4 results on '"Goehlmann H"'
Search Results
2. The influence of resolution on the predictive power of spatial heterogeneity measures as biomarkers of liver fibrosis.
- Author
-
Claes J, Agten A, Blázquez-Moreno A, Crabbe M, Tuefferd M, Goehlmann H, Geys H, Peng CY, Neyens T, and Faes C
- Subjects
- Humans, Biopsy, Computer Simulation, Biomarkers, Liver Cirrhosis diagnosis
- Abstract
Spatial heterogeneity of cells in liver biopsies can be used as biomarker for disease severity of patients. This heterogeneity can be quantified by non-parametric statistics of point pattern data, which make use of an aggregation of the point locations. The method and scale of aggregation are usually chosen ad hoc, despite values of the aforementioned statistics being heavily dependent on them. Moreover, in the context of measuring heterogeneity, increasing spatial resolution will not endlessly provide more accuracy. The question then becomes how changes in resolution influence heterogeneity indicators, and subsequently how they influence their predictive abilities. In this paper, cell level data of liver biopsy tissue taken from chronic Hepatitis B patients is used to analyze this issue. Firstly, Morisita-Horn indices, Shannon indices and Getis-Ord statistics were evaluated as heterogeneity indicators of different types of cells, using multiple resolutions. Secondly, the effect of resolution on the predictive performance of the indices in an ordinal regression model was investigated, as well as their importance in the model. A simulation study was subsequently performed to validate the aforementioned methods. In general, for specific heterogeneity indicators, a downward trend in predictive performance could be observed. While for local measures of heterogeneity a smaller grid-size is outperforming, global measures have a better performance with medium-sized grids. In addition, the use of both local and global measures of heterogeneity is recommended to improve the predictive performance., Competing Interests: Declaration of competing interest None Declared, (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
3. Measures of spatial heterogeneity in the liver tissue micro-environment as predictive factors for fibrosis score.
- Author
-
Agten A, Blázquez-Moreno A, Crabbe M, Tuefferd M, Goehlmann H, Geys H, Peng CY, Claes J, Neyens T, and Faes C
- Subjects
- Humans, Hepatitis B Surface Antigens, Liver pathology, Hepatocytes metabolism, Hepatocytes pathology, Fibrosis, Liver Cirrhosis, Hepatitis B, Chronic
- Abstract
The organization and interaction between hepatocytes and other hepatic non-parenchymal cells plays a pivotal role in maintaining normal liver function and structure. Although spatial heterogeneity within the tumor micro-environment has been proven to be a fundamental feature in cancer progression, the role of liver tissue topology and micro-environmental factors in the context of liver damage in chronic infection has not been widely studied yet. We obtained images from 110 core needle biopsies from a cohort of chronic hepatitis B patients with different fibrosis stages according to METAVIR score. The tissue sections were immunofluorescently stained and imaged to determine the locations of CD45 positive immune cells and HBsAg-negative and HBsAg-positive hepatocytes within the tissue. We applied several descriptive techniques adopted from ecology, including Getis-Ord, the Shannon Index and the Morisita-Horn Index, to quantify the extent to which immune cells and different types of liver cells co-localize in the tissue biopsies. Additionally, we modeled the spatial distribution of the different cell types using a joint log-Gaussian Cox process and proposed several features to quantify spatial heterogeneity. We then related these measures to the patient fibrosis stage by using a linear discriminant analysis approach. Our analysis revealed that the co-localization of HBsAg-negative hepatocytes with immune cells and the co-localization of HBsAg-positive hepatocytes with immune cells are equally important factors for explaining the METAVIR score in chronic hepatitis B patients. Moreover, we found that if we allow for an error of 1 on the METAVIR score, we are able to reach an accuracy of around 80%. With this study we demonstrate how methods adopted from ecology and applied to the liver tissue micro-environment can be used to quantify heterogeneity and how these approaches can be valuable in biomarker analyses for liver topology., Competing Interests: Declaration of competing interest None Declared., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
4. p53-independent regulation of p21Waf1/Cip1 expression and senescence by Chk2.
- Author
-
Aliouat-Denis CM, Dendouga N, Van den Wyngaert I, Goehlmann H, Steller U, van de Weyer I, Van Slycken N, Andries L, Kass S, Luyten W, Janicot M, and Vialard JE
- Subjects
- Apoptosis physiology, Breast Neoplasms, Cell Division physiology, Cell Line, Transformed, Cell Line, Tumor, Cellular Senescence physiology, Checkpoint Kinase 2, Gene Expression Regulation, Neoplastic, Humans, Keratinocytes cytology, Lung Neoplasms, RNA, Small Interfering, Retroviridae genetics, Transduction, Genetic, Cyclin-Dependent Kinase Inhibitor p21 genetics, Protein Serine-Threonine Kinases genetics, Tumor Suppressor Protein p53 metabolism
- Abstract
The Chk2 kinase is a tumor suppressor and key component of the DNA damage checkpoint response that encompasses cell cycle arrest, apoptosis, and DNA repair. It has also been shown to have a role in replicative senescence resulting from dysfunctional telomeres. Some of these functions are at least partially exerted through activation of the p53 transcription factor. High-level expression of virally transduced Chk2 in A549 human lung carcinoma cells led to arrested proliferation, apoptosis, and senescence. These were accompanied by various molecular events, including p21(Waf1/Cip1) (p21) transcriptional induction, consistent with p53 activation. However, Chk2-dependent senescence and p21 transcriptional induction also occurred in p53-defective SK-BR-3 (breast carcinoma) and HaCaT (immortalized keratinocyte) cells. Small interfering RNA-mediated knockdown of p21 in p53-defective cells expressing Chk2 resulted in a decrease in senescent cells. These results revealed a p53-independent role for Chk2 in p21 induction and senescence that may contribute to tumor suppression and genotoxic treatment outcome.
- Published
- 2005
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.