Laurence Lejay, Viviana Araus, Nigel M. Crawford, Elena A. Vidal, José M. Alvarez, Matthew D. Brooks, Gloria M. Coruzzi, Rodrigo A. Gutiérrez, Eleodoro Riveras, Sandrine Ruffel, Gabriel Krouk, Universidad Mayor [Santiago de Chile], New York University [New York] (NYU), NYU System (NYU), FONDAP Center for Genome Regulation (CGR), Center for Genomics and Systems Biology, Biochimie et Physiologie Moléculaire des Plantes (BPMP), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Section of Cell and Developmental Biology, UC San Diego, Millennium Nucleus Center for Plant Systems and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) 1180759, CONICYT FONDECYT 1170926, Instituto Milenio iBio-Iniciativa Cientifica Milenio MINECON, EvoNet project DE-SC0014377, National Science Foundation PGRP IOS 1840761IOS 1339362, Zegar Family Foundation A16-0051, ANID/FONDAP 15090007, CONICYT PCI-Redes Internacionales entre Centros de Investigacion REDES180097, and Centre National de la Recherche Scientifique (CNRS)
International audience; Nitrogen (N) is an essential macronutrient for plants, and a major limiting factor for plant growth and crop production. Nitrate is the main source of N available for plants in agricultural soils and in many natural environments. Sustaining agricultural productivity is of paramount importance in the current scenario of increasing world population, diversification of crop uses, and climate change. Plant productivity for major crops around the world is still supported by excess application of N-based fertilizers with detrimental economic and environmental impacts. Thus, understanding how plants regulate nitrate uptake and metabolism is key for developing new crops with enhanced N use efficiency (NUE) and to cope with future world food demands. The study of plant responses to nitrate has gained considerable interest over the last thirty years. This review provides an overview of key findings in nitrate research, spanning biochemistry, molecular genetics, genomics and systems biology. We discuss how we reached our current understanding of nitrate transport, local and systemic nitrate sensing/signaling, and the regulatory networks underlying nitrate-controlled outputs in plants. We hope this summary serves not only as a time-line and information repository, but also as a base to outline important open questions for future research.