Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, European Regional Development Fund, Ministerio de Economía y Competitividad, Safont Armero, Gonzalo, Salazar Afanador, Addisson, Vergara Domínguez, Luís, Gomez, Enriqueta, Villanueva, Vicente, Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, European Regional Development Fund, Ministerio de Economía y Competitividad, Safont Armero, Gonzalo, Salazar Afanador, Addisson, Vergara Domínguez, Luís, Gomez, Enriqueta, and Villanueva, Vicente
[EN] This paper presents a novel method that combines coupled hidden Markov models (HMM) and non Gaussian mixture models based on independent component analyzer mixture models (ICAMM). The proposed method models the joint behavior of a number of synchronized sequential independent component analyzer mixture models (SICAMM), thus we have named it generalized SICAMM (G-SICAMM). The generalization allows for flexible estimation of complex data densities, subspace classification, blind source separation, and accurate modeling of both local and global dynamic interactions. In this work, the structured result obtained by G-SICAMM was used in two ways: classification and interpretation. Classification performance was tested on an extensive number of simulations and a set of real electroencephalograms (EEG) from epileptic patients performing neuropsychological tests. G-SICAMM outperformed the following competitive methods: Gaussian mixture models, HMM, Coupled HMM, ICAMM, SICAMM, and a long short-term memory (LSTM) recurrent neural network. As for interpretation, the structured result returned by G-SICAMM on EEGs was mapped back onto the scalp, providing a set of brain activations. These activations were consistent with the physiological areas activated during the tests, thus proving the ability of the method to deal with different kind of data densities and changing non-stationary and non-linear brain dynamics. (C) 2019 Elsevier Ltd. All rights reserved.