5 results on '"Granak S"'
Search Results
2. Ongoing loss of viable neurons for weeks after mild perinatal hypoxia-ischemia.
- Author
-
McNally MA, Lau LA, Granak S, Hike D, Liu X, Yu X, Donahue RA, Chibnik LB, Ortiz JV, Che A, Northington F, and Staley K
- Abstract
Mild hypoxic-ischemic encephalopathy is common in neonates with no evidence-based therapies, and 30-40% of patients experience adverse outcomes. The nature and progression of mild injury is poorly understood. Thus, we studied the evolution of mild perinatal brain injury using longitudinal two-photon imaging of transgenic fluorescent proteins as a novel readout of neuronal viability and activity at cellular resolution. In vitro, perinatal murine organotypic hippocampal cultures underwent 15-20 minutes of oxygen-glucose deprivation. In vivo, mild hypoxia-ischemia was completed in post-natal day 10 mouse pups of both sexes with carotid ligation and 15 minutes of hypoxia. Consistent with a mild injury, minimal immediate neuronal death was seen and there was no volumetric evidence of injury by ex vivo MRI 2.5 weeks after injury. In both the hippocampus and neocortex, these mild injuries resulted in a significantly delayed and progressive neuronal loss in the second week after injury, measured by fluorophore quenching. Mild hypoxia-ischemia transiently suppressed cortical network activity followed by normal maturation. No post-injury seizures were seen. The participation in network activity of individual neurons destined to die was indistinguishable from those that survived for 4 days post-injury. In conclusion, our results showed that mild perinatal brain injury resulted in a prolonged increase of neuronal death. Neurons that died late were functioning normally for days after injury, suggesting a new pathophysiology of neuronal death. Critically, the neurons destined to die late demonstrated multiple biomarkers of viability long after mild injury, suggesting their later death may be modified with neuroprotective interventions., Significance Statement: Neonatal encephalopathy due to peripartum hypoxia-ischemia (HI) is a major cause of neonatal mortality and morbidity worldwide. Of these infants, most are categorized as having mild HI. Infants with mild HI have significant long-term disabilities. There are currently no evidence-based therapies, largely because the progression and pathophysiology of mild injury is poorly understood. We have identified, for the first time, that mild perinatal HI results in a delayed and prolonged increase in neuronal death. The cortical and hippocampal neurons that die over a week after injury participate normally in neural network activity and exhibit robust viability for many days after injury, indicating a novel pathophysiology of neuronal death. Clinically, these data suggest an extended therapeutic window for mild perinatal HI.
- Published
- 2024
- Full Text
- View/download PDF
3. Molecular Biomarkers of Neuronal Injury in Epilepsy Shared with Neurodegenerative Diseases.
- Author
-
Negi D, Granak S, Shorter S, O'Leary VB, Rektor I, and Ovsepian SV
- Subjects
- Child, Humans, tau Proteins, Amyloid beta-Peptides, Biomarkers, Neurodegenerative Diseases complications, Neurodegenerative Diseases diagnosis, Alzheimer Disease pathology, Epilepsy
- Abstract
In neurodegenerative diseases, changes in neuronal proteins in the cerebrospinal fluid and blood are viewed as potential biomarkers of the primary pathology in the central nervous system (CNS). Recent reports suggest, however, that level of neuronal proteins in fluids also alters in several types of epilepsy in various age groups, including children. With increasing evidence supporting clinical and sub-clinical seizures in Alzheimer's disease, Lewy body dementia, Parkinson's disease, and in other less common neurodegenerative conditions, these findings call into question the specificity of neuronal protein response to neurodegenerative process and urge analysis of the effects of concomitant epilepsy and other comorbidities. In this article, we revisit the evidence for alterations in neuronal proteins in the blood and cerebrospinal fluid associated with epilepsy with and without neurodegenerative diseases. We discuss shared and distinctive characteristics of changes in neuronal markers, review their neurobiological mechanisms, and consider the emerging opportunities and challenges for their future research and diagnostic use., (© 2023. Crown.)
- Published
- 2023
- Full Text
- View/download PDF
4. Developmental effects of constitutive mTORC1 hyperactivity and environmental enrichment on structural synaptic plasticity and behaviour in a rat model of autism spectrum disorder.
- Author
-
Granak S, Tuckova K, Kutna V, Vojtechova I, Bajkova L, Petrasek T, and Ovsepian SV
- Subjects
- Rats, Animals, Mechanistic Target of Rapamycin Complex 1 metabolism, Pyramidal Cells metabolism, Hippocampus metabolism, Neuronal Plasticity, Disease Models, Animal, Autism Spectrum Disorder genetics, Autism Spectrum Disorder metabolism
- Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition causing a range of social and communication impairments. Although the role of multiple genes and environmental factors has been reported, the effects of the interplay between genes and environment on the onset and progression of the disease remains elusive. We housed wild-type (Tsc2+/+) and tuberous sclerosis 2 deficient (Tsc2+/-) Eker rats (ASD model) in individually ventilated cages or enriched conditions and conducted a series of behavioural tests followed by the histochemical analysis of dendritic spines and plasticity in three age groups (days 45, 90 and 365). The elevated plus-maze test revealed a reduction of anxiety by enrichment, whereas the mobility of young and adult Eker rats in the open field was lower compared to the wild type. In the social interaction test, an enriched environment reduced social contact in the youngest group and increased anogenital exploration in 90- and 365-day-old rats. Self-grooming was increased by environmental enrichment in young and adult rats and decreased in aged Eker rats. Dendritic spine counts revealed an increased spine density in the cingulate gyrus in adult Ekers irrespective of housing conditions, whereas spine density in hippocampal pyramidal neurons was comparable across all genotypes and groups. Morphometric analysis of dendritic spines revealed age-related changes in spine morphology and density, which were responsive to animal genotype and environment. Taken together, our findings suggest that under TSC2 haploinsufficiency and mTORC1 hyperactivity, the expression of behavioural signs and neuroplasticity in Eker rats can be differentially influenced by the developmental stage and environment., (© 2022 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
5. Dendritic spine remodeling and plasticity under general anesthesia.
- Author
-
Granak S, Hoschl C, and Ovsepian SV
- Subjects
- Actin Cytoskeleton, Anesthesia, General adverse effects, Neuronal Plasticity, Anesthetics, General adverse effects, Dendritic Spines
- Abstract
Ever since its first use in surgery, general anesthesia has been regarded as a medical miracle enabling countless life-saving diagnostic and therapeutic interventions without pain sensation and traumatic memories. Despite several decades of research, there is a lack of understanding of how general anesthetics induce a reversible coma-like state. Emerging evidence suggests that even brief exposure to general anesthesia may have a lasting impact on mature and especially developing brains. Commonly used anesthetics have been shown to destabilize dendritic spines and induce an enhanced plasticity state, with effects on cognition, motor functions, mood, and social behavior. Herein, we review the effects of the most widely used general anesthetics on dendritic spine dynamics and discuss functional and molecular correlates with action mechanisms. We consider the impact of neurodevelopment, anatomical location of neurons, and their neurochemical profile on neuroplasticity induction, and review the putative signaling pathways. It emerges that in addition to possible adverse effects, the stimulation of synaptic remodeling with the formation of new connections by general anesthetics may present tremendous opportunities for translational research and neurorehabilitation., (© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.