Mostovni grafi so zelo dobro raziskana družina grafov. Pojavljajo se na različnih področjih, ne samo diskretne matematike, na primer v geometrični teoriji grup. V disertaciji se ukvarjamo z različnimi problemi, povezanimi z mostovnimi grafi in njihovimi posplošitvami. Pokažemo, do so ti grafi uporabni tudi zunaj same teorije grafov, saj jih povežemo s teorijo kompleksov. Med drugim se ukvarjamo s povezavo teh grafov in določenih tipov konveksnosti v grafih in z uporabo mostovnih grafov v grafih, prirejenih delno urejenim množicam. Disertacija je sestavljena iz treh delov, pri čemer v vsakem delu prikažemo uporabnost mostovnih grafov na izbranem področju. V prvem delu vpeljemo in proučujemo bukolične komplekse, skupno posplošitev sistoličnih in CAT(0) kubičnih kompleksov. Bukolične komplekse proučujemo z vidika teorije grafov, topološkega vidika in iz perspektive geometrijske teorije grup. Okarakteriziramo jih preko določenih lastnosti njihovih 2-skeletov in 1-skeletov (ki jim pravimo bukolični grafi), s čimer posplošimo več že znanih rezultatov. Prav tako dokažemo, da so bukolični kompleksi skrčljivi in da zadoščajo nekim lastnostim tipa nepozitivnih ukrivljenosti. V drugem delu posplošene mostovne grafe obravnavamo vzporedno s 3-Steinerjevo konveksnostjo. In sicer dokažemo, da so grafi $G$, v katerih so j-krogle g_3-konveksne za vsak j ≥ 1, natanko grafi, ki ne vsebujejo hiše niti grafov K_{2,3} in W_4^- kot induciranih podgrafov, in je vsak cikel v G, dolžine vsaj šest, dobro premostljiv. Okarakteriziramo torej grafe z g_3-konveksnimi kroglami. V tretjem delu disertacije usmerimo pozornost na grafe pokritij-neprimerljivosti delno urejenih množic (C-I grafe) in iščemo njihovo povezavo z mostovnimi grafi. Pokažemo, da v razredu C-I grafov sovpada kar nekaj različnih grafovskih družin. In sicer, v razredu C-I grafov ni razlike med mostovnimi grafi, tetivnimi grafi in grafi intervalov. Ker je problem prepoznavanja grafov pokritij-neprimerljivosti v splošnem NP-poln, se osredotočimo na določene razrede mostovnih grafov. Okarakteriziramo tiste delno urejene množice, ki imajo za graf pokritij-neprimerljivosti bločni graf oziroma razcepljeni graf. Med drugim okarakteriziramo grafe pokritij-neprimerljivosti tako med bločnimi oziroma razcepljenimi grafi kot med tetivnimi kografi. Slednje karakterizacije dajo tudi linearen algoritem za prepoznavanje bločnih oziroma razcepljenih grafov, oziroma tetivnih kografov, ki so grafi pokritij-neprimerljivosti. Bridged graphs are one of the very well investigated graf classes. They do not appear just in discrete mathematics but also in geometric group theory. In this dissertation thesis, different problems connected with bridged graphs and their generalizations are presented. They are used in the study of certain complexes, thus being applicable also outside graph theory. In particular, we present the relation between bridged graphs and some types of convexities in graphs and also the relation of these class of graphs with graphs obtained from posets. The dissertation is composed from three parts where in each part the use of bridged graphs on a chosen area is presented. In the first part we introduce and investigate bucolic complexes, a common generalization of systolic complexes and of CAT(0) cubical complexes. We study bucolic complexes from graph-theoretic and topological perspective, as well as from the point of view of geometric group theory. In particular, we characterize bucolic complexes by some properties of their 2-skeleta and 1-skeleta (that we call bucolic graphs), by which several known results are generalized. We also show that bucolic complexes are contractible, and satisfy some nonpositive-curvature-like properties. In the second part we investigate generalized bridged graphs parallel with 3-Steiner convexity. We prove that the graphs with g_3-convex j-balls for every j ≥ 1, are exactly the graphs without house, K_{2,3} and W_4^- as induced subgraphs in which all cycles of length at least six are well-bridged. Thus we characterize graphs with g_3-convex balls. In the last part of the thesis we focus on cover-incomparability graphs of posets (C-I graphs), studying the connection of these graphs with bridged graphs. We show that in the class of C-I graphs some different graph classes coincide. In particular, in the class of C-I graphs there is no difference among the bridged graphs, the chordal graphs and the interval graphs. Since the problem of recognizing cover-incomparability graphs of posets was shown to be NP-complete in general, we concentrate on (classes of) bridged graphs. We characterize the posets whose cover-incomparability graph is a block graph, and a split graph, respectively, and also characterize the cover-incomparability graphs among block graphs, split graphs and chordal cographs, respectively. The latter characterizations yield polynomial algorithms for recognition of block graphs, split graphs and chordal cographs, respectively, that are cover-incomparability graphs.