24 results on '"Granular media equation"'
Search Results
2. A simple proof of a Kramers' type law for self-stabilizing diffusions in double-wells landscape.
- Author
-
Tugaut, Julian
- Subjects
- *
MEAN field theory , *PARTICLES , *DIFFUSION coefficients , *DIFFUSION , *ALGEBRAIC field theory - Abstract
The present paper is devoted to the study of a McKean-Vlasov diffusion of type self-stabilizing. We obtain this model by taking the hydrodynamical limit of a mean-field system of particles. The main question that we study is the exit-time. We take a confining potential with two wells : a < 0 and b > 0. We start with a deterministic condition x0 > 0 and we show that the first time that this diffusion leaves an interval of the form (d; +∞) (d verifying some assumptions) satisfies a Kramers' type law. In other words, this time is exponentially equivalent to exp {...} as the diffusion coefficient σ goes to 0, H being the exit cost. Incidentally, we also prove that the solution of the granular media equation is trapped (for the 2-Wasserstein distance) in a ball centered around δb during a time at least exponentially equivalent to exp {...}. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
3. Convergence to equilibrium in the free Fokker-Planck equation with a double-well potential.
- Author
-
Donati-Martina, Catherine, Grouxa, Benjamin, and Maïdab, Mylène
- Subjects
- *
FOKKER-Planck equation , *STOCHASTIC convergence , *PROBABILITY theory , *HILBERT transform , *RANDOM matrices - Abstract
We consider the one-dimensional free Fokker-Planck equation ∂μt/∂t = ∂/∂x μt·(1/2 V'] -Hμt)], where H denotes the Hilbert transform and V is a particular double-well quartic potential, namely V (x) = 1/4 x4 + c/2 x², with c ≥-2. We prove that the solution (μt)t≥0 of this PDE converges in Wasserstein distance of any order p ≥ 1 to the equilibrium measure μV as t goes to infinity. This provides a first result of convergence for this equation in a non-convex setting. The proof involves free probability and complex analysis techniques. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
4. Exit-Problem of McKean-Vlasov Diffusions in Double-Well Landscape.
- Author
-
Tugaut, Julian
- Abstract
We consider a diffusion in which the law of the process itself appears in the drift, that is, a nonlinearity in the sense of McKean. The question that we deal with is the exit-time of such a diffusion when it evolves in a double-well landscape. This has already been solved for the convex case, but the previous methods rely completely on the convexity of the external force. Here, we provide a weak version of a Kramers’ type law for self-stabilizing process directed by a non-uniformly convex confining potential. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
5. Self-stabilizing Processes in Multi-wells Landscape in ℝ-Invariant Probabilities.
- Author
-
Tugaut, Julian
- Abstract
The aim of this work is to analyze the stationary measures for a particular class of non-Markovian diffusions, the self-stabilizing processes. All the trajectories of such a process attract each other. This permits to exhibit a non-uniqueness of the stationary measures in the one-dimensional case, see Herrmann and Tugaut (Stoch. Process. Their Appl. 120(7):1215-1246, ). In this paper, the extension to general multi-wells lansdcape in general dimension is provided. Moreover, the approach for investigating this problem is different and needs fewer assumptions. The small-noise limit behavior of the invariant probabilities is also given. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
6. Captivity of the solution to the granular media equation
- Author
-
Julian Tugaut, Probabilités, statistique, physique mathématique (PSPM), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and Tugaut, Julian
- Subjects
Numerical Analysis ,[MATH.MATH-PR] Mathematics [math]/Probability [math.PR] ,Self-stabilizing diffusion ,Granular media equation ,010102 general mathematics ,Granular media ,Limiting ,01 natural sciences ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,010104 statistics & probability ,Limiting probability ,Freidlin-Wentzell theory ,Modeling and Simulation ,Non uniqueness of the invariant probabilities ,Convergence (routing) ,Statistical physics ,0101 mathematics ,Current (fluid) ,Diffusion (business) ,Stable state ,Mathematics - Abstract
The goal of the current paper is to provide information about the limiting probability of the granular media equation when there are several stable states. Indeed, it has been proved in our previous works \cite{AOP,SPA} that there is convergence. However, very few is known about the limiting probability, even with a small diffusion coefficient. The techniques that we use here are related to the ones about the exit-problem of the associated McKean-Vlasov diffusion.
- Published
- 2020
7. Self-stabilizing processes in multi-wells landscape in -convergence
- Author
-
Tugaut, Julian
- Subjects
- *
STOCHASTIC convergence , *SELF-stabilization (Computer science) , *DIFFUSION , *PROBABILITY theory , *MATHEMATICAL proofs , *MATHEMATICAL invariants - Abstract
Abstract: Self-stabilizing processes are inhomogeneous diffusions in which the law of the process intervenes in the drift. If the external force is the gradient of a convex potential, it has been proved that the process converges towards the unique invariant probability as the time goes to infinity. However, in a previous article, we established that the diffusion may admit several invariant probabilities, provided that the external force derives from a non-convex potential. We here provide results about the limiting values of the family , being the law of the diffusion. Moreover, we establish the weak convergence under an additional hypothesis. [Copyright &y& Elsevier]
- Published
- 2013
- Full Text
- View/download PDF
8. Probabilistic approach for granular media equations in the non-uniformly convex case.
- Author
-
Cattiaux, P., Guillin, A., and Malrieu, F.
- Subjects
- *
CONVEX functions , *PROBABILITY theory , *STOCHASTIC convergence , *SOBOLEV spaces , *FUNCTION spaces , *MATHEMATICAL analysis - Abstract
We use here a particle system to prove both a convergence result (with convergence rate) and a deviation inequality for solutions of granular media equation when the confinement potential and the interaction potential are no more uniformly convex. The proof of convergence is simpler than the one in Carrillo–McCann–Villani (Rev. Mat. Iberoamericana 19:971–1018, 2003; Arch. Rat. Mech. Anal. 179:217–263, 2006). All the results complete former results of Malrieu (Ann. Appl. Probab. 13:540–560, 2003) in the uniformly convex case. The main tool is an uniform propagation of chaos property and a direct control in Wasserstein distance of solutions starting with different initial measures. The deviation inequality is obtained via a T 1 transportation cost inequality replacing the logarithmic Sobolev inequality which is no more clearly dimension free. [ABSTRACT FROM AUTHOR]
- Published
- 2008
- Full Text
- View/download PDF
9. A simple proof of a Kramers'type law for self-stabilizing diffusions in double-wells landscape
- Author
-
Julian Tugaut, Probabilités, statistique, physique mathématique (PSPM), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Statistics and Probability ,Self-stabilizing diffusion ,Granular media equation ,010102 general mathematics ,Type (model theory) ,01 natural sciences ,Exit-time ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,010104 statistics & probability ,Large deviations ,Simple (abstract algebra) ,Statistical physics ,0101 mathematics ,Mathematics - Abstract
International audience; The present paper is devoted to the study of a McKean-Vlasov diffusion of the type self-stabilizing. We obtain this model by taking the hydrodynamical limit of a mean-field system of particles. It also corresponds to the probabilistic interpretation of the granular media equation. The main question that we study is the exit-time. We take a confining potential with two wells : a < 0 and b > 0. We start with a deterministic condition x0 > 0 and we show that the first time that this diffusion leaves an interval of the form ]d; +∞[ (d verifying some assumptions) satisfies a Kramers'type law. In other words, this time is exponentially equivalent to exp 2 σ 2 H as the coefficient diffusion σ goes to 0, H being the exit cost. Incidentally, we also prove that the solution of the granular media equation is trapped (for the 2-Wasserstein distance) in a ball around δ b during a time at least exponentially equivalent to exp 2 σ 2 H .
- Published
- 2019
- Full Text
- View/download PDF
10. Finiteness of entropy for granular media equations
- Author
-
Julian Tugaut, Probabilités, statistique, physique mathématique (PSPM), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Statistics and Probability ,Granular media equation ,Entropy ,010102 general mathematics ,Functional inequalities ,Granular media ,01 natural sciences ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,010104 statistics & probability ,McKean-Vlasov diffusion ,Entropy (information theory) ,Statistical physics ,Wasserstein distance ,0101 mathematics ,Mathematics - Abstract
The current work deals with the granular media equation whose probabilistic interpretation is the McKean–Vlasov diffusion. It is well known that the Laplacian provides a regularization of the solution. Indeed, for any t > 0, the solution is absolutely continuous with respect to the Lebesgue measure. It has also been proved that all the moments are bounded for positive t. However, the finiteness of the entropy of the solution is a new result which will be presented here.
- Published
- 2019
11. Convergence to equilibrium in the free Fokker–Planck equation with a double-well potential
- Author
-
Benjamin Groux, Mylène Maïda, Catherine Donati-Martin, Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire Paul Painlevé (LPP), Université de Lille-Centre National de la Recherche Scientifique (CNRS), We thank Guilherme Silva for some explanations he gave to us about quadratic differentials when visiting Lille. We also thank one of the anonymous referees for his precise suggestions. M.M. was partially supported by the Labex CEMPI (ANR-11-LABX-0007-01)., ANR-11-LABX-0007,CEMPI,Centre Européen pour les Mathématiques, la Physique et leurs Interactions(2011), Laboratoire Paul Painlevé - UMR 8524 (LPP), and Centre National de la Recherche Scientifique (CNRS)-Université de Lille
- Subjects
Comportement en temps long ,Statistics and Probability ,Equilibrium measure ,Free probability ,Granular media equation ,Equation de Fokker-Planck ,Double-well potential ,01 natural sciences ,Measure (mathematics) ,010104 statistics & probability ,Mathematics - Analysis of PDEs ,Quadratic equation ,Mathematics::Probability ,Quartic function ,Convergence (routing) ,FOS: Mathematics ,Long-time behaviour ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Equation des milieux granulaires ,Mesure d'équilibre ,0101 mathematics ,Matrices aléatoires ,Mathematics ,Mathematical physics ,60B20 ,46L54 ,35B40 ,Probability (math.PR) ,010102 general mathematics ,Fokker-Planck equation ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Potentiel à double puits ,Fokker–Planck equation ,Random matrices ,Statistics, Probability and Uncertainty ,Mathematics - Probability ,Probabilités libres ,Analysis of PDEs (math.AP) - Abstract
We consider the one-dimensional free Fokker–Planck equation ¶ \[\frac{\partial \mu_{t}}{\partial t}=\frac{\partial }{\partial x}[\mu_{t}\cdot (\frac{1}{2}V'-H\mu_{t})],\] where $H$ denotes the Hilbert transform and $V$ is a particular double-well quartic potential, namely $V(x)=\frac{1}{4}x^{4}+\frac{c}{2}x^{2}$, with $c\ge -2$. We prove that the solution $(\mu_{t})_{t\ge 0}$ of this PDE converges in Wasserstein distance of any order $p\ge 1$ to the equilibrium measure $\mu_{V}$ as $t$ goes to infinity. This provides a first result of convergence for this equation in a non-convex setting. The proof involves free probability and complex analysis techniques.
- Published
- 2018
- Full Text
- View/download PDF
12. Exit-time of granular media equation starting in a local minimum
- Author
-
Julian Tugaut, Probabilités, statistique, physique mathématique (PSPM), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Statistics and Probability ,Double-well potential ,Granular media equation ,010102 general mathematics ,Granular media ,Mechanics ,01 natural sciences ,Exit-time ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,010104 statistics & probability ,Large deviations ,McKean-Vlasov diffusion ,0101 mathematics ,Mathematics - Abstract
International audience; We are interested in a nonlinear partial differential equation: the gran-ular media one. Thanks to some of our previous results [Tug14a, Tug14b], we know that under easily checked assumptions, there is a unique steady state. We point out that we consider a case in which the confining potential is not globally convex. According to recent articles [Tug13a, Tug13b], we know that there is weak convergence towards this steady state. However , we do not know anything about the rate of convergence. In this paper, we make a first step to this direction by proving a deterministic Kramers'type law concerning the first time that the solution of the gran-ular media equation leaves a local well. In other words, we show that the solution of the granular media equation is trapped around a local minimum during a time exponentially equivalent to exp 2 σ 2 H , H being the so-called exit-cost.
- Published
- 2018
- Full Text
- View/download PDF
13. Estimation de la vitesse de retour à l'équilibre dans les équations de Fokker-Planck
- Author
-
Ndao, Mamadou, Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Otared Kavian, and Stéphane Mischler
- Subjects
Retour à l'Équilibre ,Taux de convergence ,Granular media equation ,Fixed point theorem ,Equilibrium ,Existence locale et globale ,Rate of convergence ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,Équations des milieux granulaires ,Rate ,Vitesse ,Asymptotical stability ,Stabilité asymptotique ,Semi-groupe ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Théorème de point fixe ,Locale and global existence ,Semigroups ,Fokker-Planck ,Estimation - Abstract
This thesis is devoted to the Fokker-Planck équation partial_t f =∆f + div(E f).It is divided into two parts. The rst part deals with the linear problem. In this part we consider a vector E(x) depending only on x. It is composed of chapters 3, 4 and 5. In chapter 3 we prove that the linear operator Lf :=∆f + div(Ef ) is an in nitesimal generator of a strong continuous semigroup (SL(t))_{t≥0}. We establish also that (SL(t))_{t≥0} is positive and ultracontractive. In chapter 4 we show how an adequate decomposition of the linear operator L allows us to deduce interesting properties for the semigroup (SL(t))_{t≥0}. Indeed using this decomposition we prove that (SL(t))_{t≥0} is a bounded semigroup. In the last chapter of this part we establish that the linear Fokker-Planck admits a unique steady state. Moreover this stationary solution is asymptotically stable.In the nonlinear part we consider a vector eld of the form E(x, f ) := x +nabla (a *f ), where a and f are regular functions. It is composed of two chapters. In chapter 6 we establish that fora in W^{2,infini}_locthe nonlinear problem has a unique local solution in L^2_{K_alpha}(R^d); . To end this part we prove in chapter 7 that the nonlinear problem has a unique global solution in L^2_k(R^d). This solution depends continuously on the data.; Ce mémoire de thèse est consacré à l’équation de Fokker-Planckpartial_ f=∆f+div(Ef).Il est subdivisé en deux parties :une partie linéaire et une partie non linéaire. Dans la partie linéaire on considère un champ de vecteur E(x) dépendant seulement de x. Cette partie est constituée des chapitres 3, 4 et 5. Dans le chapitre 3 on montre que l’opérateur linéaire Lf :=∆ f + div(E f ) est le générateur d’un semi-groupe fortement continu (SL(t))_{t≥0} dans tous les espaces L^p. On y établit également que le semi-groupe (SL(t))_{t≥0} est positif et ultracontractif. Dans le chapitre 4 nous montrons comment est qu’une décomposition adéquate de l’opérateur L permet d’établir certaines propriétés du semi-groupe (SL(t))_{t≥0} notamment sa bornitude. Le chapitre 5 est consacré à l’existence d’un état d’équilibre. De plus on y montre que cet état d’équi- libre est asymptotiquement stable. Dans la partie non linéaire on considère un champ de vecteur de la forme E(x,f) := x+nabla (a*f) ou a et f sont des fonctions assez régulières et * est l’opérateur de convolution. Cette parties est contituée des chapitre 6 et 7. Dans le chapitre 6 nous établissons que poura appartenant à W^{2,infini}_locl’équation de Fokker-Planck non linéaire admet une unique solution locale dans l’espace L^2_{K_alpha} (R^d). Dans le dernier chapitre nous montrons que le problème non linéaire admet une solution globale. De plus cette solution dépend continument des données.
- Published
- 2018
14. Estimation of the rate of return to equilibrium in Fokker-Planck's equations
- Author
-
Ndao, Mamadou, Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Otared Kavian, and Stéphane Mischler
- Subjects
Retour à l'Équilibre ,Taux de convergence ,Granular media equation ,Fixed point theorem ,Equilibrium ,Existence locale et globale ,Rate of convergence ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,Équations des milieux granulaires ,Rate ,Vitesse ,Asymptotical stability ,Stabilité asymptotique ,Semi-groupe ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Théorème de point fixe ,Locale and global existence ,Semigroups ,Fokker-Planck ,Estimation - Abstract
This thesis is devoted to the Fokker-Planck équation partial_t f =∆f + div(E f).It is divided into two parts. The rst part deals with the linear problem. In this part we consider a vector E(x) depending only on x. It is composed of chapters 3, 4 and 5. In chapter 3 we prove that the linear operator Lf :=∆f + div(Ef ) is an in nitesimal generator of a strong continuous semigroup (SL(t))_{t≥0}. We establish also that (SL(t))_{t≥0} is positive and ultracontractive. In chapter 4 we show how an adequate decomposition of the linear operator L allows us to deduce interesting properties for the semigroup (SL(t))_{t≥0}. Indeed using this decomposition we prove that (SL(t))_{t≥0} is a bounded semigroup. In the last chapter of this part we establish that the linear Fokker-Planck admits a unique steady state. Moreover this stationary solution is asymptotically stable.In the nonlinear part we consider a vector eld of the form E(x, f ) := x +nabla (a *f ), where a and f are regular functions. It is composed of two chapters. In chapter 6 we establish that fora in W^{2,infini}_locthe nonlinear problem has a unique local solution in L^2_{K_alpha}(R^d); . To end this part we prove in chapter 7 that the nonlinear problem has a unique global solution in L^2_k(R^d). This solution depends continuously on the data.; Ce mémoire de thèse est consacré à l’équation de Fokker-Planckpartial_ f=∆f+div(Ef).Il est subdivisé en deux parties :une partie linéaire et une partie non linéaire. Dans la partie linéaire on considère un champ de vecteur E(x) dépendant seulement de x. Cette partie est constituée des chapitres 3, 4 et 5. Dans le chapitre 3 on montre que l’opérateur linéaire Lf :=∆ f + div(E f ) est le générateur d’un semi-groupe fortement continu (SL(t))_{t≥0} dans tous les espaces L^p. On y établit également que le semi-groupe (SL(t))_{t≥0} est positif et ultracontractif. Dans le chapitre 4 nous montrons comment est qu’une décomposition adéquate de l’opérateur L permet d’établir certaines propriétés du semi-groupe (SL(t))_{t≥0} notamment sa bornitude. Le chapitre 5 est consacré à l’existence d’un état d’équilibre. De plus on y montre que cet état d’équi- libre est asymptotiquement stable. Dans la partie non linéaire on considère un champ de vecteur de la forme E(x,f) := x+nabla (a*f) ou a et f sont des fonctions assez régulières et * est l’opérateur de convolution. Cette parties est contituée des chapitre 6 et 7. Dans le chapitre 6 nous établissons que poura appartenant à W^{2,infini}_locl’équation de Fokker-Planck non linéaire admet une unique solution locale dans l’espace L^2_{K_alpha} (R^d). Dans le dernier chapitre nous montrons que le problème non linéaire admet une solution globale. De plus cette solution dépend continument des données.
- Published
- 2018
15. Exit problem of McKean-Vlasov diffusions in double-wells landscape
- Author
-
Julian Tugaut, Probabilités, statistique, physique mathématique (PSPM), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Statistics and Probability ,Self-stabilizing diffusion ,Granular media equation ,General Mathematics ,010102 general mathematics ,Regular polygon ,Type (model theory) ,01 natural sciences ,Convexity ,Exit-time ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,010104 statistics & probability ,Nonlinear system ,Coupling method ,Large deviations ,Large deviations theory ,Statistical physics ,0101 mathematics ,Statistics, Probability and Uncertainty ,Diffusion (business) ,McKean–Vlasov process ,Mathematical economics ,Mathematics - Abstract
International audience; We consider a diffusion in which the own law of the process appears in the drift, that is a non-linearity in the sense of McKean. This kind of diffusion is obtained as the hydrodynamical limit of a mean-field system of interacting particles. The question that we deal with is the exit-time of such a diffusion when it evolves in a double-wells landscape. This has already been solved for the convex case but the previous methods relie completely on the convexity of the external force. Here, we provide a Kramers'type law for self-stabilizing process directed by a non-convex confining potential.
- Published
- 2018
- Full Text
- View/download PDF
16. Exponential convergence in entropy and Wasserstein for McKean–Vlasov SDEs.
- Author
-
Ren, Panpan and Wang, Feng-Yu
- Subjects
- *
ENTROPY (Information theory) , *STOCHASTIC convergence , *INVARIANT measures , *HAMILTONIAN systems , *STOCHASTIC systems , *PROBABILITY measures - Abstract
The following type of exponential convergence is proved for (non-degenerate or degenerate) McKean–Vlasov SDEs: W 2 (μ t , μ ∞) 2 + Ent (μ t | μ ∞) ≤ c e − λ t min { W 2 (μ 0 , μ ∞) 2 , Ent (μ 0 | μ ∞) } , t ≥ 1 , where c , λ > 0 are constants, μ t is the distribution of the solution at time t , μ ∞ is the unique invariant probability measure, Ent is the relative entropy and W 2 is the L 2 -Wasserstein distance. In particular, this type of exponential convergence holds for some (non-degenerate or degenerate) granular media type equations generalizing those studied in Carrillo et al. (2003) and Guillin et al. (0000) on the exponential convergence in a mean field entropy. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
17. The Vlasov-Fokker-Planck equation in non-convex landscapes: convergence to equilibrium
- Author
-
Manh Hong Duong, Julian Tugaut, Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Probabilités, statistique, physique mathématique (PSPM), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL)
- Subjects
Statistics and Probability ,Statistics & Probability ,FOS: Physical sciences ,Nonlinear partial differential equation ,kinetic equation ,Vlasov-Fokker-Planck equation ,01 natural sciences ,free-energy ,010104 statistics & probability ,Mathematics - Analysis of PDEs ,Convergence (routing) ,FOS: Mathematics ,Statistical physics ,FIELD ,0101 mathematics ,Invariant (mathematics) ,SELF-STABILIZING PROCESSES ,Mathematical Physics ,ComputingMilieux_MISCELLANEOUS ,60J60 ,Mathematics ,GRANULAR MEDIA ,Science & Technology ,Stochastic process ,35B40 ,asymptotic behaviour ,0104 Statistics ,Probability (math.PR) ,010102 general mathematics ,Time evolution ,Regular polygon ,Mathematical Physics (math-ph) ,MODEL ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,granular media equation ,35K55 ,Physical Sciences ,Probability distribution ,stochastic processes ,Fokker–Planck equation ,60H10 ,MULTI-WELLS LANDSCAPE ,Statistics, Probability and Uncertainty ,60G10 ,BEHAVIOR ,Mathematics - Probability ,Analysis of PDEs (math.AP) - Abstract
In this paper, we study the long-time behaviour of solutions to the Vlasov-Fokker-Planck equation where the confining potential is non-convex. This is a nonlocal nonlinear partial differential equation describing the time evolution of the probability distribution of a particle moving under the influence of a non-convex potential, an interaction potential, a friction force and a stochastic force. Using the free-energy approach, we show that under suitable assumptions solutions of the Vlasov-Fokker-Planck equation converge to an invariant probability.
- Published
- 2018
- Full Text
- View/download PDF
18. Self-stabilizing Processes in Multi-wells Landscape in ℝ d -Invariant Probabilities
- Author
-
Tugaut, Julian
- Published
- 2014
- Full Text
- View/download PDF
19. Large deviations of random matrices and free Fokker-Planck equation
- Author
-
Groux, Benjamin, Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris Saclay (COmUE), Catherine Donati-Martin, and Mylène Maïda
- Subjects
Information-Plus-Noise model ,Equilibrium measure ,Free probability ,Grandes déviations ,Granular media equation ,Long-Time convergence ,Equation de Fokker-Planck ,Fokker-Planck equation ,Mesure d’équilibre ,Relation de subordination ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Large deviations ,Convergence en temps long ,Modèle information-Plus-Bruit ,Random matrices ,Subordination property ,Équation des milieux granulaires ,Probabilités libres ,Matrices aléatoires - Abstract
This thesis lies within the field of probability and statistics, and more precisely of random matrix theory. In the first part, we study the large deviations of the spectral measure of covariance matrices XX*, where X is a rectangular random matrix with i.i.d. coefficients having a probability tail like exp(-at^α), α∈]0,2[. We establish a large deviation principle similar to Bordenave and Caputo's one, with speed n^{1+α/2} and explicit rate function involving rectangular free convolution. The proof relies on a quantification result of asymptotic freeness in the information-plus-noise model. The second part of this thesis is devoted to the study of the long-time behaviour of the solution to free Fokker-Planck equation in the setting of the quartic potential V(x) = 1/4 x^4 + c/2 x² with c≥-2. We prove that when t→+∞, the solution µ_t to this partial differential equation converge in Wasserstein distance towards the equilibrium measure associated to the potential V. This result provides a first example of long-time convergence for the solution of granular media equation with a non-convex potential and a logarithmic interaction. Its proof involves in particular free probability techniques.; Cette thèse s'inscrit dans le domaine des probabilités et des statistiques, et plus précisément des matrices aléatoires. Dans la première partie, on étudie les grandes déviations de la mesure spectrale de matrices de covariance XX*, où X est une matrice aléatoire rectangulaire à coefficients i.i.d. ayant une queue de probabilité en exp(-at^α), α∈]0,2[. On établit un principe de grandes déviations analogue à celui de Bordenave et Caputo, de vitesse n^{1+α/2} et de fonction de taux explicite faisant intervenir la convolution libre rectangulaire. La démonstration repose sur un résultat de quantification de la liberté asymptotique dans le modèle information-plus-bruit. La seconde partie de cette thèse est consacrée à l'étude du comportement en temps long de la solution de l'équation de Fokker-Planck libre en présence du potentiel quartique V(x) = 1/4 x^4 + c/2 x² avec c≥-2. On montre que quand t→+∞, la solution µ_t de cette équation aux dérivées partielles converge en distance de Wasserstein vers la mesure d'équilibre associée au potentiel V. Ce résultat fournit un premier exemple de convergence en temps long de la solution de l'équation des milieux granulaires en présence d'un potentiel non convexe et d'une interaction logarithmique. Sa démonstration utilise notamment des techniques de probabilités libres.
- Published
- 2016
20. Exit-time of an inhomogeneous diffusion
- Author
-
Tugaut, Julian, Tugaut, Julian, Probabilités, statistique, physique mathématique (PSPM), Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Exit-time ,Interacting particle systems ,Coupling method ,[MATH.MATH-PR] Mathematics [math]/Probability [math.PR] ,Large deviations ,Granular media equation ,Self-Stabilizing diffusions ,Freidlin and Wentzell theory - Abstract
We investigate the exit problem for a diffusion which drift is not time-homogeneous. More precisely, we study this problem for a McKean-Vlasov diffusion, that corresponds to the probabilistic interpretation of the granular media equation. This problem has already been solved in previous articles when the confining potential is uniformly strictly convex. Two different methods have been used. However, these two methods do not extend to the non-convex case. Consequently, here, we proceed in another way: by making a coupling with another McKean-Vlasov diffusion with a uniformly strictly convex confining potential. We present the result in a simple case, the one in which the interacting potential is linear. However, the result can be extended in a more general setting.
- Published
- 2014
21. Convergence to the equilibria for self-stabilizing processes in double-well landscape
- Author
-
Julian Tugaut, Institut Élie Cartan de Nancy (IECN), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Universität Bielefeld = Bielefeld University, and Tugaut, Julian
- Subjects
Statistics and Probability ,[MATH.MATH-PR] Mathematics [math]/Probability [math.PR] ,Monotonic function ,Double-well potential ,01 natural sciences ,free-energy ,010104 statistics & probability ,Simple (abstract algebra) ,McKean-Vlasov stochastic differential equations ,Convergence (routing) ,FOS: Mathematics ,Applied mathematics ,0101 mathematics ,Mathematics ,60J60 ,Partial differential equation ,double-well potential ,010102 general mathematics ,Probability (math.PR) ,35B40 ,Regular polygon ,self-interacting diffusion ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Nonlinear system ,granular media equation ,35K55 ,Convergence problem ,stationary measures ,60H10 ,Statistics, Probability and Uncertainty ,60G10 ,Mathematics - Probability - Abstract
We investigate the convergence of McKean-Vlasov diffusions in a nonconvex landscape. These processes are linked to nonlinear partial differential equations. According to our previous results, there are at least three stationary measures under simple assumptions. Hence, the convergence problem is not classical like in the convex case. By using the method in Benedetto et al. [J. Statist. Phys. 91 (1998) 1261-1271] about the monotonicity of the free-energy, and combining this with a complete description of the set of the stationary measures, we prove the global convergence of the self-stabilizing processes., Published in at http://dx.doi.org/10.1214/12-AOP749 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)
- Published
- 2013
22. Exit problem of McKean-Vlasov diffusions in convex landscapes
- Author
-
Julian Tugaut
- Subjects
Statistics and Probability ,Mathematical optimization ,Interacting particle systems ,Self-stabilizing diffusion ,Granular media equation ,Markov process ,Exit time ,Mathematical proof ,symbols.namesake ,Mathematics::Probability ,Applied mathematics ,Diffusion (business) ,Link (knot theory) ,Mathematics ,60J60 ,Propagation of chaos ,Regular polygon ,Exit location ,Large deviations ,Mean field theory ,symbols ,Large deviations theory ,60H10 ,Statistics, Probability and Uncertainty ,82C22 ,Focus (optics) ,60F10 - Abstract
The exit time and the exit location of a non-Markovian diffusion is analyzed. More particularly, we focus on the so-called self-stabilizing process. The question has been studied by Herrmann, Imkeller and Peithmann (in 2008) with results similar to those by Freidlin and Wentzell. We aim to provide the same results by a more intuitive approach and without reconstructing the proofs of Freidlin and Wentzell. Our arguments are as follows. In one hand, we establish a strong version of the propagation of chaos which allows to link the exit time of the McKean-Vlasov diffusion and the one of a particle in a mean-field system. In the other hand, we apply the Freidlin-Wentzell theory to the associated mean field system, which is a Markovian diffusion.
- Published
- 2012
23. Exit problem of McKean-Vlasov diffusions in convex landscape
- Author
-
Tugaut, Julian and Tugaut, Julian
- Subjects
Interacting particle systems ,Propagation of chaos ,[MATH.MATH-PR] Mathematics [math]/Probability [math.PR] ,Large deviations ,Mathematics::Probability ,Self-stabilizing diffusion ,Granular media equation ,Exit location ,Exit time - Abstract
The exit time and the exit location of a non-Markovian diffusion is analyzed. More particularly, we focus on the so-called self-stabilizing process. The question has been studied by Herrmann, Imkeller and Peithmann in [Herrmann, Imkeller, Peithmann|2008]. They proved some results similar to the ones of Freidlin and Wentzell. We aim to provide the same results by an approach more intuitive and without reconstructing the proofs of Freidlin and Wentzell. Our arguments are as follows. In one hand, we establish a strong version of the propagation of chaos which permits to link the exit time of the McKean-Vlasov diffusion and the one of a particle in a mean-field system. In the other hand, we apply the Freidlin-Wentzell theory to the associated mean-field system ; which is a Markovian diffusion.
- Published
- 2012
24. Self-stabilizing processes in multi-wells landscape in $\mathbb{R}^d$ - Convergence
- Author
-
Tugaut, Julian and Tugaut, Julian
- Subjects
Self-interacting diffuion ,[MATH.MATH-PR] Mathematics [math]/Probability [math.PR] ,McKean-Vlasov stochastic differential equations ,Granular media equation ,Multi-wells potential ,Free-energy - Abstract
Self-stabilizing processes are inhomogeneous diffusions in which the law of the process intervenes in the drift. If the external force is the gradient of a convex potential, it has been proved that the process converges toward the unique invariant probability as the time goes to infinity. However, in a previous article, we established that the diffusion may admit several invariant probabilities, provided that the external force derives from a non-convex potential. We here provide results about the limiting values of the family $\left\{\mu_t\,;\,t\geq0\right\}$, $\mu_t$ being the law of the diffusion. Moreover, we establish the weak convergence under an additional hypothesis.
- Published
- 2011
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.