1. Primary angle closure glaucoma (PACG) susceptibility gene PLEKHA7 encodes a novel Rac1/Cdc42 GAP that modulates cell migration and blood-aqueous barrier function.
- Author
-
Lee MC, Shei W, Chan AS, Chua BT, Goh SR, Chong YF, Hilmy MH, Nongpiur ME, Baskaran M, Khor CC, Aung T, Hunziker W, and Vithana EN
- Subjects
- Blood-Aqueous Barrier metabolism, Carrier Proteins metabolism, Cell Movement genetics, Epithelial Cells metabolism, Genetic Predisposition to Disease, Glaucoma, Angle-Closure metabolism, Glaucoma, Angle-Closure pathology, Humans, Intercellular Junctions metabolism, Iris metabolism, Iris pathology, Polymorphism, Single Nucleotide, Tight Junctions metabolism, cdc42 GTP-Binding Protein metabolism, rac1 GTP-Binding Protein metabolism, Carrier Proteins genetics, Glaucoma, Angle-Closure genetics, cdc42 GTP-Binding Protein genetics, rac1 GTP-Binding Protein genetics
- Abstract
PLEKHA7, a gene recently associated with primary angle closure glaucoma (PACG), encodes an apical junctional protein expressed in components of the blood aqueous barrier (BAB). We found that PLEKHA7 is down-regulated in lens epithelial cells and in iris tissue of PACG patients. PLEKHA7 expression also correlated with the C risk allele of the sentinel SNP rs11024102 with the risk allele carrier groups having significantly reduced PLEKHA7 levels compared to non-risk allele carriers. Silencing of PLEKHA7 in human immortalized non-pigmented ciliary epithelium (h-iNPCE) and primary trabecular meshwork cells, which are intimately linked to BAB and aqueous humor outflow respectively, affected actin cytoskeleton organization. PLEKHA7 specifically interacts with GTP-bound Rac1 and Cdc42, but not RhoA, and the activation status of the two small GTPases is linked to PLEKHA7 expression levels. PLEKHA7 stimulates Rac1 and Cdc42 GTP hydrolysis, without affecting nucleotide exchange, identifying PLEKHA7 as a novel Rac1/Cdc42 GAP. Consistent with the regulatory role of Rac1 and Cdc42 in maintaining the tight junction permeability, silencing of PLEKHA7 compromises the paracellular barrier between h-iNPCE cells. Thus, downregulation of PLEKHA7 in PACG may affect BAB integrity and aqueous humor outflow via its Rac1/Cdc42 GAP activity, thereby contributing to disease etiology., (© The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2017
- Full Text
- View/download PDF