1. The surprising structural and mechanistic dichotomy of membrane-associated phosphoglycosyl transferases.
- Author
-
O'Toole KH, Bernstein HM, Allen KN, and Imperiali B
- Subjects
- Bacterial Proteins metabolism, Biocatalysis, Carbohydrate Conformation, Cell Membrane enzymology, Cell Membrane metabolism, Glycoconjugates biosynthesis, Glycosyltransferases metabolism, Kinetics, Membrane Proteins metabolism, Models, Chemical, Protein Conformation, Substrate Specificity, Bacterial Proteins chemistry, Catalytic Domain, Glycoconjugates chemistry, Glycosyltransferases chemistry, Membrane Proteins chemistry
- Abstract
Phosphoglycosyl transferases (PGTs) play a pivotal role at the inception of complex glycoconjugate biosynthesis pathways across all domains of life. PGTs promote the first membrane-committed step in the en bloc biosynthetic strategy by catalyzing the transfer of a phospho-sugar from a nucleoside diphospho-sugar to a membrane-resident polyprenol phosphate. Studies on the PGTs have been hampered because they are integral membrane proteins, and often prove to be recalcitrant to expression, purification and analysis. However, in recent years exciting new information has been derived on the structures and the mechanisms of PGTs, revealing the existence of two unique superfamilies of PGT enzymes that enact catalysis at the membrane interface. Genome neighborhood analysis shows that these superfamilies, the polytopic PGT (polyPGT) and monotopic PGT (monoPGT), may initiate different pathways within the same organism. Moreover, the same fundamental two-substrate reaction is enacted through two different chemical mechanisms with distinct modes of catalysis. This review highlights the structural and mechanistic divergence between the PGT enzyme superfamilies and how this is reflected in differences in regulation in their varied glycoconjugate biosynthesis pathways., (© 2021 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.)
- Published
- 2021
- Full Text
- View/download PDF