygdalo-hippocampectomy or other limited temporal lobe resections may replace the standard en bloc resections.
- Published
- 2001
- Full Text
- View/download PDF
20. Noninvasive localization of electromagnetic epileptic activity. I. Method descriptions and simulations.
- Author
-
Grave de Peralta Menendez R, Gonzalez Andino S, Lantz G, Michel CM, and Landis T
- Subjects
- Artifacts, Computer Simulation, Humans, Linear Models, Brain physiopathology, Brain Mapping methods, Electromagnetic Phenomena, Epilepsy physiopathology
- Abstract
This paper considers the solution of the bioelectromagnetic inverse problem with particular emphasis on focal compact sources that are likely to arise in epileptic data. Two linear inverse methods are proposed and evaluated in simulations. The first method belongs to the class of distributed inverse solutions, capable of dealing with multiple simultaneously active sources. This solution is based on a Local Auto Regressive Average (LAURA) model. Since no assumption is made about the number of activated sources, this approach can be applied to data with multiple sources. The second method, EPIFOCUS, assumes that there is only a single focal source. However, in contrast to the single dipole model, it allows the source to have a spatial extent beyond a single point and avoids the non-linear optimization process required by dipole fitting. The performance of both methods is evaluated with synthetic data in noisy and noise free conditions. The simulation results demonstrate that LAURA and EPIFOCUS increase the number of sources retrieved with zero dipole localization error and produce lower maximum error and lower average error compared to Minimum Norm, Weighted Minimum Norm and Minimum Laplacian (LORETA). The results show that EPIFOCUS is a robust and powerful tool to localize focal sources. Alternatives to localize data generated by multiple sources are discussed. A companion paper (Lantz et al. 2001, this issue) illustrates the application of LAURA and EPIFOCUS to the analysis of interictal data in epileptic patients.
- Published
- 2001
- Full Text
- View/download PDF
21. Backus and Gilbert method for vector fields.
- Author
-
Grave de Peralta Menendez R and Gonzalez Andino SL
- Subjects
- Mathematics, Brain Mapping methods, Electromagnetic Fields, Models, Theoretical
- Abstract
This report describes the theory of Backus and Gilbert with special emphasis for the case of vector fields as required for the solution of the electromagnetic inverse problem. A description of the method is presented with the detailed mathematical derivation of the coefficients that determine the solution for the retrieval of vector fields. Such derivation, to our knowledge, has never been reported in the literature. We also identify some crucial points that can (and had) lead to misuse of this solution and describe some disadvantages of this theory for the case of vector fields suggesting some alternatives to deal with them.
- Published
- 1999
22. A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem.
- Author
-
Grave de Peralta-Menendez R and Gonzalez-Andino SL
- Subjects
- Computer Simulation, Electromagnetic Phenomena, Humans, Brain anatomy & histology, Image Processing, Computer-Assisted methods, Linear Models, Models, Neurological
- Abstract
This paper explores the possibilities of using linear inverse solutions to reconstruct arbitrary current distributions within the human brain. We formally prove that due to the underdetermined character of the problem, the only class of measurable current distributions that can be totally retrieved are those of minimal norm. The reconstruction of smooth or averaged versions of the currents is also explored. A solution that explicitly attempts to reconstruct averages of the current is proposed and compared with the minimum norm and the minimum Laplacian solution. In contrast to the majority of previous analysis carried out in the field, in the comparisons, we avoid the use of measures designed for the case of dipolar sources. To allow for the evaluation of distributed solutions in the case of arbitrary current distributions we use the concept of resolution kernels. Two summarizing measures, source identifiability and source visibility, are proposed and applied to the comparison. From this study can be concluded: 1) linear inverse solutions are unable to produce adequate estimates of arbitrary current distributions at many brain sites and 2) averages or smooth solutions are better than the minimum norm solution estimating the position of single point sources. However, they systematically underestimate their amplitude or strength especially for the deeper brain areas. Based on these result, it appears unlikely that a three-dimensional (3-D) tomography of the brain electromagnetic activity can be based on linear reconstruction methods without the use of a significant amount of a priori information.
- Published
- 1998
- Full Text
- View/download PDF
23. Linear inverse solutions with optimal resolution kernels applied to electromagnetic tomography.
- Author
-
Grave de Peralta Menendez R, Hauk O, Gonzalez Andino S, Vogt H, and Michel C
- Abstract
This paper discusses the construction of inverse solutions with optimal resolution kernels and applications of them in the reconstruction of the generators of the EEG/MEG. On the basis of the framework proposed by Backus and Gilbert [1967], we show how a family of well-known solutions ranging from the minimum norm method to the generalized Wiener estimator can be derived. It is shown that these solutions have optimal properties in some well-defined sense since they are obtained by optimizing either the resolution kernels and/or the variances of the estimates. New proposals for the optimization of resolution are made. In particular, a method termed "weighted resolution optimization" (WROP) is introduced that deals with the difficulties inherent to the method of Backus and Gilbert [1967], from both a conceptual and a numerical point of view. One-dimensional simulations are presented to illustrate the concept and the interpretation of resolution kernels. Three-dimensional simulations shed light on the resolution properties of some linear inverse solutions when applied to the biomagnetic inverse problem. The simulations suggest that a reliable three-dimensional electromagnetic tomography based on linear inverse solutions cannot be constructed, unless significant a priori information is included. The relationship between the resolution kernels and a definition of spatial resolution is emphasized. Special consideration is given to the use of resolution kernels to assess the properties of linear inverse solutions as well as for the design of inverse solutions with optimal resolution kernels., (Copyright (c) 1997 Wiley-Liss, Inc.)
- Published
- 1997
- Full Text
- View/download PDF
24. Single dipole localization: some numerical aspects and a practical rejection criterion for the fitted parameters.
- Author
-
Grave de Peralta Menendez R and Gonzalez Andino SL
- Subjects
- Algorithms, Brain Mapping, Humans, Models, Biological, Brain physiology, Electroencephalography
- Abstract
There have been a number of attempts in the last years to localize the generators of brain electromagnetic activity, considering one current dipole as the source model. Single Dipole Localization (SDL) requires the selection of an optimization algorithm (OA). General aspects related with the selection, implementation and evaluation of some of the OA employed for SDL are discussed in this paper. Specifically the performance of two algorithms, those of Hooke-Jeeves and Levenberg-Marquardt, are tested by simulations. Suggestions for including restrictions to the dipole position and comments about some commonly used measures of the goodness of fit are given. Examples of erroneous implementations of these algorithms are also illustrated. A simple graphic rejection criterion, which can be easily used by inexperienced researchers, is introduced and tested in noisy and noise free simulations.
- Published
- 1994
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.