195 results on '"Gottfried Kanbach"'
Search Results
2. Telescope Concepts in Gamma-Ray Astronomy
- Author
-
Thomas Siegert, Deirdre Horan, and Gottfried Kanbach
- Published
- 2022
3. Gamma-ray astrophysics: roots, growth, and success
- Author
-
Gottfried Kanbach
- Subjects
Physics ,0303 health sciences ,COSMIC cancer database ,Photon ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,Astronomy ,Cosmic ray ,01 natural sciences ,Physics::History of Physics ,Space Age ,03 medical and health sciences ,030301 anatomy & morphology ,Observatory ,0103 physical sciences ,Gamma ray astrophysics ,General Earth and Planetary Sciences ,General Agricultural and Biological Sciences ,010303 astronomy & astrophysics ,General Environmental Science - Abstract
This short review outlines the historic roots of high-energy astronomy in the early twentieth century with the discovery of radioactivity, cosmic ray research, and the development of detectors to measure high-energy photons. The beginning of the space age in the 1960s provided the means to observe cosmic gamma rays unhindered by the absorption and local background inside Earth’s atmosphere. We describe the results from pioneering missions in the 1970s up to the first ‘golden age’ of gamma-ray astronomy in the 1990s with the Compton Gamma-Ray Observatory (CGRO). The focus in this review will be on $$\gamma$$-ray astronomy in the pair creation energy band, above several 10’s of MeV.
- Published
- 2019
4. All-Sky-ASTROGAM: a MeV Companion for Multimessenger Astrophysics
- Author
-
Sandro Mereghetti, P. von Balmoos, A. Morselli, R. Walter, A. M. Bykov, G. Ambrosi, Vincent Tatischeff, Irfan Kuvvetli, Lorraine Hanlon, Valentina Fioretti, A. A. Zdziarski, D. Bastieri, M. Mallamaci, Gottfried Kanbach, M. Tavani, S. Brandt, I. A. Grenier, A. De Angelis, A. Argan, P. Laurent, R. Rando, J. Mc Enery, Andrea Bulgarelli, U. Oberlack, Elisa Bernardini, E. Prandini, R. M. Curado da Silva, Koji Nakazawa, M. Hernanz, Andreas Zoglauer, J. Rico, Mosè Mariotti, Mark Pearce, D. H. Hartmann, Mn Mazziotta, Xin Wu, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), All-Sky-ASTROGAM, Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Physics ,Scintillation ,Range (particle radiation) ,COSMIC cancer database ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,media_common.quotation_subject ,Astrophysics::High Energy Astrophysical Phenomena ,Compton scattering ,Gamma ray ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics ,01 natural sciences ,7. Clean energy ,Occultation ,Sky ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,media_common - Abstract
International audience; In the era of multi-messenger astronomy it is of paramount importance to have in space a gamma-ray monitor capable of detecting energetic transients in the energy range from 0.1 MeV to a few hundred MeV, with good imaging capabilities. The All-Sky-ASTROGAM mission proposal aims to place into an L2 orbit a gamma-ray instrument ($\sim$ 100 kg) dedicated to fast detection, localization, and gamma-ray spectroscopy of flaring and merging activity of compact objects in the Universe, with unprecedented sensitivity and polarimetric capability in the MeV range. The instrument is based on the ASTROGAM concept, which combines three detection systems of space-proven technology: a silicon tracker in which the cosmic gamma rays undergo Compton scattering or a pair conversion, a scintillation calorimeter to absorb and measure the energy of the secondary particles, and an anticoincidence system to veto the prompt reaction background induced by charged particles. The gamma-ray imager and the platform will be connected through a boom and will have almost no occultation, making possible a continuous monitoring of every single gamma-ray source in the sky during the entire mission lifetime.
- Published
- 2019
5. Instruments for Observations of Radioactivities
- Author
-
Gottfried Kanbach and Larry Nittler
- Published
- 2018
6. The e-ASTROGAM gamma-ray space observatory for the multimessenger astronomy of the 2030s
- Author
-
Koji Nakazawa, F. Longo, A. Brogna, Andrei M. Bykov, J. Peyré, J. M. Paredes, A. A. Zdziarski, M. Hernanz, D. de Martino, Paolo De Coppi, Irfan Kuvvetli, M. Roncadelli, I. Donnarumma, A. De Angelis, I. Grenier, B. Patricelli, Vincent Tatischeff, G. Piano, Marco Tavani, Elisa Bernardini, M. Pohl, S. Ciprini, Carl Budtz-Jørgensen, Marco Ajello, P. von Ballmoos, J. Kiener, D. J. Thompson, Philippe Laurent, A. Aboudan, Jürgen Knödlseder, P. Cumani, Miriam Lucio Martinez, Lorraine Hanlon, Stefan Funk, Michele Doro, Martino Marisaldi, J. E. Grove, R. Rando, Gabriele Ghisellini, R. M. Curado da Silva, A. A. Moiseev, V. Bonvicini, Fabrizio Tavecchio, Julie McEnery, Gottfried Kanbach, A. Argan, Mark D. Leising, Roland Diehl, O. Limousin, Andrea Bulgarelli, Manuela Mallamaci, M. Cardillo, M. Branchesi, Xin Wu, A. Morselli, Sandro Mereghetti, Mark Pearce, R. Turolla, G. Minervini, R. Walter, C. Hamadache, Dieter H. Hartmann, Valentina Fioretti, Piotr Orleanski, A. Vacchi, A. Ulyanov, G. Ambrosi, Karl Mannheim, Ferdinando Giordano, D. Bernard, N. M. Mazziotta, Riccardo Campana, Uwe Oberlack, Jordi Isern, M. Hayashida, Andreas Zoglauer, Claudio Labanti, den Herder, Jan-Willem A., Nikzad, Shouleh, Nakazawa, Kazuhiro, Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, e-ASTROGAM, FRA, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Jan-Willem A. den Herder, Shouleh Nikzad, Kazuhiro Nakazawa, Tatischeff, V., De Angelis, A., Tavani, M., Grenier, I., Oberlack, U., Hanlon, L., Walter, R., Argan, A., Von Ballmoos, P., Bulgarelli, A., Donnarumma, I., Hernanz, M., Kuvvetli, I., Mallamaci, M., Pearce, M., Zdziarski, A., Aboudan, A., Ajello, M., Ambrosi, G., Bernard, D., Bernardini, E., Bonvicini, V., Brogna, A., Branchesi, M., Budtz-Jorgensen, C., Bykov, A., Campana, R., Cardillo, M., Ciprini, S., Coppi, P., Cumani, P., Curado Da Silva, R. M., De Martino, D., Diehl, R., Doro, M., Fioretti, V., Funk, S., Ghisellini, G., Grove, J. E., Giordano, F., Hamadache, C., Hartmann, D. H., Hayashida, M., Isern, J., Kanbach, G., Kiener, J., Knodlseder, J., Labanti, C., Laurent, P., Leising, M., Limousin, O., Longo, F., Mannheim, K., Marisaldi, M., Martinez, M., Mazziotta, N. M., Mcenery, J. E., Mereghetti, S., Minervini, G., Moiseev, A., Morselli, A., Nakazawa, K., Orleanski, P., Paredes, J. M., Patricelli, B., Peyre, J., Piano, G., Pohl, M., Rando, R., Roncadelli, M., Tavecchio, F., Thompson, D. J., Turolla, R., Ulyanov, A., Vacchi, A., Wu, X., Zoglauer, A., Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)
- Subjects
Cherenkov Telescope Array ,High-energy astrophysical phenomena ,Compton and pair creation telescope ,Gamma-ray astronomy ,gamma-ray polarization ,high-energy astrophysical phenomena ,space mission ,time-domain astronomy ,energy resolution ,7. Clean energy ,01 natural sciences ,Space mission ,law.invention ,IceCube ,Einstein Telescope ,law ,Observatory ,LIGO ,010303 astronomy & astrophysics ,KM3NeT ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Applied Mathematics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Computer Science Applications1707 Computer Vision and Pattern Recognition ,Gamma-ray polarization ,Condensed Matter Physics ,photon: energy ,observatory ,Nuclear astrophysics ,Apace mission ,Astrophysics - High Energy Astrophysical Phenomena ,performance ,detector: technology ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,gamma ray: burst ,Telescope ,0103 physical sciences ,supernova ,Electronic ,calorimeter ,gamma ray: detector ,Optical and Magnetic Materials ,KAGRA ,Electrical and Electronic Engineering ,010306 general physics ,Time domain astronomy ,LISA ,Astronomy ,Institut für Physik und Astronomie ,Time-domain astronomy ,sensitivity ,messenger ,VIRGO ,13. Climate action ,Electronic, Optical and Magnetic Materials ,ddc:520 ,galaxy ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
e-ASTROGAM is a concept for a breakthrough observatory space mission carrying a gamma-ray telescope dedicated to the study of the non-thermal Universe in the photon energy range from 0.15 MeV to 3 GeV. The lower energy limit can be pushed down to energies as low as 30 keV for gamma-ray burst detection with the calorimeter. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with remarkable polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous and current generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will be a major player of the multiwavelength, multimessenger time-domain astronomy of the 2030s, and provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LISA, LIGO, Virgo, KAGRA, the Einstein Telescope and the Cosmic Explorer, IceCube-Gen2 and KM3NeT, SKA, ALMA, JWST, E-ELT, LSST, Athena, and the Cherenkov Telescope Array., Comment: 15 pages, 7 figures. Submitted to the proceedings of the conference SPIE Astronomical Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray. v2: corrections of authors' affiliations
- Published
- 2018
7. The HU Aqr planetary system hypothesis revisited
- Author
-
Grzegorz Nowak, Andrea Richichi, Puji Irawati, Agnieszka Slowikowska, Vadim Burwitz, Marcin P. Gawronski, Gottfried Kanbach, Dinko Dimitrov, Ilham Nasiroglu, Arne Rau, Michał Żejmo, Krzysztof Goździewski, D. Kubicki, and K. Krzeszowski
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,Retrograde motion ,FOS: Physical sciences ,Astronomy ,Astronomy and Astrophysics ,Astrophysics ,Planetary system ,Ephemeris ,Gravitation ,Orbit ,Space and Planetary Science ,Planet ,Jupiter mass ,Astrophysics - Earth and Planetary Astrophysics ,Eclipse - Abstract
We study the mid-egress eclipse timing data gathered for the cataclysmic binary HU Aquarii during the years 1993-2014. The (O-C) residuals were previously attributed to a single ~7 Jupiter mass companion in ~5 au orbit or to a stable 2-planet system with an unconstrained outermost orbit. We present 22 new observations gathered between June, 2011 and July, 2014 with four instruments around the world. They reveal a systematic deviation of ~60 - 120 seconds from the older ephemeris. We re-analyse the whole set of the timing data available. Our results provide an erratum to the previous HU Aqr planetary models, indicating that the hypothesis for a third and fourth body in this system is uncertain. The dynamical stability criterion and a particular geometry of orbits rule out coplanar 2-planet configurations. A putative HU Aqr planetary system may be more complex, e.g., highly non-coplanar. Indeed, we found examples of 3-planet configurations with the middle planet in a retrograde orbit, which are stable for at least 1Gyr, and consistent with the observations. The (O-C) may be also driven by oscillations of the gravitational quadrupole moment of the secondary, as predicted by the Lanza et al. modification of the Applegate mechanism. Further systematic, long-term monitoring of HU Aqr is required to interpret the (O-C) residuals., Comment: 18 pages, 16 figures, 4 tables, accepted to Monthly Notices of the Royal Astronomical Society (MNRAS)
- Published
- 2015
8. The e-ASTROGAM mission: Exploring the extreme Universe with gamma rays in the MeV â GeV range
- Author
-
Barbara Patricelli, V. Bonvicini, Riccardo Rando, Sandro Mereghetti, Andrea Vacchi, Kazuhiro Nakazawa, Claudio Labanti, Jordi Isern, M. Hayashida, Josep M. Paredes, J. Eric Grove, C. Hamadache, Andreas Zoglauer, Olivier Limousin, Julie McEnery, Andrei M. Bykov, G. Ambrosi, D. de Martino, Francesco Longo, Irfan Kuvvetli, Alexander Moiseev, Xin Wu, Fabrizio Tavecchio, I. Donnarumma, M. I. Martínez, Marco Tavani, J. Peyré, Elisa Bernardini, A. Argan, Roland Walter, J. Kiener, Piotr Orleanski, Mark Pearce, Ignasi Reichardt, A. Morselli, Andrzej A. Zdziarski, Martino Marisaldi, Vincent Tatischeff, Andrea Bulgarelli, Marica Branchesi, Uwe Oberlack, Rui Curado da Silva, Dieter H. Hartmann, Lorraine Hanlon, Philippe Laurent, Marco Ajello, D. Bernard, Valentina Fioretti, Martin Pohl, Alessio Aboudan, Gottfried Kanbach, Alessandro De Angelis, Gabriele Ghisellini, Stefan Funk, Peter von Ballmoos, Michele Doro, M. N. Mazziotta, Marco Roncadelli, Harald Ramarijaona, Roland Diehl, Margarita Hernanz, Alexei Ulyanov, G. Minervini, G. Piano, Riccardo Campana, Carl Budtz-Jørgensen, D. J. Thompson, M. Cardillo, Paolo De Coppi, Karl Mannheim, Roberto Turolla, Jürgen Knödlseder, Isabelle Grenier, A. Brogna, De Angelis, A., Tatischeff, V., Tavani, M., Oberlack, U., Grenier, I., Hanlon, L., Walter, R., Argan, A., von Ballmoos, P., Bulgarelli, A., Donnarumma, I., Hernanz, M., Kuvvetli, I., Pearce, M., Zdziarski, A., Aboudan, A., Ajello, M., Ambrosi, G., Bernard, D., Bernardini, E., Bonvicini, V., Brogna, A., Branchesi, M., Budtz-Jorgensen, C., Bykov, A., Campana, R., Cardillo, M., Coppi, P., De Martino, D., Diehl, R., Doro, M., Fioretti, V., Funk, S., Ghisellini, G., Grove, E., Hamadache, C., Hartmann, D. H., Hayashida, M., Isern, J., Kanbach, G., Kiener, J., Knödlseder, J., Labanti, C., Laurent, P., Limousin, O., Longo, F., Mannheim, K., Marisaldi, M., Martinez, M., Mazziotta, M. N., Mcenery, J., Mereghetti, S., Minervini, G., Moiseev, A., Morselli, A., Nakazawa, K., Orleanski, P., Paredes, J. M., Patricelli, B., Peyré, J., Piano, G., Pohl, M., Ramarijaona, H., Rando, R., Reichardt, I., Roncadelli, M., Silva, R., Tavecchio, F., Thompson, D. J., Turolla, R., Ulyanov, A., Vacchi, A., Wu, X., Zoglauer, A., and ITA
- Subjects
Counterparts of gravitational wave ,Multiwavelength Observations of the Universe ,01 natural sciences ,Early Universe ,Observatory ,Jets ,Nuclear Astrophysics ,Nuclear astrophysics ,Dark Matter ,Nuclear Experiment (nucl-ex) ,Nuclear Astrophysic ,Nuclear Experiment ,010303 astronomy & astrophysics ,media_common ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Counterparts of gravitational waves ,Gamma-Ray Burst ,Cosmic Rays ,Compton and Pair Creation Telescope ,Supernovae ,Astrophysics - Solar and Stellar Astrophysics ,High-Energy Astrophysics ,Active Galactic Nuclei ,Cosmic Antimatter ,Fermi ,Gamma-Ray Bursts ,High-Energy Gamma-Ray Astronomy ,Nucleosynthesis ,Outflows ,Astronomy and Astrophysics ,Space and Planetary Science ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,Active galactic nucleus ,media_common.quotation_subject ,Astrophysics::High Energy Astrophysical Phenomena ,Dark matter ,FOS: Physical sciences ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Cosmic Ray ,High-Energy Astrophysic ,0103 physical sciences ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Nucleosynthesi ,010308 nuclear & particles physics ,Institut für Physik und Astronomie ,Astronomy ,Outflow ,Astronomy and Astrophysic ,Universe ,Galaxy ,Jet ,Fermi Gamma-ray Space Telescope - Abstract
e-ASTROGAM (`enhanced ASTROGAM') is a breakthrough Observatory mission dedicated to the study of the non-thermal Universe in the photon energy range from 0.3 MeV to 3 GeV. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. In the largely unexplored MeV-GeV domain, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on Galactic ecosystems. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and the promise of eLISA. Keywords: High-energy gamma-ray astronomy, High-energy astrophysics, Nuclear Astrophysics, Compton and Pair creation telescope, Gamma-ray bursts, Active Galactic Nuclei, Jets, Outflows, Multiwavelength observations of the Universe, Counterparts of gravitational waves, Fermi, Dark Matter, Nucleosynthesis, Early Universe, Supernovae, Cosmic Rays, Cosmic antimatter., Comment: Exp Astron (2017)
- Published
- 2017
9. The First Ultraviolet Detection of the Large Magellanic Cloud Pulsar PSR B0540–69 and Its Multi-wavelength Properties
- Author
-
Christian Gouiffes, F. E. Marshall, Luca Zampieri, Gottfried Kanbach, Andrew Shearer, Giampiero Naletto, David A. Smith, Cesare Barbieri, L. Guillemot, A. De Luca, Roberto Mignani, B. Rudak, Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Centre National d’Études Spatiales [Paris] (CNES), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES)
- Subjects
010504 meteorology & atmospheric sciences ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Vela ,01 natural sciences ,Pulsar ,pulsars: general ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Space Telescope Imaging Spectrograph ,0105 earth and related environmental sciences ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Spectral index ,Nebula ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Crab Pulsar ,pulsars: individual (PSR B0540-69) ,Image (category theory) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Light curve ,pulsars: individual ,[SDU]Sciences of the Universe [physics] ,13. Climate action ,Space and Planetary Science ,(PSR B0540–69) ,Astrophysics - High Energy Astrophysical Phenomena ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
We observed the young ($\sim 1700$ yrs) pulsar PSR B0540-69 in the near-ultraviolet (UV) for the first time with the Space Telescope Imaging Spectrograph (STIS) aboard the {\em Hubble Space Telescope}. Imaging observations with the NUV- and FUV-MAMA detectors in TIME-TAG mode allowed us to clearly detect the pulsar in two bands around 2350\AA\ and 1590\AA, with magnitudes $m_{\rm NUV} =21.449 \pm 0.019$ and $m_{\rm FUV} =21.832 \pm 0.103$. We also detected the pulsar-wind nebula (PWN) in the NUV-MAMA image, with a morphology similar to that observed in the optical and near-infrared (IR). The extinction-corrected NUV and FUV pulsar fluxes are compatible with a very steep power law spectrum $F_{\nu} \propto \nu^{-\alpha}$ with spectral index $\alpha_{\rm UV} \sim 3$, non compatible with a Rayleigh Jeans spectrum, indicating a non-thermal origin of the emission. The comparison with the optical/near-IR power-law spectrum (spectral index $\alpha_{\rm O,nIR} \sim 0.7$), indicates an abrupt turn-off at wavelengths below 2500 \AA, not observed in other pulsars. We detected pulsations in both the NUV and FUV data at the 50 ms pulsar period. In both cases, the pulse profile features two peaks closely spaced in phase, as observed in the optical and X-ray light curves. The NUV/FUV peaks are also aligned in phase with those observed in the radio (1.4 GHz), optical, X, and $\gamma$-ray light curves, like in the Crab pulsar, implying a similar beaming geometry across all wavelengths. PSR B0540-69 is now the fifth isolated pulsar, together with Crab, Vela, PSR\, B0656+14, and the radio-quiet Geminga, detected in the optical, near-UV, near-IR, X-rays and $\gamma$-rays, and seen to pulsate in at least four of these energy bands., Comment: 33 pages, 6 figures, accepted for publication on ApJ
- Published
- 2019
10. On the HU Aquarii planetary system hypothesis
- Author
-
Nader Haghighipour, Tobias C. Hinse, Ilham Nasiroglu, R. Schwarz, Axel Schwope, Mariusz Słonina, Krzysztof Gozdziewski, Arne Rau, B. Gauza, Vadim Burwitz, Aga Słowikowska, Gottfried Kanbach, Andrzej J. Maciejewski, and Klaus Beuermann
- Subjects
Physics ,010308 nuclear & particles physics ,media_common.quotation_subject ,Astronomy and Astrophysics ,Astrophysics ,Planetary system ,Light curve ,Ephemeris ,01 natural sciences ,Jovian ,13. Climate action ,Space and Planetary Science ,Planet ,0103 physical sciences ,Eccentricity (behavior) ,Circumbinary planet ,010303 astronomy & astrophysics ,media_common ,Eclipse - Abstract
In this work, we investigate the eclipse timing of the polar binary HU Aquarii that has been observed for almost two decades. Recently, Qian et al. attributed large (O-C) deviations between the eclipse ephemeris and observations to a compact system of two massive jovian companions. We improve the Keplerian, kinematic model of the Light Travel Time (LTT) effect and re-analyse the whole currently available data set. We add almost 60 new, yet unpublished, mostly precision light curves obtained using the time high-resolution photo-polarimeter OPTIMA, as well as photometric observations performed at the MONET/N, PIRATE and TCS telescopes. We determine new mid--egress times with a mean uncertainty at the level of 1 second or better. We claim that because the observations that currently exist in the literature are non-homogeneous with respect to spectral windows (ultraviolet, X-ray, visual, polarimetric mode) and the reported mid--egress measurements errors, they may introduce systematics that affect orbital fits. Indeed, we find that the published data, when taken literally, cannot be explained by any unique solution. Many qualitatively different and best-fit 2-planet configurations, including self-consistent, Newtonian N-body solutions may be able to explain the data. However, using high resolution, precision OPTIMA light curves, we find that the (O-C) deviations are best explained by the presence of a single circumbinary companion orbiting at a distance of ~4.5 AU with a small eccentricity and having ~7 Jupiter-masses. This object could be the next circumbinary planet detected from the ground, similar to the announced companions around close binaries HW Vir, NN Ser, UZ For, DP Leo or SZ Her, and planets of this type around Kepler-16, Kepler-34 and Kepler-35.
- Published
- 2012
11. Very fast photometric and X-ray observations of the intermediate polar V2069 Cygni (RX J2123.7+4217)
- Author
-
Ilham Nasiroglu, Frank Haberl, Agnieszka Slowikowska, and Gottfried Kanbach
- Subjects
Physics ,Photon ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,White dwarf ,Astronomy and Astrophysics ,Astrophysics ,Light curve ,01 natural sciences ,Spectral line ,law.invention ,Telescope ,Intermediate polar ,Space and Planetary Science ,law ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Emission spectrum ,010303 astronomy & astrophysics ,Equivalent width - Abstract
We present fast timing photometric observations of the intermediate polar V2069 Cygni (RX J2123.7+4217) using the Optical Timing Analyzer (OPTIMA) at the 1.3 m telescope of Skinakas Observatory. The optical (450-950 nm) light curve of V2069 Cygni was measured with sub-second resolution for the first time during July 2009 and revealed a double-peaked pulsation with a period of 743.38 +0.25. A similar double-peaked modulation was found in the simultaneous Swift satellite observations. We suggest that this period represents the spin of the white dwarf accretor. Moreover, we present the results from a detailed analysis of the XMM-Newton observation that also shows a double-peaked modulation, however shifted in phase, with 742.35 +0.23 s period. The X-ray spectra obtained from the XMM-Newton EPIC (European Photon Imaging Camera) instruments were modelled by a plasma emission and a soft black body component with a partial covering photo-electric absorption model with covering fraction of 0.65. An additional Gaussian emission line at 6.385 keV with an equivalent width of 243 eV is required to account for fluorescent emission from neutral iron. The iron fluorescence (~6.4 keV) and FeXXVI lines (~6.95 keV) are clearly resolved in the EPIC spectra. In the Porb-Pspin diagram of IPs, V2069 Cyg shows a low spin to orbit ratio of ~0.0276 in comparison with ~0.1 for other intermediate polars.
- Published
- 2012
12. Nuclear astrophysics capabilities of the GRIPS telescope
- Author
-
C. B. Wunderer, Steven E. Boggs, Andreas Zoglauer, Robert Andritschke, Gottfried Kanbach, Roland Diehl, Dieter H. Hartmann, and Jochen Greiner
- Subjects
Physics ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Gamma ray ,Polarimetry ,Compton scattering ,Astronomy ,Astronomy and Astrophysics ,Astrophysics ,Mission time ,law.invention ,Telescope ,Spitzer Space Telescope ,Space and Planetary Science ,law ,Nuclear astrophysics - Abstract
GRIPS is an envisioned space telescope for Gamma-Ray burst Investigation via Polarimetry and Spectroscopy. It will be capable of imaging gamma rays in the energy range from roughly 200 keV up to at least 50 MeV via Compton scattering and pair creation. GRIPS will also provide unprecedented sensitivities for nuclear-line science. With a field-of-view of roughly 50° HWHM, energy resolutions of ∼5% FWHM at 511 keV and ∼2% at 1809 keV, angular resolutions of 3.3° at 511 keV and 1.4° at 1809 keV, and effective areas after background cuts of ∼450 cm 2 at 511 keV and ∼200 cm 2 at 1809 keV, GRIPS will achieve all-sky narrow-line point-source sensitivities of 9 × 10 −6 ph/cm 2 /s for 511 keV and 4 × 10 −7 ph/cm 2 /s at 1809 keV after five years mission time.
- Published
- 2008
13. TheSwiftBAT X‐Ray Survey. III. X‐Ray Spectra and Statistical Properties
- Author
-
C. B. Markwardt, A. Rau, Andrew W. Strong, Mara Salvato, Marco Ajello, J. Tueller, S. D. Barthelmy, N. Gehrels, Gottfried Kanbach, and Jochen Greiner
- Subjects
Physics ,Photon ,media_common.quotation_subject ,X-ray ,Sigma ,Flux ,Astronomy and Astrophysics ,Astrophysics ,Galaxy ,Spectral line ,Space and Planetary Science ,Sky ,Blazar ,media_common - Abstract
In this concluding part of the series of three papers dedicated to the Swift/BAT hard X-ray survey (BXS), we focus on the X-ray spectral analysis and statistical properties of the source sample. Using a dedicated method to extract time-averaged spectra of BAT sources we show that Galactic sources have, generally, softer spectra than extragalactic objects and that Seyfert 2 galaxies are harder than Seyfert 1s. The averaged spectrum of all Seyfert galaxies is consistent with a power-law with photon index of 2.00 (+/-0.07). The cumulative flux-number relation for the extragalactic sources in the 14-170 keV band is best described by a power-law with a slope alpha=1.55 (+/-0.20) and a normalization of 9.6$\pm1.9 \times 10^{-3}$ AGN deg$^{-2}$ (or 396(+/-80) AGN all-sky) above a flux level of 2$\times 10^{-11}$erg cm$^{-2}$ s$^{-1}$ (~0.85 mCrab). The integration of the cumulative flux per unit area indicates that BAT resolves 1-2% of the X-ray background emission in the 14-170 keV band. A sub-sample of 24 extragalactic sources above the 4.5 sigma detection limit is used to study the statistical properties of AGN. This sample comprises local Seyfert galaxies (z=0.026, median value) and ~10% blazars. We find that 55% of the Seyfert galaxies are absorbed by column densities of Log(N_H)>22, but that none is a bona fide Compton-thick. This study shows the capabilities of BAT to probe the hard X-ray sky to the mCrab level.
- Published
- 2008
14. VLT polarimetry observations of the middle-aged pulsar PSR B0656+14
- Author
-
Vincenzo Testa, Agnieszka Slowikowska, P. Moran, Roberto Mignani, Gottfried Kanbach, B. Rudak, K. Krzeszowki, Andrew Shearer, ~, ITA, GBR, and POL
- Subjects
Physics ,PSR-B0656+14 ,Rotation ,Astrophysics::High Energy Astrophysical Phenomena ,Crab nebula ,Astrophysics::Instrumentation and Methods for Astrophysics ,Library science ,Astronomy and Astrophysics ,Optical polarization ,Astrophysics ,PSR B0656+14 ,Pulsar ,Velocity vextors ,Space and Planetary Science ,Research council ,Polarization ,Individual pulsars ,European commission ,Radio emission ,B0540-69 ,Pulsars ,Alignment - Abstract
Context. Optical polarisation measurements are key tests for different models of the pulsar magnetosphere. Furthermore, comparing the relative orientation of the phase-averaged linear polarisation direction and the pulsar proper motion vector may unveil a peculiar alignment, clearly seen in the Crab pulsar.Aims. Our goal is to obtain the first measurement of the phase-averaged optical linear polarisation of the fifth brightest optical pulsar, PSR B0656+14, which also has a precisely measured proper motion, and to verify a possible alignment between the polarisation direction and the proper motion vector.Methods. We carried out observations with the Very Large Telescope (VLT) to measure the phase-averaged optical polarisation degree (PD) and position angle (PA) of PSR B0656+14.Results. We measured a PD of 11.9% +/- 5.5% and a PA of 125.8 degrees +/- 13.2 degrees, measured east of north. Albeit of marginal significance, this is the first measurement of the phase-averaged optical PD for this pulsar. Moreover, we found that the PA of the phase-averaged polarisation vector is close to that of the pulsar proper motion (93.12 degrees +/- 0.38 degrees).Conclusions. Deeper observations are needed to confirm our polarisation measurement of PSR B0656+14, whereas polarisation measurements for more pulsars will better assess possible correlations of the polarisation degree with the pulsar parameters. European Commission Seventh Framework Programme (FP7/2007-2013) grant agreement No. 267251, Irish Research Council (IRC), National Science Centre grant Dec-2011/02/A/ST9/00256 and the Polish National Science Centre grant Dec-2011/03/D/ST9/00656 peer-reviewed
- Published
- 2015
15. The MEGA Project for Medium Energy Gamma-ray Astronomy
- Author
-
Ulisse Bravar, Andreas Zoglauer, Eric A. Wulf, Stanley D. Hunter, J. P. Cravens, J. G. Stacy, W. S. Paciesas, Mark L. McConnell, Peter F. Bloser, G. Di Cocco, James M. Ryan, Marco Ajello, Michael Cherry, Robert Andritschke, Gottfried Kanbach, R. M. Kippen, Richard Miller, T. G. Guzik, J. P. Wefel, Victor Reglero, John R. Macri, Bernard F. Phlips, Allen D. Zych, Tom Vestrand, and Dieter H. Hartmann
- Subjects
Physics ,COSMIC cancer database ,Astrophysics::High Energy Astrophysical Phenomena ,Compton telescope ,media_common.quotation_subject ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,Astronomy ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Gamma-ray astronomy ,Astrophysics ,law.invention ,Telescope ,Supernova ,Space and Planetary Science ,Observatory ,Sky ,law ,Astrophysics::Galaxy Astrophysics ,media_common - Abstract
The Medium Energy Gamma-ray Astronomy (MEGA) telescope concept will soon be proposed as a MIDEX mission. This mission would enable a sensitive all-sky survey of the medium-energy gamma-ray sky (0.4–50 MeV) and bridge the huge sensitivity gap between the COMPTEL and OSSE experiments on the Compton Gamma Ray Observatory and the visionary Advanced Compton Telescope (ACT) mission. The scientific goals include compiling a much larger catalog of sources in this energy range, performing far deeper searches for supernovae, better measuring the galactic continuum and line emissions, and identifying the components of the cosmic diffuse gamma-ray emission. MEGA records and images gamma rays by completely tracking Compton and pair creation events in a stack of double-sided Si strip detectors surrounded by a pixellated CsI calorimeter. A prototype instrument has been developed and calibrated in the laboratory and at a gamma-ray beam facility. We present calibration results from the prototype and describe the proposed satellite mission.
- Published
- 2006
16. A Search for the X‐Ray Counterpart of the Unidentified γ‐Ray Source 3EG J2020+4017 (2CG078+2)
- Author
-
Allyn F. Tennant, Ronald F. Elsner, David L. Kaplan, Alberto Carramiñana, Douglas A. Swartz, L. Carrasco, Stephen L. O'Dell, Gottfried Kanbach, Martin C. Weisskopf, and Werner Becker
- Subjects
Physics ,Active galactic nucleus ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,Gamma ray ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Optical spectra ,Stars ,Pulsar ,Space and Planetary Science ,Sky ,Observatory ,Supernova remnant ,Astrophysics::Galaxy Astrophysics ,media_common - Abstract
We report observations with the Chandra X-ray Observatory of a field in the gamma$-Cygni supernova remnant (SNR78.2+2.1) centered on the cataloged location of the unidentified, bright gamma-ray source 3EG J2020+4017. In this search for an X-ray counterpart to the gamma-ray source, we detected 30 X-ray sources. Of these, we found 17 strong-candidate counterparts in optical (visible through near-infrared) cataloged and an additional 3 through our optical observations. Based upon colors and (for several objects) optical spectra, nearly all the optically identified objects appear to be reddened main-sequence stars. None of the X-ray sources with an optical counterpart is a plausible X-ray counterpart to 3EG J2020+4017 --if that gamma-ray source is a spin-powered pulsar. Many of the 10 X-ray sources lacking optical counterparts are likely (extragalactic) active galactic nuclei, based upon the sky density of such sources. Although one of the 10 optically unidentified X-ray sources could be the gamma-ray source, there is no auxiliary evidence supporting such an identification.
- Published
- 2006
17. The MEGA project: Science goals and hardware development
- Author
-
Mark L. McConnell, Andreas Zoglauer, Robert Andritschke, Gottfried Kanbach, John R. Macri, Peter F. Bloser, and James M. Ryan
- Subjects
Physics ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,Astronomy ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Gamma-ray astronomy ,law.invention ,Telescope ,Interstellar medium ,Supernova ,Pulsar ,Space and Planetary Science ,law ,Observatory ,Gamma-ray burst ,Astrophysics::Galaxy Astrophysics - Abstract
The Medium Energy Gamma-ray Astronomy (MEGA) telescope concept will soon be proposed as a MIDEX mission. This mission would enable a sensitive all-sky survey of the medium-energy gamma-ray sky (0.4–50 MeV) and bridge the huge sensitivity gap left after the demise of the COMPTEL and OSSE experiments on the Compton Gamma-Ray Observatory. The scientific goals include compiling a much larger catalog of sources in this energy range, performing far deeper searches for long-lived nuclear lines from supernovae, novae, and supernova remnants, studying prompt decay lines from solar flares and the interstellar medium, better measuring the diffuse galactic continuum and line emissions, identifying the components of the cosmic diffuse gamma-ray emission, searching for nuclear resonance absorption features in bright continuum spectra, and studying the medium-energy properties of black holes, pulsars, and gamma-ray bursts. MEGA detects and images gamma rays by completely tracking Compton and pair creation interactions in a stack of double-sided silicon strip track detectors surrounded by a pixellated CsI calorimeter. A prototype instrument has been developed and calibrated in the laboratory and at a gamma-ray beam facility. We present calibration results and describe future plans for the prototype, and describe the proposed satellite mission.
- Published
- 2006
18. Expected line sensitivity of the MEGA telescope
- Author
-
Andreas Zoglauer, Peter F. Bloser, Robert Andritschke, and Gottfried Kanbach
- Subjects
Physics ,Calorimeter (particle physics) ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,Astronomy ,Astronomy and Astrophysics ,Mega ,law.invention ,Telescope ,Space and Planetary Science ,law ,Orbit (dynamics) ,Satellite ,Sensitivity (control systems) - Abstract
A new telescope for Medium Energy Gamma-Ray Astronomy, MEGA, is being developed for the energy band 0.4–50 MeV as a successor to COMPTEL and EGRET. MEGA records gamma rays by detecting and tracking Compton as well as pair creation events in a stack of double-sided Si-strip detectors and stopping them in a surrounding pixelated CsI calorimeter. Its goal is to improve sensitivity by at least an order of magnitude over that of COMPTEL. The extensive simulation tools compiled for the ACT Vision Mission Concept Study are applied to estimate the performance of a potential MEGA space mission. The tools allow the detailed simulation of the different background components expected for the satellite’s desired low-earth orbit. We present the expected narrow-line sensitivities of a MIDEX-sized telescope and show that a sensitivity 10 times better than that of COMPTEL is achievable.
- Published
- 2006
19. The Compton and pair creation telescope MEGA
- Author
-
Peter F. Bloser, Florian Schopper, Robert Andritschke, Gottfried Kanbach, and Andreas Zoglauer
- Subjects
Physics ,Astrophysics::High Energy Astrophysical Phenomena ,Compton telescope ,Astrophysics::Instrumentation and Methods for Astrophysics ,Polarimetry ,Astronomy ,Astronomy and Astrophysics ,Particle accelerator ,Astrophysics ,Gamma-ray astronomy ,New Technology Telescope ,Mega ,law.invention ,Telescope ,Space and Planetary Science ,law ,Nucleosynthesis - Abstract
MEGA, short for Medium Energy Gamma-ray Astronomy, is the development of a new technology telescope in the energy band 0.4–50 MeV. The wide energy range of MEGA, which spans nuclear γ-ray lines and energetic continuum spectra, the large field of view, and the capacity for polarimetry enables unique investigations into cosmic nucleosynthesis, particle accelerators around compact objects, and explosive high-energy events. We describe the development and tests of a prototype detector. Results from laboratory tests using radioactive sources and from a beam test calibration are presented and an outlook of a potential space mission is sketched.
- Published
- 2006
20. A Multiwavelength Search for a Counterpart of the Brightest Unidentified Gamma‐Ray Source 3EG J2020+4017 (2CG 078+2)
- Author
-
Olaf Reimer, Allyn F. Tennant, Duncan R. Lorimer, Stephen L. O'Dell, Martin C. Weisskopf, Fernando Camilo, Ronald F. Elsner, Gottfried Kanbach, Zaven Arzoumanian, Douglas A. Swartz, and Werner Becker
- Subjects
Physics ,Line-of-sight ,Pulsar ,Space and Planetary Science ,Observatory ,Infrared ,ROSAT ,Gamma ray ,Green Bank Telescope ,Flux ,Astronomy and Astrophysics ,Astrophysics - Abstract
In search of the counterpart to the brightest unidentified gamma-ray source 3EG J2020+4017 we report on new X-ray and radio observations of the gamma-Cygni field with the Chandra X-ray Observatory and with the Green Bank Telescope. We also report on reanalysis of archival ROSAT data. With Chandra it became possible for the first time to measure the position of the putative gamma-ray counterpart RX J2020.2+4026 with sub-arcsec accuracy and to deduce its X-ray spectral characteristics. These observations demonstrate that RX J2020.2+4026 is associated with a K field star and therefore is unlikely to be the counterpart of the bright gamma-ray source 2CG078+2 in the SNR G78.2+2.1 as had been previously suggested. The Chandra observation detected 37 additional X-ray sources which were correlated with catalogs of optical and infrared data. Subsequent GBT radio observations covered the complete 99% EGRET likelihood contour of 3EG J2020+4017 with a sensitivity limit of L_820 ~ 0.1 mJy kpc^2 which is lower than most of the recent deep radio search limits. If there is a pulsar operating in 3EG J2020+4017 this sensitivity limit suggests that the pulsar either does not produce significant amounts of radio emission or that its geometry is such that the radio beam does not intersect with the line of sight. Finally, reanalysis of archival ROSAT data leads to a flux upper limit of f_x = 160 (d/1.5 kpc)^-1 ms, P_dot >= 5 x 10^-13 (d/1.5 kpc)^-1 s s^-1 and B_perp >= 9 x 10^12 (d/1.5 kpc)^-1 G.
- Published
- 2004
21. The calibration setup of the MEGA prototype at the high intensity γ-ray source
- Author
-
V. N. Litvinenko, M. Ahmed, John R. Macri, Stanley D. Hunter, Richard Miller, F. Schrey, A. Donchev, Andreas Zoglauer, Peter F. Bloser, Robert Andritschke, and Gottfried Kanbach
- Subjects
Physics ,business.industry ,Compton telescope ,High intensity ,Astronomy ,Astronomy and Astrophysics ,Mega ,Polarization (waves) ,law.invention ,Telescope ,Optics ,Space and Planetary Science ,law ,business - Abstract
We describe the calibration measurements of the MEGA prototype, a tracking Compton and pair creation telescope. The measurements were performed at the high intensity gamma-ray source (HIγS) facility from April 21 to May 06, 2003. The main goal of this calibration was directed at higher energies, above those available from radioactive lab sources, and at polarization. A total of 15.5×10 6 triggered events at 10 energies in the range of 0.7–49 MeV and at six angles of incidence (0°–180°) were recorded.
- Published
- 2004
22. Multiwavelength observations of eclipsing polars
- Author
-
J. P. Osborne, Peter J. Wheatley, S. B. Potter, V. S. Dhillon, A. Staude, Valeri Hambaryan, F. Schrey, Gottfried Kanbach, Tom Marsh, A. D. Schwope, R. Schwarz, and Helmut Steinle
- Subjects
Physics ,Variable size ,ROSAT ,Astrophysics ,Accretion (astrophysics) - Abstract
Multiwavelength observations of polars are essential for developing the big picture of these systems, particularly to gain understanding of the relevant accretion-induced heating and cooling processes. Eclipsing polars are prime targets for such studies since different radiation processes can be disentangled by observations with high-time resolution. We present a preliminary combined analysis of space-based observations (XMM-Newton, ROSAT, HST) with ground-based high-speed photometry (MCCP, OPTIMA, ULTRACAM) of DP Leo, HU Aqr and UZ For. We determine the location and extent of different emission components and find secular and short-term changes in the accretion geometries. We find displaced optical and X-ray emission regions in DP Leo and HU Aqr as well as mini-bursts and accretion arcs of variable size in HU Aqr. We report marked changes in the X-ray eclipse length of UZ For between high and low states.
- Published
- 2004
23. The Large Observatory For x-ray Timing
- Author
-
Antonios Manousakis, S. Boutloukos, F. Zwart, Jose M. Torrejon, C. Pittori, Alessandro Drago, Dieter H. Hartmann, Feryal Özel, T. J. L. Courvoisier, Tim Johannsen, Jordi José, M. Michalska, Christian Schmid, I. Rashevskaya, Gottfried Kanbach, V. Petracek, L. Bradley, Allan Hornstrup, M. H. Erkut, Sergio Campana, Rudy Wijnands, Andrew Cumming, Nils Andersson, Tomaso Belloni, M. C. Miller, Roman Wawrzaszek, Stefano Bianchi, Enrique García-Berro, Sandro Mereghetti, C. Guidorzi, C. Corral Van Damme, Søren Brandt, Francesco Tombesi, Felix Ryde, Didier Barret, Simon Vaughan, Marco Feroci, T. Di Salvo, C. van Baren, Angelo Antonelli, Marc Ribó, J. L. Atteia, P. Soleri, Alessio Trois, Silvia Zane, G. Mouret, Ersin Gogus, Emanuele Perinati, J. Coker, Piero Malcovati, V. Mangano, F. Jetter, P. Uter, P. Romano, M. Nowak, Roberto Turolla, Laura Tolos, Antonino D'Ai, Laura Alvarez, C. Amoros, Simone Scaringi, A. Possenti, David M. Smith, M. Falanga, A. Goldwurm, René Hudec, Ignacio Negueruela, M. van der Klis, Francesco Longo, José A. Pons, I. M. McHardy, R. Rohlfs, P. Cais, Luigi Stella, S. Di Cosimo, Antoine Rousseau, M. Ayre, M. Gschwender, D. Klochkov, Niels Lund, Chryssa Kouveliotou, P. Azzarello, F. Château, Michael Gabler, S. Vercellone, Martin Durant, I. Donnarumma, Giorgio Matt, Mauro Orlandini, P. Kaaret, Patrick Smith, P. T. O'Brien, A. Argan, M. Orienti, Marco Grassi, Claudio Labanti, Edward F. Brown, Christopher S. Reynolds, Gloria Sala, Y. Evangelista, Gabriel Török, José Braga, Riccardo Campana, Alan Smith, C. Gouiffes, Nevin N. Weinberg, Leonardo Gualtieri, Yannick Favre, P.G. Jonker, Gabriele Giovannini, D. de Martino, Irfan Kuvvetli, S. Motta, Teresa Mineo, Paul J. Groot, Pablo Reig, Martino Marisaldi, Andrea Sanna, Lorenzo Amati, G. L. Israel, D. Macera, K. S. Wood, Pablo Cerdá-Durán, F. Fuschino, Suvi Gezari, Mariano Mendez, Slawomir Suchy, Damien Rambaud, Nanda Rea, R. Artigue, J.-Y. Seyler, S. N. Shore, Frederick K. Lamb, Jörn Wilms, Mark G. Alford, Margarita Hernanz, Thomas M. Tauris, Luca Izzo, Tobias Boenke, J. J. M. in 't Zand, J. Mulačová, P. Binko, Daniel Maier, Jan Schee, Bruce Gendre, Enrico Bozzo, Paul S. Ray, Giuseppe Bertuccio, Simone Migliari, Ignazio Bombaci, Vladimir Karas, Nikolaos Stergioulas, P. P. Laubert, D. Karelin, A. C. Fabian, Giovanni Miniutti, Dacheng Lin, L. Guy, Martine Mouchet, Colleen A. Wilson-Hodge, Valeria Ferrari, Kai Hebeler, Mark H. Finger, Shigeto Watanabe, Pawel Haensel, H. Jacobs, Adrian Martindale, A. A. Zdziarski, Andrea Santangelo, Giuseppe Baldazzi, Piergiorgio Casella, Fabio Muleri, M. Hailey, Antonio Bianchini, Giuseppe Lodato, E. Del Monte, M. Rapisarda, Zdeněk Stuchlík, Alain Cros, V. Sochora, Laurens Keek, Jorge Casares, Andrew Melatos, Pere Blay, E. Rossi, A. P. Spencer, G. Stratta, Conrado Albertus, J. M. Paredes, M. Ahangarianabhari, Anna L. Watts, M. Del Santo, I. Kreykenbohm, Alessandro Patruno, G. A. Caliandro, C. Feldman, M. Pohl, Fabrizio Tamburini, G. Zampa, Marina Orio, Flemming Hansen, P. Ramon, Ruben Salvaterra, David H. Lumb, Edward M. Cackett, Andrew Shearer, Sharon M. Morsink, L. Pacciani, J.-M. Bonnet Bidaud, A. De Luca, Jérôme Chenevez, Sebastian Diebold, N. Zampa, Carole A. Haswell, Luciano Burderi, E. Cavazzuti, Adam Ingram, Dhiren Kataria, Berend Winter, A. Vacchi, W. Hermsen, P. Giommi, Dong Lai, N. A. Webb, P. Bodin, Dom Walton, Solen Balman, Benjamin Stappers, M. Burgay, Luca Zampieri, Carl Budtz-Jørgensen, Ralph A. M. J. Wijers, Giancarlo Cusumano, J. L. Galvez Sanchez, Raffaella Schneider, Luciano Rezzolla, Alexander Heger, S. Korpela, Dimitrios Emmanoulopoulos, Biswajit Paul, Diego Götz, B. Artigues, Paolo Soffitta, M. H. Finger, J. W. den Herder, Paolo Esposito, Kazushi Iwasawa, Poul Erik Holmdahl Olsen, J. Neilsen, Marco Barbera, Deepto Chakrabarty, R. A. Osten, M. Reina Aranda, A. J. Castro-Tirado, Andrea Tramacere, D. Haas, Johannes Dercksen, John A. Tomsick, A. V. Penacchioni, V. D'Elia, Alfonso Collura, Altan Baykal, P. Le Provost, S. Turriziani, Kostas D. Kokkotas, Duncan K. Galloway, Ron Remillard, Juhani Huovelin, Somak Bhattacharyya, Pavel Bakala, Phil Uttley, Richard E. Cole, Mahesh Prakash, L. Kuiper, T. Munoz-Darias, Diego F. Torres, S. Mahmoodifar, G. Ramsay, Andrew Norton, T. Kennedy, Achim Schwenk, L. Zdunik, A. B. Giles, Jerome Rodriguez, C. Motch, Ilya Mandel, Marcello Giroletti, Dimitrios Psaltis, J. Sandberg, Fiamma Capitanio, Remon Cornelisse, M. R. Gilfanov, Peggy Varniere, Franck Cadoux, Peter J. Wheatley, M. de Pasquale, Juri Poutanen, S. Maestre, A. Pellizzoni, Axel Schwope, Diego Altamirano, Piotr Orleanski, V. Vrba, Agata Różańska, Kateřina Goluchová, P. Rodríguez Gil, Niccolò Bucciantini, Stéphane Schanne, Carlo Ferrigno, Thomas J. Maccarone, H. Wende, Tod E. Strohmayer, Tadayuki Takahashi, Francois Lebrun, E. Kuulkers, Jeroen Homan, Maurizio Paolillo, M. A. Perez, J. P. Osborne, A. Alpar, Sanjay Reddy, G.W. Fraser, V. Sulemainov, D. Linder, L. Sabau-Graziati, A. Rachevski, Bing Zhang, Alessandro Papitto, C. Tenzer, Alex Markowitz, J. Portell, Roberto Mignani, Fabrizio Bocchino, Arnau Rios, R. de la Rie, M. Wille, A. de Rosa, Alessandro Riggio, M. Frericks, Andrew W. Steiner, Michal Bursa, Federico Bernardini, Jon M. Miller, W. Kluzniak, INAF - Osservatorio Astronomico di Roma ( OAR ), Istituto Nazionale di Astrofisica ( INAF ), Laboratoire d'Astrophysique de l'Observatoire Midi-Pyrénées ( LATT ), Université Paul Sabatier - Toulouse 3 ( UPS ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire Midi-Pyrénées ( OMP ) -Centre National de la Recherche Scientifique ( CNRS ), Variable Energy Cyclotron Centre, Institut Pasteur de Montevideo, Réseau International des Instituts Pasteur ( RIIP ) -Institut Pasteur de Montevideo, Mullard Space Science Laboratory ( MSSL ), University College of London [London] ( UCL ), FORMATION STELLAIRE 2014, Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux ( L3AB ), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Observatoire aquitain des sciences de l'univers ( OASU ), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Laboratoire d'Astrophysique de Bordeaux [Pessac] ( LAB ), Université de Bordeaux ( UB ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Bordeaux ( UB ), Instituto de Astrofísica de Andalucía ( IAA ), Consejo Superior de Investigaciones Científicas [Spain] ( CSIC ), Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay, Interactions et dynamique des environnements de surface ( IDES ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ), Licryl Laboratory ( CNR-IPCF UOS Cosenza ), University of Calabria, Laboratori Nazionali di Frascati ( LNF ), National Institute for Nuclear Physics ( INFN ), PCAS, Istituto di Astrofisica Spaziale e Fisica Cosmica - Milano ( IASF-MI ), AstroParticule et Cosmologie ( APC - UMR 7164 ), Centre National de la Recherche Scientifique ( CNRS ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Astrophysique Interactions Multi-échelles ( AIM - UMR 7158 - UMR E 9005 ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Paris Diderot - Paris 7 ( UPD7 ), Canada's National Laboratory for Particle and Nuclear Physics ( TRIUMF ), NRC, Dipartimento di Astronomia, Universita degli Studi di Bologna, Università di Bologna [Bologna] ( UNIBO ), Institut de recherches sur la catalyse et l'environnement de Lyon ( IRCELYON ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Univers et Théories ( LUTH ), Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Spectrochimie Infrarouge et Raman - UMR 8516 ( LASIR ), Université de Lille-Centre National de la Recherche Scientifique ( CNRS ), Dipartimento di Scienze Fisiche [Naples], Università degli studi di Napoli Federico II, Energétique, propulsion, espace, environnement ( EPEE ), Université d'Orléans ( UO ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Physics and Astronomy [Hanover], Dartmouth College [Hanover], Institut de recherche en astrophysique et planétologie ( IRAP ), Université Paul Sabatier - Toulouse 3 ( UPS ) -Observatoire Midi-Pyrénées ( OMP ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire d’Optique Atmosphérique - UMR 8518 ( LOA ), Institut national des sciences de l'Univers ( INSU - CNRS ) -Université de Lille-Centre National de la Recherche Scientifique ( CNRS ), Institut de Biologie du Développement de Marseille ( IBDM ), Aix Marseille Université ( AMU ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Universitat Politècnica de Catalunya [Barcelona] ( UPC ), INAF-IASF Milano, Climate and Environmental Physics [Bern], University of Bern, Centre National d'Etudes Spatiales ( CNES ), Institute of Geology, Eidgenössische Technische Hochschule [Zürich] ( ETH Zürich ), IEEC-CSIC, Universitat Autònoma de Barcelona [Barcelona] ( UAB ), MedisysResearch Lab ( Medisys ), Philips Research, European Space Astronomy Center ( ESAC ), European Space Agency ( ESA ), High Energy Astrophys. & Astropart. Phys (API, FNWI), INAF - Osservatorio Astronomico di Roma (OAR), Istituto Nazionale di Astrofisica (INAF), Laboratoire d'Astrophysique de l'Observatoire Midi-Pyrénées (LATT), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Réseau International des Instituts Pasteur (RIIP), Mullard Space Science Laboratory (MSSL), University College of London [London] (UCL), Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), Instituto de Astrofísica de Andalucía (IAA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Interactions et dynamique des environnements de surface (IDES), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Licryl Laboratory (CNR-IPCF UOS Cosenza), Università della Calabria [Arcavacata di Rende] (Unical), Laboratori Nazionali di Frascati (LNF), Istituto Nazionale di Fisica Nucleare (INFN), Istituto di Astrofisica Spaziale e Fisica Cosmica - Milano (IASF-MI), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Canada's particle accelerator centre (TRIUMF), Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 (LASIRE), Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), University of Naples Federico II = Università degli studi di Napoli Federico II, Energétique, propulsion, espace, environnement (EPEE), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Laboratoire d’Optique Atmosphérique - UMR 8518 (LOA), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Universitat Politècnica de Catalunya [Barcelona] (UPC), Climate and Environmental Physics [Bern] (CEP), Physikalisches Institut [Bern], Universität Bern [Bern] (UNIBE)-Universität Bern [Bern] (UNIBE), Centre National d'Études Spatiales [Toulouse] (CNES), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Universitat Autònoma de Barcelona (UAB), MedisysResearch Lab (Medisys), European Space Astronomy Centre (ESAC), Agence Spatiale Européenne = European Space Agency (ESA), SPIE, Takahashi, Tadayuki, Feroci M., Den Herder J.W., Bozzo E., Barret D., Brandt S., Hernanz M., Van Der Klis M., Pohl M., Santangelo A., Stella L., Watts A., Wilms J., Zane S., Ahangarianabhari M., Albertus C., Alford M., Alpar A., Altamirano D., Alvarez L., Amati L., Amoros C., Andersson N., Antonelli A., Argan A., Artigue R., Artigues B., Atteia J.-L., Azzarello P., Bakala P., Baldazzi G., Balman S., Barbera M., Van Baren C., Bhattacharyya S., Baykal A., Belloni T., Bernardini F., Bertuccio G., Bianchi S., Bianchini A., Binko P., Blay P., Bocchino F., Bodin P., Bombaci I., Bonnet Bidaud J.-M., Boutloukos S., Bradley L., Braga J., Brown E., Bucciantini N., Burderi L., Burgay M., Bursa M., Budtz-Jorgensen C., Cackett E., Cadoux F.R., Cais P., Caliandro G.A., Campana R., Campana S., Capitanio F., Casares J., Casella P., Castro-Tirado A.J., Cavazzuti E., Cerda-Duran P., Chakrabarty D., Chateau F., Chenevez J., Coker J., Cole R., Collura A., Cornelisse R., Courvoisier T., Cros A., Cumming A., Cusumano G., D'ai A., D'elia V., Del Monte E., De Luca A., De Martino D., Dercksen J.P.C., De Pasquale M., De Rosa A., Del Santo M., Di Cosimo S., Diebold S., Di Salvo T., Donnarumma I., Drago A., Durant M., Emmanoulopoulos D., Erkut M.H., Esposito P., Evangelista Y., Fabian A., Falanga M., Favre Y., Feldman C., Ferrari V., Ferrigno C., Finger M., Finger M.H., Fraser G.W., Frericks M., Fuschino F., Gabler M., Galloway D.K., Galvez Sanchez J.L., Garcia-Berro E., Gendre B., Gezari S., Giles A.B., Gilfanov M., Giommi P., Giovannini G., Giroletti M., Gogus E., Goldwurm A., Goluchova K., Gotz D., Gouiffes C., Grassi M., Groot P., Gschwender M., Gualtieri L., Guidorzi C., Guy L., Haas D., Haensel P., Hailey M., Hansen F., Hartmann D.H., Haswell C.A., Hebeler K., Heger A., Hermsen W., Homan J., Hornstrup A., Hudec R., Huovelin J., Ingram A., In't Zand J.J.M., Israel G., Iwasawa K., Izzo L., Jacobs H.M., Jetter F., Johannsen T., Jonker P., Jose J., Kaaret P., Kanbach G., Karas V., Karelin D., Kataria D., Keek L., Kennedy T., Klochkov D., Kluzniak W., Kokkotas K., Korpela S., Kouveliotou C., Kreykenbohm I., Kuiper L.M., Kuvvetli I., Labanti C., Lai D., Lamb F.K., Laubert P.P., Lebrun F., Lin D., Linder D., Lodato G., Longo F., Lund N., Maccarone T.J., Macera D., Maestre S., Mahmoodifar S., Maier D., Malcovati P., Mandel I., Mangano V., Manousakis A., Marisaldi M., Markowitz A., Martindale A., Matt G., Mchardy I.M., Melatos A., Mendez M., Mereghetti S., Michalska M., Migliari S., Mignani R., Miller M.C., Miller J.M., Mineo T., Miniutti G., Morsink S., Motch C., Motta S., Mouchet M., Mouret G., Mulaova J., Muleri F., Munoz-Darias T., Negueruela I., Neilsen J., Norton A.J., Nowak M., O'brien P., Olsen P.E.H., Orienti M., Orio M., Orlandini M., Orleaaski P., Osborne J.P., Osten R., Ozel F., Pacciani L., Paolillo M., Papitto A., Paredes J.M., Patruno A., Paul B., Perinati E., Pellizzoni A., Penacchioni A.V., Perez M.A., Petracek V., Pittori C., Pons J., Portell J., Possenti A., Poutanen J., Prakash M., Le Provost P., Psaltis D., Rambaud D., Ramon P., Ramsay G., Rapisarda M., Rachevski A., Rashevskaya I., Ray P.S., Rea N., Reddy S., Reig P., Reina Aranda M., Remillard R., Reynolds C., Rezzolla L., Ribo M., De La Rie R., Riggio A., Rios A., Rodriguez-Gil P., Rodriguez J., Rohlfs R., Romano P., Rossi E.M.R., Rozanska A., Rousseau A., Ryde F., Sabau-Graziati L., Sala G., Salvaterra R., Sanna A., Sandberg J., Scaringi S., Schanne S., Schee J., Schmid C., Shore S., Schneider R., Schwenk A., Schwope A.D., Seyler J.-Y., Shearer A., Smith A., Smith D.M., Smith P.J., Sochora V., Soffitta P., Soleri P., Spencer A., Stappers B., Steiner A.W., Stergioulas N., Stratta G., Strohmayer T.E., Stuchlik Z., Suchy S., Sulemainov V., Takahashi T., Tamburini F., Tauris T., Tenzer C., Tolos L., Tombesi F., Tomsick J., Torok G., Torrejon J.M., Torres D.F., Tramacere A., Trois A., Turolla R., Turriziani S., Uter P., Uttley P., Vacchi A., Varniere P., Vaughan S., Vercellone S., Vrba V., Walton D., Watanabe S., Wawrzaszek R., Webb N., Weinberg N., Wende H., Wheatley P., Wijers R., Wijnands R., Wille M., Wilson-Hodge C.A., Winter B., Wood K., Zampa G., Zampa N., Zampieri L., Zdunik L., Zdziarski A., Zhang B., Zwart F., Ayre M., Boenke T., Corral Van Damme C., Kuulkers E., Lumb D., Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille Institut (CLIL), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Universität Bern [Bern]-Universität Bern [Bern], European Space Agency (ESA), Feroci, M., den Herder, J., Bozzo, E., Barret, D., Brandt, S., Hernanz, M., van der Klis, M., Pohl, M., Santangelo, A., Stella, L., Watts, A., Wilms, J., Zane, S., Ahangarianabhari, M., Albertus, C., Alford, M., Alpar, A., Altamirano, D., Alvarez, L., Amati, L., Amoros, C., Andersson, N., Antonelli, A., Argan, A., Artigue, R., Artigues, B., Atteia, J., Azzarello, P., Bakala, P., Baldazzi, G., Balman, S., Barbera, M., van Baren, C., Bhattacharyya, S., Baykal, A., Belloni, T., Bernardini, F., Bertuccio, G., Bianchi, S., Bianchini, A., Binko, P., Blay, P., Bocchino, F., Bodin, P., Bombaci, I., Bonnet Bidaud, J., Boutloukos, S., Bradley, L., Braga, J., Brown, E., Bucciantini, N., Burderi, L., Burgay, M., Bursa, M., Budtz Jørgensen, C., Cackett, E., Cadoux, F., Caïs, P., Caliandro, G., Campana, R., Campana, S., Capitanio, F., Casares, J., Casella, P., Castro Tirado, A., Cavazzuti, E., Cerda Duran, P., Chakrabarty, D., Château, F., Chenevez, J., Coker, J., Cole, R., Collura, A., Cornelisse, R., Courvoisier, T., Cros, A., Cumming, A., Cusumano, G., D'Ai', A., D'Elia, V., Del Monte, E., de Luca, A., de Martino, D., Dercksen, J., de Pasquale, M., De Rosa, A., Del Santo, M., Di Cosimo, S., Diebold, S., DI SALVO, T., Donnarumma, I., Drago, A., Durant, M., Emmanoulopoulos, D., Erkut, M., Esposito, P., Evangelista, Y., Fabian, A., Falanga, M., Favre, Y., Feldman, C., Ferrari, V., Ferrigno, C., Finger, M., Fraser, G., Frericks, M., Fuschino, F., Gabler, M., Galloway, D., Galvez Sanchez, J., Garcia Berro, E., Gendre, B., Gezari, S., Giles, A., Gilfanov, M., Giommi, P., Giovannini, G., Giroletti, M., Gogus, E., Goldwurm, A., Goluchová, K., Götz, D., Gouiffes, C., Grassi, M., Groot, P., Gschwender, M., Gualtieri, L., Guidorzi, C., Guy, L., Haas, D., Haensel, P., Hailey, M., Hansen, F., Hartmann, D., Haswell, C., Hebeler, K., Heger, A., Hermsen, W., Homan, J., Hornstrup, A., Hudec, R., Huovelin, J., Ingram, A., In't Zand, J., Israel, G., Iwasawa, K., Izzo, L., Jacobs, H., Jetter, F., Johannsen, T., Jonker, P., Josè, J., Kaaret, P., Kanbach, G., Karas, V., Karelin, D., Kataria, D., Keek, L., Kennedy, T., Klochkov, D., Kluzniak, W., Kokkotas, K., Korpela, S., Kouveliotou, C., Kreykenbohm, I., Kuiper, L., Kuvvetli, I., Labanti, C., Lai, D., Lamb, F., Laubert, P., Lebrun, F., Lin, D., Linder, D., Lodato, G., Longo, F., Lund, N., Maccarone, T., Macera, D., Maestre, S., Mahmoodifar, S., Maier, D., Malcovati, P., Mandel, I., Mangano, V., Manousakis, A., Marisaldi, M., Markowitz, A., Martindale, A., Matt, G., Mchardy, I., Melatos, A., Mendez, M., Mereghetti, S., Michalska, M., Migliari, S., Mignani, R., Miller, M., Miller, J., Mineo, T., Miniutti, G., Morsink, S., Motch, C., Motta, S., Mouchet, M., Mouret, G., Mulačová, J., Muleri, F., Muñoz Darias, T., Negueruela, I., Neilsen, J., Norton, A., Nowak, M., O'Brien, P., Olsen, P., Orienti, M., Orio, M., Orlandini, M., Orleański, P., Osborne, J., Osten, R., Ozel, F., Pacciani, L., Paolillo, M., Papitto, A., Paredes, J., Patruno, A., Paul, B., Perinati, E., Pellizzoni, A., Penacchioni, A., Perez, M., Petracek, V., Pittori, C., Pons, J., Portell, J., Possenti, A., Poutanen, J., Prakash, M., Le Provost, P., Psaltis, D., Rambaud, D., Ramon, P., Ramsay, G., Rapisarda, M., Rachevski, A., Rashevskaya, I., Ray, P., Rea, N., Reddy, S., Reig, P., Reina Aranda, M., Remillard, R., Reynolds, C., Rezzolla, L., Ribo, M., de la Rie, R., Riggio, A., Rios, A., Rodríguez Gil, P., Rodriguez, J., Rohlfs, R., Romano, P., Rossi, E., Rozanska, A., Rousseau, A., Ryde, F., Sabau Graziati, L., Sala, G., Salvaterra, R., Sanna, A., Sandberg, J., Scaringi, S., Schanne, S., Schee, J., Schmid, C., Shore, S., Schneider, R., Schwenk, A., Schwope, A., Seyler, J., Shearer, A., Smith, A., Smith, D., Smith, P., Sochora, V., Soffitta, P., Soleri, P., Spencer, A., Stappers, B., Steiner, A., Stergioulas, N., Stratta, G., Strohmayer, T., Stuchlik, Z., Suchy, S., Sulemainov, V., Takahashi, T., Tamburini, F., Tauris, T., Tenzer, C., Tolos, L., Tombesi, F., Tomsick, J., Torok, G., Torrejon, J., Torres, D., Tramacere, A., Trois, A., Turolla, R., Turriziani, S., Uter, P., Uttley, P., Vacchi, A., Varniere, P., Vaughan, S., Vercellone, S., Vrba, V., Walton, D., Watanabe, S., Wawrzaszek, R., Webb, N., Weinberg, N., Wende, H., Wheatley, P., Wijers, R., Wijnands, R., Wille, M., Wilson Hodge, C., Winter, B., Wood, K., Zampa, G., Zampa, N., Zampieri, L., Zdunik, L., Zdziarski, A., Zhang, B., Zwart, F., Ayre, M., Boenke, T., Corral van Damme, C., Kuulkers, E., Lumb, D., Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Consejo Superior de Investigaciones Científicas [Spain] (CSIC), National Institute for Nuclear Physics (INFN), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Canada's National Laboratory for Particle and Nuclear Physics (TRIUMF), Università di Bologna [Bologna] (UNIBO), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Spectrochimie Infrarouge et Raman - UMR 8516 (LASIR), Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Aix Marseille Université (AMU)-Collège de France (CdF)-Centre National de la Recherche Scientifique (CNRS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Universitat Autònoma de Barcelona [Barcelona] (UAB), Astronomy, den Herder, J. W., Atteia, J. L., Bonnet Bidaud, J. M., Cadoux, F. R., Cais, P., Caliandro, G. A., Castro Tirado, A. J., D'Aì, A., De Luca, A., De Martino, D., Dercksen, J. P. C., De Pasquale, M., Di Salvo, T., Erkut, M. H., Finger, M. H., Fraser, G. W., Galloway, D. K., Galvez Sanchez, J. L., Giles, A. B., Hartmann, D. H., Haswell, C. A., in't Zand, J. J. M., Jacobs, H. M., Kuiper, L. M., Lamb, F. K., Laubert, P. P., Maccarone, T. J., Mchardy, I. M., Miller, M. C., Miller, J. M., Norton, A. J., Olsen, P. E. H., Orleanski, P., Osborne, J. P., Paolillo, Maurizio, Paredes, J. M., Penacchioni, A. V., Perez, M. A., Ray, P. S., Rossi, E. M. R., Schwope, A. D., Seyler, J. Y., Smith, D. M., Smith, P. J., Steiner, A. W., Strohmayer, T. E., Torrejon, J. M., Torres, D. F., and Wilson Hodge, C. A.
- Subjects
x-ray and γ-ray instrumentation ,compact objects ,microchannel plates ,X-ray detectors ,X-ray imaging ,X-ray spectroscopy ,X-ray timing ,Electronic, Optical and Magnetic Materials ,Condensed Matter Physics ,Computer Science Applications1707 Computer Vision and Pattern Recognition ,Applied Mathematics ,Electrical and Electronic Engineering ,Vision ,Observatories ,Field of view ,01 natural sciences ,7. Clean energy ,neutron stars ,Observatory ,010303 astronomy & astrophysics ,Physics ,Equipment and services ,Astrophysics::Instrumentation and Methods for Astrophysics ,Steradian ,[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Astrophysics - Instrumentation and Methods for Astrophysics ,X-ray detector ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Cosmic Vision ,Spectral resolution ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,NO ,microchannel plate ,Settore FIS/05 - Astronomia e Astrofisica ,X-rays ,compact object ,0103 physical sciences ,Electronic ,Optical and Magnetic Materials ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,dense hadronic matter ,Sensors ,010308 nuclear & particles physics ,Astronomy ,Accretion (astrophysics) ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Neutron star ,13. Climate action ,[ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Gamma-ray burst ,astro-ph.IM - Abstract
The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideField Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study., Proc. SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 91442T
- Published
- 2014
24. [Untitled]
- Author
-
F. Schrey, Gottfried Kanbach, and Christian Straubmeier
- Subjects
Physics ,business.industry ,Crab Pulsar ,High Speed Photometer ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Astrophysics ,Photometer ,Photon counting ,law.invention ,Telescope ,Optics ,Pulsar ,Space and Planetary Science ,law ,Assisted GPS ,Astrophysics::Solar and Stellar Astrophysics ,business - Abstract
OPTIMA is a small, versatile high-speed photometer which is primarily intended for time resolved observations of young high energy pulsars at optical wavelengths. The detector system consists of eight fiber fed photon counters based on avalanche photodiodes, a GPS timing receiver, an integrating CCD camera to ensure the correct pointing of the telescope and a computerized control unit. Since January 1999 OPTIMA proves its scientific potential by measuring a very detailed lightcurve of the Crab Pulsar as well as by observing cataclysmic variable stars on very short timescales. In this article we describe the design of the detector system focussing on the photon counting units and the software control which correlates the detected photons with the GPS timing signal.
- Published
- 2001
25. In‐Flight Calibration of EGRET on the Compton Gamma‐Ray Observatory
- Author
-
H. A. Mayer-Hasselwander, Peter F. Michelson, P. L. Nolan, D. L. Bertsch, Olaf Reimer, W. F. Tompkins, C. E. Fichtel, A. W. Chen, R. C. Hartman, D. J. Thompson, T. D. Willis, D. A. Kniffen, Gottfried Kanbach, L. M. McDonald, J. A. Esposito, Brenda Dingus, Reshmi Mukherjee, C. von Montigny, Yiing Lin, Stanley D. Hunter, P. Sreekumar, and E. J. Schneid
- Subjects
Physics ,biology ,Gamma ray ,Astronomy ,Astronomy and Astrophysics ,biology.organism_classification ,Methods observational ,law.invention ,Telescope ,Space and Planetary Science ,Observatory ,law ,Calibration ,Egret ,Analysis software ,Spark chamber - Abstract
The Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory has been operating for over 7 yr since its launch in 1991 April. This span of time far exceeds the design lifetime of 2 yr. As the instrument has aged, several changes have occurred owing to spark chamber gas exchanges as well as some hardware degradation and failures, all of which have an influence on the instrument sensitivity. This paper describes postlaunch measurements and analysis that are done to calibrate the instrument response functions. The updated instrument characteristics are incorporated into the analysis software.
- Published
- 1999
26. TheSolar Maximum MissionAtlas of Gamma‐Ray Flares
- Author
-
D. J. Forrest, W. Thomas Vestrand, E. Rieger, Edward L. Chupp, Gerald H. Share, Ronald J. Murphy, and Gottfried Kanbach
- Subjects
Physics ,Solar flare ,Atlas (topology) ,Astrophysics::High Energy Astrophysical Phenomena ,Bremsstrahlung ,Gamma ray ,Astronomy ,Astronomy and Astrophysics ,Astrophysics ,Solar maximum ,Spectral line ,Neutron capture ,Space and Planetary Science ,Data reduction - Abstract
We present a compilation of data for all 258 gamma-ray —ares detected above 300 keV by the Gamma Ray Spectrometer (GRS) aboard the Solar Maximum Mission satellite. This gamma-ray —are sample was collected during the period from 1980 February to 1989 November; covering the latter half of the 21st solar sunspot cycle and the onset of the 22d solar sunspot cycle. We describe the SMM/GRS instrument, its in-orbit operation, and the principal data reduction methods used to derive the gamma-ray —are properties. Utilizing measurements for 185 —ares that were sufficiently intense to allow the derivation of gamma-ray spectra, we present an atlas of time pro—les and gamma-ray spectra. The —are parameters derived from the gamma-ray spectra include bremsstrahlung —uence and best-—t power-law parameters, narrow nuclear line —uence, positron annihilation line —uence, neutron capture line —uence, and an indi- cation of whether or not emissions greater than 10 MeV were present. Since a uniform methodology was adopted for deriving the parameters, this atlas should be very useful for future statistical and correlative studies of solar —ares. Subject headings: catalogsgamma rays: burstsSun: —ares
- Published
- 1999
27. Very fast optical flaring from a possible new Galactic magnetar
- Author
-
Gloria Sala, Jochen Greiner, Agnieszka Slowikowska, Gottfried Kanbach, A. Stefanescu, and Sheila McBreen
- Subjects
Physics ,Multidisciplinary ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics (astro-ph) ,FOS: Physical sciences ,Astronomy ,White dwarf ,Astrophysics ,Magnetar ,Light curve ,Galaxy ,Wavelength ,Neutron star ,Pulsar ,Observatory ,Astrophysics::Solar and Stellar Astrophysics - Abstract
Highly luminous rapid flares are characteristic of processes around compact objects like white dwarfs, neutron stars or black holes. In the high energy regime of X- and gamma-rays, outbursts with variability time-scales of seconds and faster are routinely observed, e.g. in gamma-ray bursts or Soft Gamma Repeaters. In the optical, flaring activity on such time-scales has never been observed outside the prompt phase of GRBs. This is mostly due to the fact that outbursts with strong, fast flaring usually are discovered in the high-energy regime. Most optical follow-up observations of such transients employ instruments with integration times exceeding tens of seconds, which are therefore unable to resolve fast variability. Here we show the observation of extremely bright and rapid optical flaring in the galactic transient SWIFT J195509.6+261406. Flaring of this kind has never previously been reported. Our optical light-curves are phenomenologically similar to high energy light-curves of Soft Gamma Repeaters and Anomalous X-ray Pulsars, which are thought to be neutron stars with extremely high magnetic fields (magnetars). This suggests similar emission processes may be at work, but in contrast to the other known magnetars with strong emission in the optical., Comment: 8 pages, 3 figures. A substantially revised version of this manuscript was published in Nature. Due to license issues, the accepted manuscript will only be put on astro-ph as v2 6 months after this version
- Published
- 2008
28. Evidence for a Galactic gamma-ray halo
- Author
-
Dieter H. Hartmann, Eric D. Kolaczyk, Roland Diehl, D. D. Dixon, H. Mayer-Hasselwander, Gottfried Kanbach, Andrew W. Strong, and J. Samimi
- Subjects
Physics ,biology ,Astrophysics::High Energy Astrophysical Phenomena ,Milky Way ,Astrophysics (astro-ph) ,Isotropy ,Gamma ray ,FOS: Physical sciences ,Flux ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,biology.organism_classification ,Galaxy ,Space and Planetary Science ,Egret ,Halo ,Instrumentation ,Astrophysics::Galaxy Astrophysics ,Statistical hypothesis testing - Abstract
We present quantitative statistical evidence for a $\gamma$-ray emission halo surrounding the Galaxy. Maps of the emission are derived. EGRET data were analyzed in a wavelet-based non-parametric hypothesis testing framework, using a model of expected diffuse (Galactic + isotropic) emission as a null hypothesis. The results show a statistically significant large scale halo surrounding the center of the Milky Way as seen from Earth. The halo flux at high latitudes is somewhat smaller than the isotropic gamma-ray flux at the same energy, though of the same order (O(10^(-7)--10^(-6)) ph/cm^2/s/sr above 1 GeV)., Comment: Final version accepted for publication in New Astronomy. Some additional results/discussion included, along with entirely revised figures. 19 pages, 15 figures, AASTeX. Better quality figs (PS and JPEG) are available at http://tigre.ucr.edu/halo/paper.html
- Published
- 1998
29. EGRET observations of high energy gamma ray pulsars
- Author
-
Gottfried Kanbach
- Subjects
Physics ,Atmospheric Science ,Crab Pulsar ,Astrophysics::High Energy Astrophysical Phenomena ,Gamma ray ,Aerospace Engineering ,Astronomy ,Astronomy and Astrophysics ,Astrophysics ,Spectral line ,Rotational energy ,Neutron star ,Geophysics ,Pulsar ,Space and Planetary Science ,Millisecond pulsar ,General Earth and Planetary Sciences ,X-ray pulsar - Abstract
Observations with the EGRET instrument on CGRO have so far revealed gamma ray emission at E>100 MeV from 6, possibly 7 pulsars: 5 (6) radio pulsars and the radio quiet pulsar Geminga. The observed gamma ray lightcurves show mostly two peaked emission patterns; only PSR B1706-44 has a more complex lightcurve. The gamma ray photon number spectra between 30 MeV and several GeV can be described with power law distributions with indices from −1.2 to −2.2 although a moderate bend in some spectra is not excluded. Above a few GeV several pulsars show a marked spectral break. Gamma ray pulsars are characterised by their high rotational energy loss and their relative proximity (on a galactic scale) to Earth. In terms of derived parameters, gamma ray pulsars have a young age (τ ∝ P / P < 106 years), strong magnetic fields (B ∝ PP ≈ 10 12 G), and high voltages available over the pulsar's open field lines (Φ ∝ P/P3 ≈ 3 × 1014 − 4×1016 V). Their efficiency to convert rotational energy into high energy radiation increases systematically with age and the observed gamma ray spectra in the EGRET energy range become correspondingly harder. For several of the the brighter pulsars, phase resolved spectra have been derived showing significant spectral changes over the pulsar's rotation. Multiwavelength beaming patterns, i.e. lightcurves observed throughout the electromagnetic spectrum, reinforce this picture that young pulsars have an extremely rich phenomenology in shaping their emission. While the gamma ray lightcurves of most pulsars are quite similar, emission at lower energies appears unrelated in all cases except the Crab pulsar. The underlying physics describing the high energy radiation processes in the pulsar's magnetosphere and close to the neutron star's surface is still in a state of development. Competing models have achieved to explain many individual features of pulsars but no comprehensive, self consistent treatment of particles, fields, and radiation is yet available. Progress in understanding the emission processes is critical for questions related to the detection and population statistics of more high energy pulsars, and the total contribution of high energy pulsars to the galactic gamma ray emission.
- Published
- 1998
30. EGRET Observations of the Gamma‐Ray Source 2CG 135+01
- Author
-
W. C. K. Alberts, Peter F. Michelson, D. A. Kniffen, Reshmi Mukherjee, Paul S. Ray, C. von Montigny, R. S. Foster, E. J. Schneid, C. E. Fichtel, J. A. Esposito, H. A. Mayer-Hasselwander, Stanley D. Hunter, P. Sreekumar, Gottfried Kanbach, Brenda Dingus, Josep M. Paredes, J. R. Mattox, P. L. Nolan, D. L. Bertsch, Marco Tavani, R. C. Hartman, D. J. Thompson, and Yiing Lin
- Subjects
Physics ,biology ,Astrophysics::High Energy Astrophysical Phenomena ,Gamma ray ,Astronomy ,Flux ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,NASA Deep Space Network ,Astrophysics ,Compact star ,biology.organism_classification ,Interferometry ,Space and Planetary Science ,Coincident ,Observatory ,Egret - Abstract
The COS B source 2CG 135+01 has been observed by the EGRET instrument on 10 different occasions during the first ~52 months of the Compton Gamma Ray Observatory mission. The source is detected in all but one of the observations. For that one, the exposure was inadequate. The only likely source that is spatially coincident with the gamma-ray position is the radio source GT 0236+610/LS I +61°303. However, there is no compelling evidence for time variations in the gamma-ray emission associated with the radio outbursts from GT 0236+610. Spectral determinations on a timescale of a few days also give no strong evidence for a spectral variation associated with the radio emission of GT 0236+610. Such fluctuations might be expected based on models involving a compact object in an elliptical binary orbit about a massive star. The search for correlations simultaneous with the 8.4 GHz radio outbursts were supported by coordinated observations with the Madrid Deep Space Network during one of the exposures and by Green Bank Interferometer observations on two others. Although there is some possible variability in the gamma-ray flux, it is not clear that it is related to the radio phasing.
- Published
- 1997
31. EGRET Observations of the Diffuse Gamma‐Ray Emission from the Galactic Plane
- Author
-
H. A. Mayer-Hasselwander, Patrick Thaddeus, P. L. Nolan, J. R. Catelli, D. L. Bertsch, D. A. Kniffen, Thomas M. Dame, Yiing Lin, J. A. Esposito, Stanley D. Hunter, R. C. Hartman, P. Sreekumar, D. J. Thompson, S. W. Digel, Gottfried Kanbach, Brenda Dingus, Reshmi Mukherjee, E. J. Schneid, C. von Montigny, C. E. Fichtel, and Peter F. Michelson
- Subjects
Physics ,Astrophysics::High Energy Astrophysical Phenomena ,Gamma ray ,Astronomy ,Astronomy and Astrophysics ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Radius ,Astrophysics ,Galactic plane ,Spectral line ,Galaxy ,Interstellar medium ,Space and Planetary Science ,Longitude ,Astrophysics::Galaxy Astrophysics - Abstract
The high-energy diffuse gamma-ray emission from the Galactic plane, |b| ≤ 10°, is studied using observations from the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory. The spatial distribution of the diffuse emission has been determined for four broad energy ranges after removing the contribution from point sources detected with greater than 5 σ significance. The longitude and latitude distributions of the intensity, averaged over 4° latitude ranges and 10° longitude ranges, respectively, are shown for the four energy ranges. Spectra of the diffuse emission in 11 energy bands, covering the energy range 30 MeV to 30 GeV, were determined for 10° × 4° (l × b) bins after correcting for the finite EGRET angular resolution. The average spectrum from the direction of the inner Galaxy is shown for 29 energy bands, covering the energy range 30 MeV to 50 GeV. At latitudes |b| > 2°, corresponding to gamma rays emitted within about 3 kpc of the Sun, there is no significant variation in the spectra with Galactic longitude. Comparison of the spectra from the Galactic plane (|b| < 2°) reveals no significant variation with Galactic longitude below about 4 GeV, which suggests that the cosmic-ray electron to proton ratio does not vary significantly throughout the Galaxy. Above 4 GeV, however, there is weak (about 3 σ) evidence for variation of the Galactic plane (|b| < 2°) spectrum with longitude. The spectrum is softer in the direction of the outer Galaxy by about E compared to the spectrum from the inner Galaxy. This variation of the diffuse gamma-ray emission hints at a variation of the cosmic-ray proton spectrum with Galactic radius, which might be expected if cosmic rays are accelerated primarily in the inner Galaxy and then propagate to the outer Galaxy or if the high-energy cosmic rays are confined less well in the outer Galaxy. The spatial and spectral distributions of the diffuse emission are compared with a model calculation of this emission based on dynamic balance and realistic interstellar matter and photon distributions. The spatial comparison is used to establish the value of the molecular mass calibrating ratio N(H2)/WCO and the cosmic-ray/matter coupling scale r0, which are the only adjustable parameters of the model. Comparisons with the observations indicates N(H2)/WCO = (1.56 ± 0.05) × 1020 mol cm-2 (K km s-1)-1 and r0 = (1.76 ± 0.2) kpc. The spatial agreement between this model and the observation is very good. However, above about 1 GeV the integral intensity predicted by the model is about 60% less than the observed intensity. Although the explanation of this excess is unclear, uncertainties in the neutral pion production function or variations in the cosmic-ray spectrum with Galactic radius may partially account for the underprediction. A small medium-latitude (2° < |b| < 10°) excess in the direction of the inner Galaxy exists and may indicate that the low-energy photon density used in the model is too low.
- Published
- 1997
32. Cygnus X‐3 and EGRET Gamma‐Ray Observations
- Author
-
Reshmi Mukherjee, J. R. Mattox, C. von Montigny, P. L. Nolan, C. E. Fichtel, D. L. Bertsch, Brenda Dingus, D. J. Thompson, D. A. Kniffen, Masaki Mori, Gottfried Kanbach, J. A. Esposito, P. V. Ramanamurthy, Peter F. Michelson, H. A. Mayer-Hasselwander, Yiing Lin, Stanley D. Hunter, P. Sreekumar, and E. J. Schneid
- Subjects
Physics ,biology ,Space and Planetary Science ,Infrared ,Observatory ,Gamma ray ,Egret ,Astronomy ,Astronomy and Astrophysics ,Energetic Gamma Ray Experiment Telescope ,Astrophysics ,biology.organism_classification - Abstract
0!rQ1The Energetic Gamma Ray Experiment Telescope (EGRET) aboard the Compton Gamma Ray Observatory observed the Cygnus region in 14 different viewing periods during 1991 May to 1994 July. We present here our results on unpulsed and pulsed emissions of gamma rays at E > 50 MeV from Cyg X-3. While we detect a gamma-ray source consistent with the position of Cyg X-3, there was no evidence for the characteristic ~4.79 hr periodicity observed in X-rays and infrared.
- Published
- 1997
33. Comparison of X-Ray– and Radio-selected BL Lacertae Objects in High-Energy Gamma-Ray Observations
- Author
-
H. A. Mayer-Hasselwander, D. A. Kniffen, R. C. Hartman, Yiing Lin, Peter F. Michelson, P. L. Nolan, D. J. Thompson, Brenda Dingus, T. D. Willis, D. L. Bertsch, J. A. Esposito, Stanley D. Hunter, Reshmi Mukherjee, P. Sreekumar, E. J. Schneid, C. von Montigny, C. E. Fichtel, Gottfried Kanbach, and J. R. Mattox
- Subjects
Physics ,High energy ,biology ,Astrophysics::High Energy Astrophysical Phenomena ,Radio flux ,Gamma ray ,X-ray ,Astronomy ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,biology.organism_classification ,law.invention ,Telescope ,Space and Planetary Science ,law ,Observatory ,Egret ,BL Lac object - Abstract
In the course of the Compton Gamma Ray Observatory mission, the EGRET telescope has detected 14 BL Lacertae objects in high-energy gamma rays through Phase 4. According to the BL Lac sample in Ciliegi, Bassani, & Caroli, two of these 14 sources are X-ray selected (XBL) and 10 are radio-selected (RBL); two are not listed in this sample. An examination of the radio fluxes and the X-ray fluxes for the BL Lac objects detected by EGRET reveals that it seems a strong radio flux must be present if high-energy gamma rays are to be detected in a BL Lac object, while detection is independent of the X-ray flux of the source. This result is in agreement with the picture of the coaligned radio jet and X-ray jet model of the broadband properties of BL Lac objects. For the BL Lac objects listed in Ciliegi et al. that are not detected by EGRET, co-adding of the EGRET data for the undetected RBLs in such a way that the source positions coincide with each other yields a flux excess at a 3.5 σ level, but similar co-adding of the EGRET data for the undetected XBLs yields no flux excess.
- Published
- 1997
34. High-energy astrophysics — energies above 100 keV
- Author
-
V. Schönfelder, Gottfried Kanbach, and Alex Zehnder
- Subjects
Physics ,Supermassive black hole ,High-energy astronomy ,Electromagnetic spectrum ,Astrophysics::High Energy Astrophysical Phenomena ,Astronomy ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Interstellar medium ,Black hole ,Supernova ,Neutron star ,Astrophysics::Galaxy Astrophysics - Abstract
Gamma-rays represent the most energetic photons of the electromagnetic spectrum. Astronomy with gamma-rays, therefore, allows the study of the most compact, energetic and violent objects in the Universe: neutron stars, stellar and supermassive black holes, supernovae including their remnants and cosmic rays interacting in the interstellar medium. An overview is given of the history of gamma-ray astronomy, the production mechanisms for gamma-rays and of the main results achieved.
- Published
- 2013
35. The nature of the -ray source 2EG J2020+4026 (2CG078+2)
- Author
-
K. T. S. Brazier, M. Merck, J. Guichard, Gottfried Kanbach, and A. Carramiñnana
- Subjects
Physics ,Space and Planetary Science ,Astronomy ,Astronomy and Astrophysics - Published
- 1996
36. A LONG TERM STUDY OF HIGH ENERGY GAMMA RAY EMISSION FROM THE VELA, GEMINGA AND CRAB PULSARS
- Author
-
P. V. Ramanamurthy, C. E. Fichtel, D. A. Kniffen, H. A. Mayer-Hasselwander, P. Sreekumar, Gottfried Kanbach, D. L. Bertsch, D. J. Thompson, and P. L. Nolan
- Subjects
Physics ,High energy ,Long term learning ,History and Philosophy of Science ,Pulsar ,General Neuroscience ,Gamma ray ,Astronomy ,Vela ,General Biochemistry, Genetics and Molecular Biology - Published
- 1995
37. EGRET Observations of Gamma-Ray Bursts
- Author
-
E. J. Schneid, C. von Montigny, Peter F. Michelson, D. A. Kniffen, P. L. Nolan, C. E. Fichtel, D. L. Bertsch, Brenda Dingus, R. C. Hartman, D. J. Thompson, Gottfried Kanbach, Stanley D. Hunter, P. Sreekumar, Yiing Lin, and H. A. Mayer-Hasselwander
- Subjects
Physics ,Photon ,biology ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,General Neuroscience ,Gamma ray ,Astronomy ,Astrophysics ,Scintillator ,biology.organism_classification ,General Biochemistry, Genetics and Molecular Biology ,law.invention ,Telescope ,History and Philosophy of Science ,law ,Observatory ,Egret ,Spark chamber ,Gamma-ray burst - Abstract
The Energetic Gamma-Ray Experiment Telescope (EGRET) has observed gamma-rays bursts with the highest energy gamma-rays and the longest high energy emission to date. EGRET measures the high energy gamma-rays with its large NaI scintillator (1 to 200 MeV) and its spark chamber (30 MeV to 30 GeV). The spark chamber also measures time and arrival directions of individual photons allowing locations for the energetic bursts to be determined. Since the Compton Gamma Ray Observatory launch in 1991, EGRET has observed five bursts in the spark chamber with several having gamma-ray energies grater than 1 GeV. The recording breaking burst, GRB940217, had gamma-rays up to 18 GeV and lasted over 5000 seconds. The results for the energetic bursts are presented. The high energies observed from these gamma-ray bursts set constraints for the burst distances.
- Published
- 1995
38. Optical microflaring on the nearby flare star binary UV Ceti
- Author
-
Arne Rau, Gottfried Kanbach, J. H. M. M. Schmitt, and Helmut Steinle
- Subjects
Physics ,Millisecond ,Photon ,010504 meteorology & atmospheric sciences ,Astrophysics::High Energy Astrophysical Phenomena ,Optical instrument ,Flare star ,Astronomy ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,law.invention ,Telescope ,Optical pulsar ,Space and Planetary Science ,law ,Observatory ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Flare - Abstract
We present extremely high time resolution observations of the visual flare star binary UV Cet obtained with the Optical Pulsar Timing Analyzer (OPTIMA) at the 1.3 m telescope at Skinakas Observatory (SKO) in Crete, Greece. OPTIMA is a fiber-fed optical instrument that uses Single Photon Avalanche Diodes to measure the arrival times of individual optical photons. The time resolution of the observations presented here was 4 μ s, allowing to resolve the typical millisecond variability time scales associated with stellar flares. We report the detection of very short impulsive bursts in the blue band with well resolved rise and decay time scales of about 2 s. The overall energetics put these flares at the lower end of the known flare distribution of UV Cet.
- Published
- 2016
39. Simulations for a proposed gamma-ray space telescope using MEGAlib
- Author
-
Gottfried Kanbach, Jochen Greiner, Andreas Zoglauer, and Suzanne Foley
- Subjects
Physics ,Spitzer Space Telescope ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Polarimetry ,Compton scattering ,Gamma ray ,Astronomy ,Gamma-ray astronomy ,Blazar ,Gamma-ray burst ,Event reconstruction - Abstract
Gamma-Ray Imaging, Polarimetry and Spectroscopy (GRIPS) is a proposed space mission for gamma-ray astrophysics. It will be capable of imaging gamma-rays via Compton scattering and pair production in the energy range from ~200 keV up to ~50MeV. GRIPS will address fundamental astrophysical questions through observations of energetic gamma-ray phenomena such as gamma-ray bursts, blazars and supernovae in this unique energy window. The Medium-Energy Gamma-ray Astronomy library (MEGAlib) is an open-source object-oriented software library designed to simulate and analyse data from low-to-medium-energy gamma-ray telescopes, especially Compton telescopes such as GRIPS. The library comprises all necessary data analysis steps from initial simulations through to event reconstruction and image reconstruction. Simulations are being carried out to optimize the sensitivity of GRIPS to gamma-ray sources using MEGAlib and the results are presented here. GRIPS will offer an improvement in sensitivity in its operational energy range by a factor of ~40 compared with previous missions.
- Published
- 2012
40. The near-infrared detection of PSR B0540-69 and its nebula
- Author
-
A. De Luca, W. Hummel, Gottfried Kanbach, Anna Zajczyk, Roberto Mignani, B. Rudak, and Aga Słowikowska
- Subjects
Physics ,astro-ph.HE ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Spectral index ,Nebula ,010308 nuclear & particles physics ,Crab Pulsar ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Synchrotron radiation ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Vela ,01 natural sciences ,Pulsar wind nebula ,Photometry (astronomy) ,Pulsar ,Space and Planetary Science ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
The ~1700 year old PSR B0540-69 in the LMC is considered the twin of the Crab pulsar because of its similar spin parameters, magnetic field, and energetics. Its optical spectrum is fit by a power-law, ascribed to synchrotron radiation, like for the young Crab and Vela pulsars. nIR observations, never performed for PSR B0540-69, are crucial to determine whether the optical power-law spectrum extends to longer wavelengths or a new break occurs, like it happens for both the Crab and Vela pulsars in the mIR, hinting at an even more complex particle energy and density distribution in the pulsar magnetosphere. We observed PSR B0540-69 in the J, H, and Ks bands with the VLT to detect it, for the first time, in the nIR and characterise its optical-to-nIR spectrum. To disentangle the pulsar emission from that of its pulsar wind nebula (PWN), we obtained high-spatial resolution adaptive optics images with NACO. We could clearly identify PSR B0540-69 in our J, H, and Ks-band images and measure its flux (J=20.14, H=19.33, Ks=18.55, with an overall error of +/- 0.1 magnitudes in each band). The joint fit to the available optical and nIR photometry with a power-law spectrum gives a spectral index alpha=0.70 +/-0.04. The comparison between our NACO images and HST optical ones does not reveal any apparent difference in the PWN morphology as a function of wavelength. The PWN optical-to-nIR spectrum is also fit by a single power-law, with spectral index alpha=0.56+/- 0.03, slightly flatter than the pulsar's. Using NACO at the VLT, we obtained the first detection of PSR B0540-69 and its PWN in the nIR. Due to the small angular scale of the PWN (~4") only the spatial resolution of the JWST will make it possible to extend the study of the pulsar and PWN spectrum towards the mid-IR., Comment: 11 pages, 10 figures, Accepted for publication on Astronomy and Astrophysics
- Published
- 2012
- Full Text
- View/download PDF
41. Upper limits on the high-energy gamma-ray fluxes from Formula and Formula
- Author
-
D. A. Kniffen, C. E. Fichtel, J. R. Mattox, H. A. Mayer-Hasselwander, Yiing Lin, J. M. Fierro, K. T. S. Brazier, P. L. Nolan, C. von Montigny, D. L. Bertsch, H. I. Nel, Peter F. Michelson, E. J. Schneid, Stanley D. Hunter, P. Sreekumar, Gottfried Kanbach, R. C. Hartman, and D. J. Thompson
- Subjects
Physics ,High energy ,Space and Planetary Science ,Gamma ray ,Astronomy ,Astronomy and Astrophysics ,Astrophysics - Published
- 1994
42. EGRET High-Energy Gamma-ray Observations of AGN: Energy Spectra and Time Variability
- Author
-
Peter F. Michelson, Y. C. Lin, C. E. Fichtel, H. A. Mayer-Hasselwander, Stanley D. Hunter, P. L. Nolan, P. Sreekumar, D. L. Bertsch, J. R. Mattox, R. C. Hartman, E.J. Schneid, D. J. Thompson, James Chiang, C. V. Montigny, D. A. Kniffen, Gottfried Kanbach, J. M. Fierro, Brenda Dingus, J. A. Esposito, and H. D. Radecke
- Subjects
Physics ,Photon ,Active galactic nucleus ,biology ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,Astronomy ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,biology.organism_classification ,Spectral line ,Observatory ,Egret ,Energetic Gamma Ray Experiment Telescope ,Nuclear Experiment ,Astrophysics::Galaxy Astrophysics ,Fermi Gamma-ray Space Telescope - Abstract
The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory has detected more than 20 Active Galactic Nuclei (AGN) at photon energies above 30 MeV.
- Published
- 1994
43. Fast-time variability in high-mass X-ray binaries: SAX J2103.5+4545
- Author
-
Agnieszka Slowikowska, Pablo Reig, and Gottfried Kanbach
- Subjects
Physics ,High mass ,X-ray ,Astrophysics - Published
- 2011
44. Very fast photometric observations of the intermediate polar V2069 Cyg
- Author
-
Agnieszka Slowikowska, Ilham Nasiroglu, and Gottfried Kanbach
- Subjects
Physics ,education.field_of_study ,Swift Gamma-Ray Burst Mission ,Aperture ,Population ,White dwarf ,Astrophysics ,Light curve ,law.invention ,Telescope ,Intermediate polar ,law ,Observatory ,education - Abstract
We present fast timing photometric observations of the intermediate polar V2069 Cygni (RX J2123.7+4217) using the Optical Timing Analyzer (OPTIMA) at the Skinakas Observatory 1.3 m telescope. OPTIMA is a single-photon counting aperture photo-polarimeter with the timing accuracy of about 4 microseconds and absolute (GPS) tagging of photon arrival-times. The optical (450-950 nm) light curve of V2069 Cygni was measured with sub-second resolution during July 2009 and revealed a double-peaked pulsation with 743.385 (±0.250) s period. A similar doublepeaked modulation was found in simultaneous soft X-ray observations with the Swift satellite. We suggest that the 743.385 (±0.250) s period represents the spin of the white dwarf accretor. In the Porb-Pspin diagram of all IPs, V2069 Cyg is rather an indistinct member of this population. It has however a rather low spin to orbit ratio of ∼ 0.027.
- Published
- 2011
45. The orbital ephemeris and emission states of HU Aqr observed with OPTIMA
- Author
-
Agnieszka Slowikowska, Axel Schwope, Ilham Nasiroglu, Gottfried Kanbach, and R. Schwarz
- Subjects
Physics ,Astrophysics ,Ephemeris - Published
- 2011
46. The Identification of the X-ray Counterpart to PSR J2021+4026
- Author
-
M. Ziegler, Pablo M. Saz Parkinson, Ronald F. Elsner, Andrea Belfiore, M. Dormody, Stephen L. O'Dell, Paul S. Ray, Matthew Kerr, Alice K. Harding, Andrea De Luca, Alberto Carramiñana, Roger W. Romani, Gottfried Kanbach, Werner Becker, D. J. Thompson, Allyn F. Tennant, Massimiliano Razzano, Martin C. Weisskopf, and Douglas A. Swartz
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,biology ,Astrophysics::High Energy Astrophysical Phenomena ,Flux ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,biology.organism_classification ,Acis ,Neutron star ,Pulsar ,Space and Planetary Science ,Observatory ,Coincident ,Satellite ,Astrophysics - High Energy Astrophysical Phenomena ,Fermi Gamma-ray Space Telescope - Abstract
We report the probable identification of the X-ray counterpart to the gamma-ray pulsar PSR J2021+4026 using imaging with the Chandra X-ray Observatory ACIS and timing analysis with the Fermi satellite. Given the statistical and systematic errors, the positions determined by both satellites are coincident. The X-ray source position is R.A. 20h21m30.733s, Decl. +40 deg 26 min 46.04sec (J2000) with an estimated uncertainty of 1.3 arsec combined statistical and systematic error. Moreover, both the X-ray to gamma-ray and the X-ray to optical flux ratios are sensible assuming a neutron star origin for the X-ray flux. The X-ray source has no cataloged infrared-to-visible counterpart and, through new observations, we set upper limits to its optical emission of i' >23.0 mag and r' > 25.2mag. The source exhibits an X-ray spectrum with most likely both a powerlaw and a thermal component. We also report on the X-ray and visible light properties of the 43 other sources detected in our Chandra observation., Accepted for publication in the Astrophysical Journal
- Published
- 2011
- Full Text
- View/download PDF
47. Nuclear lines revealing the injection of cosmic rays in supernova remnants
- Author
-
Jochen Greiner, Gottfried Kanbach, O. Tibolla, Karl Mannheim, Aleksander Paravac, and Alexander Summa
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,Gamma ray ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Cosmic ray ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Ion ,Supernova ,Ejecta ,Supernova remnant ,Astrophysics - High Energy Astrophysical Phenomena ,Nuclear Experiment ,Astrophysics::Galaxy Astrophysics ,Line (formation) - Abstract
At high energies, the hadronic origin of gamma rays from supernova remnants is still debated. Assuming the observed gamma-rays from the Wolf-Rayet supernova remnant Cas A are due to accelerated protons and ions, we predict the nuclear de-excitation line emission arising from interactions with the heavy elements in the supernova ejecta. This illustrative example highlights the importance of MeV gamma ray observations of the hadronic fingerprint of cosmic rays. The lines could be observed in the MeV band with a future space mission such as GRIPS which has been proposed to ESA as an all-sky survey mission with gamma-ray, X-ray and near-infrared telescopes. In MeV gamma rays, its sensitivity will improve by a factor of 40 compared with previous missions., Comment: 25th Texas Symposium on Relativistic Astrophysics (TEXAS 2010), Proceedings of Science
- Published
- 2011
- Full Text
- View/download PDF
48. Results from the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Observatory
- Author
-
M. Sommer, Stanley D. Hunter, P. Sreekumar, C. E. Fichtel, R. C. Hartman, P. W. Kwok, D. J. Thompson, J. R. Mattox, Gottfried Kanbach, P. L. Nolan, D. L. Bertsch, H. A. Mayer-Hasselwander, E. J. Schneid, Peter F. Michelson, C. von Montigny, Brenda Dingus, D. A. Kniffen, H. Rothermel, K. Pinkau, and Yiing Lin
- Subjects
Physics ,Atmospheric Science ,Active galactic nucleus ,Astrophysics::High Energy Astrophysical Phenomena ,Gamma ray ,Aerospace Engineering ,Astronomy ,Astronomy and Astrophysics ,Cosmic ray ,Quasar ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Gamma-ray astronomy ,Astrophysics ,Galactic plane ,Geophysics ,Space and Planetary Science ,Observatory ,General Earth and Planetary Sciences ,Energetic Gamma Ray Experiment Telescope ,Astrophysics::Galaxy Astrophysics - Abstract
The Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO) covers the high energy gamma ray energy range, approximately 30 MeV to 30 GeV, with a sensitivity considerably greater than earlier high energy gamma-ray satellites. Thus far, 4 pulsars have been detected and their properties measured, including in 3 cases the energy spectrum as a function of phase. The details of the galactic plane are being mapped and a spectra of the center region has been obtained in good agreement with that expected from cosmic ray interactions. The Magellanic clouds have been examined with the Large Magellanic Cloud (LMC) having been detected at a level consistent with it having a cosmic ray density compatible with quasi-stable equilibrium. Sixteen Active Galactic Nuclei (AGN's) have been seen thus far with a high degree of certainty including 12 quasars and 4 BL Lac objects, but no Seyferts. Time variation has been detected in some of these AGN's
- Published
- 1993
49. Polarization detection capability of GRIPS
- Author
-
A. Zoglauer, Jochen Greiner, and Gottfried Kanbach
- Subjects
Physics ,Optics ,business.industry ,Astrophysics ,business ,Modulation factor - Published
- 2010
50. Instruments for Observations of Radioactivities
- Author
-
Larry R. Nittler and Gottfried Kanbach
- Subjects
Physics ,Nuclear physics ,Range (particle radiation) ,Photon ,Positron ,Isotope ,Astrophysics::High Energy Astrophysical Phenomena ,Excited state ,Electron ,Nuclear Experiment ,Radioactive decay ,Line (formation) - Abstract
Radioactivity is characterized by the emission of particles or photons that accompany the nuclear transformations of unstable isotopes. Direct observations of secondary particles (e.g. \(\beta^\pm\), or α) are only possible with in-situ measurements in the local environment of the solar system and often the detected particles are not very specific as to their parent nuclei. Transitions between energy levels of radioactive and excited nuclei however produce characteristic X- and γ-ray lines that can be detected from astronomical distances. Only one secondary particle resulting from radioactive decay, the positron, signals its presence in a characteristic γ-ray line: positrons annihilate with their anti-particle (electrons) and convert the pair’s rest mass into a line at 511 keV (see Chap. 7). Nuclear energy levels range from 10 s of keV upwards to energies of 10 s of MeV with most important astrophysical lines in the range from about 100 keV to several MeV.
- Published
- 2010
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.