1. Probing a $Z'$ gauge boson via neutrino trident scattering at the Forward Physics Facility
- Author
-
Francener, Reinaldo, Goncalves, Victor P., and Gratieri, Diego R.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Experiment - Abstract
The study of neutrino physics at the Large Hadron Collider is already a reality, and a broad neutrino physics program is expected to be developed in forthcoming years at the Forward Physics Facility (FPF). In particular, the neutrino trident scattering process, which is a rare Standard Model process, is expected to be observed for the first time with a statistical significance of $5\sigma$ using the FASER$\nu$2 detector. Such a perspective motivates the investigation of the impact of New Physics on the predictions for the corresponding number of events. In this letter, we consider the $L_\mu - L_\tau$ model, which predicts an additional massive neutral gauge boson, $Z'$, that couples to neutrino and charged leptons of the second and third families, and estimate the production of a dimuon system in the neutrino trident scattering at the FASER$\nu$2 assuming different models for the incoming neutrino flux. We derive the associated sensitivity and demonstrate that a future measurement of the dimuons produced in neutrino trident events at the FPF will extend the coverage of the parameter space in comparison to previous experiments., Comment: 7 pages, 2 figures
- Published
- 2024