124 results on '"Glienke, C"'
Search Results
2. 16S-gyrB-rpoB multilocus sequence analysis for species identification in the genus Microbispora
- Author
-
Savi, D. C., Aluizio, R., Galli-Terasawa, L., Kava, V., and Glienke, C.
- Published
- 2016
- Full Text
- View/download PDF
3. Fungal Planet 953 – 18 December 2019
- Author
-
Crous, P.W., Wingfield, M.J., Lombard, L., Roets, F., Swart, W.J., Alvarado, P., Carnegie, A.J., Moreno, G., Luangsaard, J., Thangavel, R., Alexandrova, A.V., Baseia, I.G., Bellanger, J.-M., Bessette, A.E., Bessette, A.R., De la Peña-Lastra, S., García, D., Gené, J., Pham, T.H.G., Heykoop, M., Malysheva, E., Malysheva, V., Martín, M.P., Morozova, O.V., Noisripoom, W., Overton, B.E., Rea, A.E., Sewall, B.J., Smith, M.E., Smyth, C.W., Tasanathai, K., Visagie, C.M., Adamčík, S., Alves, A., Andrade, J.P., Aninat, M.J., Araújo, R.V.B., Bordallo, J.J., Boufleur, T., Baroncelli, R., Barreto, R.W., Bolin, J., Cabero, J., Caboň, M., Cafà, G., Caffot, M.L.H., Cai, L., Carlavilla, J.R., Chávez, R., de Castro, R.R.L., Delgat, L., Deschuyteneer, D., Dios, M.M., Domínguez, L.S., Evans, H.C., Eyssartier, G., Ferreira, B.W., Figueiredo, C.N., Liu, F., Fournier, J., Galli-Terasawa, L.V., Gil-Durán, C., Glienke, C., Gonçalves, M.F.M., Gryta, H., Guarro, J., Himaman, W., Hywel-Jones, N., Iturrieta-González, I., Ivanushkina, N.E., Jargeat, P., Khalid, A.N., Khan, J., Kiran, M., Kiss, L., Kochkina, G.A., Kolařík, M., Kubátová, A., Lodge, D.J., Loizides, M., Luque, D., Manjón, J.L., Marbach, P.A.S., Massola, N.S., Mata, M., Miller, A.N., Mongkolsamrit, S., Moreau, P.-A., Morte, A., Mujic, A., Navarro-Ródenas, A., Németh, M.Z., Nóbrega, T.F., Nováková, A., Olariaga, I., Ozerskaya, S.M., Palma, M.A., Petters-Vandresen, D.A.L., Piontelli, E., Popov, E.S., Rodríguez, A., Requejo, Ó., Rodrigues, A.C.M., Rong, I.H., Roux, J., Seifert, K.A., Silva, B.D.B., Sklenář, F., Smith, J.A., Sousa, J.O., Souza, H.G., De Souza, J.T., Švec, K., Tanchaud, P., Tanney, J.B., Terasawa, F., Thanakitpipattana, D., Torres-Garcia, D., Vaca, I., Vaghefi, N., van Iperen, A.L., Vasilenko, O.V., Verbeken, A., Yilmaz, N., Zamora, J.C., Zapata, M., Jurjević, Ž., Groenewald, J.Z., Crous, Pedro W., van Iperen, Arien L., Groenewald, Johannes Z., Thangavel, Raja, Carnegie, Angus J., Wingfield, Michael J., Roux, Jolanda, Jurjević, Željko, Roets, Francois, Swart, Wijnand J., Smith, Jason A., Lombard, Lorenzo, Moreno, Gabriel, Carlavilla, Juan Ramón, Manjón, José Luis, Bellanger, Jean-Michel, Olariaga, Ibai, Giang, Pham Thi Ha, Alexandrova, Alina V., Morozova, Olga V., Rodrigues, Ana C.M., Baseia, Iuri G., Martín, María P., De la Peña-Lastra, Saúl, Alvarado, Pablo, Requejo, Óscar, Tanchaud, Patrice, Eyssartier, Guillaume, Jargeat, Patricia, Gryta, Hervé, Gil-Durán, Carlos, Chávez, Renato, Vaca, Inmaculada, Loizides, Michael, Moreau, Pierre-Arthur, Zapata, Mario, Palma, María Antonieta, Aninat, María José, Piontelli, Eduardo, Luangsa-ard, Jennifer, Tasanathai, Kanoksri, Noisripoom, Wasana, Hywel-Jones, Nigel, Mongkolsamrit, Suchada, Luangsa-ard, Janet Jennifer, Himaman, Winanda, Garcia, Daniel Torres, Guarro, Josep, Gené, Josepa, Petters-Vandresen, Desirrê Alexia Lourenço, Galli-Terasawa, Lygia Vitória, Terasawa, Francisco, Glienke, Chirlei, Araújo, Ruane V.B., Silva, Bianca D.B., Sousa, Julieth O., Zamora, Juan Carlos, Dios, Maria Martha, Caffot, María Luciana Hernández, Domínguez, Laura S., Kiss, Levente, Vaghefi, Niloofar, Németh, Márk Z., Miller, Andrew N., Fournier, Jacques, Nóbrega, Thaisa F., Ferreira, Bruno W., Barreto, Robert W., Evans, Harry C., Delgat, Lynn, Verbeken, Annemieke, Lodge, D. Jean, Thanakitpipattana, Donnaya, Visagie, Cobus M., Rong, Isabel H., Andrade, Jackeline Pereira, Marbach, Phellippe Arthur Santos, De Souza, Jorge Teodoro, Malysheva, Ekaterina, Malysheva, Vera, Deschuyteneer, Daniel, Heykoop, Michel, Mata, Milagro, Rea, Abigail E., Smyth, Christopher W., Overton, Barrie E., Sewall, Brent J., Smith, Matthew E., Mujic, Alija, Bolin, Jason, Bessette, Arleen, Bessette, Alan, Kiran, Munazza, Khalid, Abdul Nasir, Khan, Junaid, Adamčík, Slavomír, Caboň, Miroslav, Liu, Fang, Cai, Lei, Tanney, Joey B., Seifert, Keith A., Baroncelli, Riccardo, Cafà, Giovanni, de Castro, Renata Rebellato Linhares, Boufleur, Thais, Junior, Nelson Sidnei Massola, Yilmaz, Neriman, Nováková, Alena, Švec, Karel, Sklenář, František, Kolařík, Miroslav, Kubátová, Alena, Rodríguez, Antonio, Navarro-Ródenas, Alfonso, Morte, Asunción, Cabero, Julio, Luque, Diego, Gonçalves, Micael F.M., Alves, Artur, Bordallo, Juan Julián, Pham, Thi Ha Giang, Popov, Eugene S., Iturrieta-González, Isabel, García, Dania, Ivanushkina, Nataliya E., Kochkina, Galina A., Vasilenko, Oleg V., and Ozerskaya, Svetlana M.
- Subjects
ITS nrDNA barcodes ,LSU ,Fungal Planet description sheets ,systematics ,new taxa ,Research Article - Abstract
Novel species of fungi described in this study include those from various countries as follows: Antarctica, Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina, Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera, Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbia ficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy on rotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannaccii from pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongispora on resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma caverna from carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. Costa Rica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambigua and Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood. Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracylla gen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyrium viticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiae on Phoenix sp. Pakistan, Russula quercus-floribundae on forest floor. Portugal, Trichoderma aestuarinum from saline water. Russia, Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduous wood or soil. South Africa, Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostroma encephalarti (incl. Neothyrostroma gen. nov.) on leaves of Encephalartos sp., Chalara eucalypticola on leaf spots of Eucalyptus grandis × urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficium on leaf litter of Sideroxylon inerme, Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.) on leaf litter of Eugenia capensis, Cyphellophora goniomatis on leaves of Gonioma kamassi, Nothodactylaria nephrolepidis (incl. Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.) on leaves of Nephrolepis exaltata, Falcocladium eucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp. macrocarpa, Harzia metrosideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopotamyces gen. nov.) on leaves of Phragmites australis, Lectera philenopterae on Philenoptera violacea, Leptosillia mayteni on leaves of Maytenus heterophylla, Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloe sp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata, Neodevriesia strelitziicola on leaf litter of Strelitzia nicolai, Neokirramyces syzygii (incl. Neokirramyces gen. nov.) on leaf spots of Syzygium sp., Nothoramichloridium perseae (incl. Nothoramichloridium gen. nov. and Anungitiomycetaceae fam. nov.) on leaves of Persea americana, Paramycosphaerella watsoniae on leaf spots of Watsonia sp., Penicillium cuddlyae from dog food, Podocarpomyces knysnanus (incl. Podocarpomyces gen. nov.) on leaves of Podocarpus falcatus, Pseudocercospora heteropyxidicola on leaf spots of Heteropyxis natalensis, Pseudopenidiella podocarpi, Scolecobasidium podocarpi and Ceramothyrium podocarpicola on leaves of Podocarpus latifolius, Scolecobasidium blechni on leaves of Blechnum capense, Stomiopeltis syzygii on leaves of Syzygium chordatum, Strelitziomyces knysnanus (incl. Strelitziomyces gen. nov.) on leaves of Strelitzia alba, Talaromyces clemensii from rotting wood in goldmine, Verrucocladosporium visseri on Carpobrotus edulis. Spain, Boletopsis mediterraneensis on soil, Calycina cortegadensisi on a living twig of Castanea sativa, Emmonsiellopsis tuberculata in fluvial sediments, Mollisia cortegadensis on dead attached twig of Quercus robur, Psathyrella ovispora on soil, Pseudobeltrania lauri on leaf litter of Laurus azorica, Terfezia dunensis in soil, Tuber lucentum in soil, Venturia submersa on submerged plant debris. Thailand, Cordyceps jakajanicola on cicada nymph, Cordyceps kuiburiensis on spider, Distoseptispora caricis on leaves of Carex sp., Ophiocordyceps khonkaenensis on cicada nymph. USA, Cytosporella juncicola and Davidiellomyces juncicola on culms of Juncus effusus, Monochaetia massachusettsianum from air sample, Neohelicomyces melaleucae and Periconia neobrittanica on leaves of Melaleuca styphelioides × lanceolata, Pseudocamarosporium eucalypti on leaves of Eucalyptus sp., Pseudogymnoascus lindneri from sediment in a mine, Pseudogymnoascus turneri from sediment in a railroad tunnel, Pulchroboletus sclerotiorum on soil, Zygosporium pseudomasonii on leaf of Serenoa repens. Vietnam, Boletus candidissimus and Veloporphyrellus vulpinus on soil. Morphological and culture characteristics are supported by DNA barcodes.
- Published
- 2019
4. Fungal Planet description sheets: 951–1041
- Author
-
Crous, P.W., primary, Wingfield, M.J., additional, Lombard, L., additional, Roets, F., additional, Swart, W.J., additional, Alvarado, P., additional, Carnegie, A.J., additional, Moreno, G., additional, Luangsa-Ard, J., additional, Thangavel, R., additional, Alexandrova, A.V., additional, Baseia, I.G., additional, Bellanger, J.-M., additional, Bessette, A.E., additional, Bessette, A.R., additional, Delapeña-Lastra, S., additional, García, D., additional, Gené, J., additional, Pham, T.H.G., additional, Heykoop, M., additional, Malysheva, E., additional, Malysheva, V., additional, Martín, M.P., additional, Morozova, O.V., additional, Noisripoom, W., additional, Overton, B.E., additional, Rea, A.E., additional, Sewall, B.J., additional, Smith, M.E., additional, Smyth, C.W., additional, Tasanathai, K., additional, Visagie, C.M., additional, Adamík, S., additional, Alves, A., additional, Andrade, J.P., additional, Aninat, M.J., additional, Araújo, R.V.B., additional, Bordallo, J.J., additional, Boufleur, T., additional, Baroncelli, R., additional, Barreto, R.W., additional, Bolin, J., additional, Cabero, J., additional, Cabo, M., additional, Cafà, G., additional, Caffot, M.L.H., additional, Cai, L., additional, Carlavilla, J.R., additional, Chávez, R., additional, Decastro, R.R.L., additional, Delgat, L., additional, Deschuyteneer, D., additional, Dios, M.M., additional, Domínguez, L.S., additional, Evans, H.C., additional, Eyssartier, G., additional, Ferreira, B.W., additional, Figueiredo, C.N., additional, Liu, F., additional, Fournier, J., additional, Galli-Terasawa, L.V., additional, Gil-Durán, C., additional, Glienke, C., additional, Gonçalves, M.F.M., additional, Gryta, H., additional, Guarro, J., additional, Himaman, W., additional, Hywel-Jones, N., additional, Iturrieta-González, I., additional, Ivanushkina, N.E., additional, Jargeat, P., additional, Khalid, A.N., additional, Khan, J., additional, Kiran, M., additional, Kiss, L., additional, Kochkina, G.A., additional, Kolaík, M., additional, Kubátová, A., additional, Lodge, D.J., additional, Loizides, M., additional, Luque, D., additional, Manjón, J.L., additional, Marbach, P.A.S., additional, Massolajr, N.S., additional, Mata, M., additional, Miller, A.N., additional, Mongkolsamrit, S., additional, Moreau, P.-A., additional, Morte, A., additional, Mujic, A., additional, Navarro-Ródenas, A., additional, Németh, M.Z., additional, Nóbrega, T.F., additional, Nováková, A., additional, Olariaga, I., additional, Ozerskaya, S.M., additional, Palma, M.A., additional, Petters-Vandresen, D.A.L., additional, Piontelli, E., additional, Popov, E.S., additional, Rodríguez, A., additional, Requejo, Ó, additional, Rodrigues, A.C.M., additional, Rong, I.H., additional, Roux, J., additional, Seifert, K.A., additional, Silva, B.D.B., additional, Sklená, F., additional, Smith, J.A., additional, Sousa, J.O., additional, Souza, H.G., additional, Desouza, J.T., additional, Vec, K., additional, Tanchaud, P., additional, Tanney, J.B., additional, Terasawa, F., additional, Thanakitpipattana, D., additional, Torres-Garcia, D., additional, Vaca, I., additional, Vaghefi, N., additional, Vaniperen, A.L., additional, Vasilenko, O.V., additional, Verbeken, A., additional, Yilmaz, N., additional, Zamora, J.C., additional, Zapata, M., additional, Jurjević, Ž, additional, and Groenewald, J.Z., additional
- Published
- 2019
- Full Text
- View/download PDF
5. Fungal Planet description sheets : 951-1041
- Author
-
Crous, P. W., Wingfield, M. J., Lombard, L., Roets, F., Swart, W. J., Alvarado, P., Carnegie, A. J., Moreno, G., Luangsa-ard, J., Thangavel, R., Alexandrova, A. V., Baseia, I. G., Bellanger, J. -M, Bessette, A. E., Bessette, A. R., De la Pena-Lastra, S., Garcia, D., Gene, J., Pham, T. H. G., Heykoop, M., Malysheva, E., Malysheva, V., Martin, M. P., Morozova, O. V., Noisripoom, W., Overton, B. E., Rea, A. E., Sewall, B. J., Smith, M. E., Smyth, C. W., Tasanathai, K., Visagie, C. M., Adamcik, S., Alves, A., Andrade, J. P., Aninat, M. J., Araujo, R. V. B., Bordallo, J. J., Boufleur, T., Baroncelli, R., Barreto, R. W., Bolin, J., Cabero, J., Cabon, M., Cafa, G., Caffot, M. L. H., Cai, L., Carlavilla, J. R., Chavez, R., de Castro, R. R. L., Delgat, L., Deschuyteneer, D., Dios, M. M., Dominguez, L. S., Evans, H. C., Eyssartier, G., Ferreira, B. W., Figueiredo, C. N., Liu, F., Fournier, J., Galli-Terasawa, L. V., Gil-Duran, C., Glienke, C., Goncalves, M. F. M., Gryta, H., Guarro, J., Himaman, W., Hywel-Jones, N., Iturrieta-Gonzalez, I., Ivanushkina, N. E., Jargeat, P., Khalid, A. N., Khan, J., Kiran, M., Kiss, L., Kochkina, G. A., Kolarik, M., Kubatova, A., Lodge, D. J., Loizides, M., Luque, D., Manjon, J. L., Marbach, P. A. S., Massola, N. S., Jr., Mata, M., Miller, A. N., Mongkolsamrit, S., Moreau, P. -A, Morte, A., Mujic, A., Navarro-Rodenas, A., Nemeth, M. Z., Nobrega, T. F., Novakova, A., Olariaga, I., Ozerskaya, S. M., Palma, M. A., Petters-Vandresen, D. A. L., Piontelli, E., Popov, E. S., Rodriguez, A., Requejo, O., Rodrigues, A. C. M., Rong, I. H., Roux, J., Seifert, K. A., Silva, B. D. B., Sklenar, F., Smith, J. A., Sousa, J. O., Souza, H. G., De Souza, J. T., Svec, K., Tanchaud, P., Tanney, J. B., Terasawa, F., Thanakitpipattana, D., Torres-Garcia, D., Vaca, I., Vaghefi, N., van Iperen, A. L., Vasilenko, O. V., Verbeken, A., Yilmaz, N., Zamora, Juan Carlos, Zapata, M., Jurjevic, Z., Groenewald, J. Z., Crous, P. W., Wingfield, M. J., Lombard, L., Roets, F., Swart, W. J., Alvarado, P., Carnegie, A. J., Moreno, G., Luangsa-ard, J., Thangavel, R., Alexandrova, A. V., Baseia, I. G., Bellanger, J. -M, Bessette, A. E., Bessette, A. R., De la Pena-Lastra, S., Garcia, D., Gene, J., Pham, T. H. G., Heykoop, M., Malysheva, E., Malysheva, V., Martin, M. P., Morozova, O. V., Noisripoom, W., Overton, B. E., Rea, A. E., Sewall, B. J., Smith, M. E., Smyth, C. W., Tasanathai, K., Visagie, C. M., Adamcik, S., Alves, A., Andrade, J. P., Aninat, M. J., Araujo, R. V. B., Bordallo, J. J., Boufleur, T., Baroncelli, R., Barreto, R. W., Bolin, J., Cabero, J., Cabon, M., Cafa, G., Caffot, M. L. H., Cai, L., Carlavilla, J. R., Chavez, R., de Castro, R. R. L., Delgat, L., Deschuyteneer, D., Dios, M. M., Dominguez, L. S., Evans, H. C., Eyssartier, G., Ferreira, B. W., Figueiredo, C. N., Liu, F., Fournier, J., Galli-Terasawa, L. V., Gil-Duran, C., Glienke, C., Goncalves, M. F. M., Gryta, H., Guarro, J., Himaman, W., Hywel-Jones, N., Iturrieta-Gonzalez, I., Ivanushkina, N. E., Jargeat, P., Khalid, A. N., Khan, J., Kiran, M., Kiss, L., Kochkina, G. A., Kolarik, M., Kubatova, A., Lodge, D. J., Loizides, M., Luque, D., Manjon, J. L., Marbach, P. A. S., Massola, N. S., Jr., Mata, M., Miller, A. N., Mongkolsamrit, S., Moreau, P. -A, Morte, A., Mujic, A., Navarro-Rodenas, A., Nemeth, M. Z., Nobrega, T. F., Novakova, A., Olariaga, I., Ozerskaya, S. M., Palma, M. A., Petters-Vandresen, D. A. L., Piontelli, E., Popov, E. S., Rodriguez, A., Requejo, O., Rodrigues, A. C. M., Rong, I. H., Roux, J., Seifert, K. A., Silva, B. D. B., Sklenar, F., Smith, J. A., Sousa, J. O., Souza, H. G., De Souza, J. T., Svec, K., Tanchaud, P., Tanney, J. B., Terasawa, F., Thanakitpipattana, D., Torres-Garcia, D., Vaca, I., Vaghefi, N., van Iperen, A. L., Vasilenko, O. V., Verbeken, A., Yilmaz, N., Zamora, Juan Carlos, Zapata, M., Jurjevic, Z., and Groenewald, J. Z.
- Abstract
Novel species of fungi described in this study include those from various countries as follows: Antarctica,Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina,Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera,Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbiaficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy onrotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae(incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannacciifrom pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongisporaon resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma cavernafrom carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. CostaRica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambiguaand Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood.Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracyllagen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyriumviticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiaeon Phoenix sp. Pakistan, Russula quercus-floribundae on forest floor. Portugal, Trichoderma aestuarinum fromsaline water. Russia, Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduous wood or soil. South Africa, Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostromaencephalarti (
- Published
- 2019
- Full Text
- View/download PDF
6. Fungal Planet description sheets: 951-1041
- Author
-
Crous, P.W., Wingfield, M.J., Lombard, L., Roets, F., Swart, W.J., Alvarado, P., Carnegie, A.J., Moreno, G., Luangsa-ard, J., Thangavel, R., Alexandrova, A.V., Baseia, I.G., Bellanger, J.-M., Bessette, A.E., Bessette, A.R., De la Peña-Lastra, S., García, D., Gené, J., Pham, T.H.G., Heykoop, M., Malysheva, E., Malysheva, V., Martín, M.P., Morozova, O.V., Noisripoom, W., Overton, B.E., Rea, A.E., Sewall, B.J., Smith, M.E., Smyth, C.W., Tasanathai, K., Visagie, C.M., Adamčík, S., Alves, A., Andrade, J.P., Aninat, M.J., Araujo, R.V.B., Bordallo, J.J., Bonfleur, T., Baroncelli, R., Barreto, R.W., Bolin, J., Cabero, J., M. Caboň, M., Cafà, G., Caffot, M.L.H., Cai, L., Carlavilla, J.R., Chávez, R., de Castro, R.R.L., Delgat, L., Deschuyteneer, D., Dios, M.M., Domínguez, L.S., Evans, H.C., Eyssartier, G., Ferreira, B.W., Figueiredo, C.N., Liu, F., Fournier, J., Galli-Terasawa, L.V., Gil-Durán, C., Glienke, C., Gonçalves, M.F.M., Gryta, H., Guarro, J., Himaman, W., Hywel-Jones, N., Iturrieta-González, I., Ivanushkina, N.E., Jargeat, P., Khalid, A.N., Khan, J., Kiran, M., Kiss, L., Kochkina, G.A., Kolařík, M., Kubátová, A., Lodge, D.J., Loizides, M., Luque, D., Manjón, J.L., Marbach, P.A.S., Massola Jr, N.S., Mata, M., Miller, A.N., Mongkolsamrit, S., Moreau, P.-A., Morte, A., Mujic, A., Navarro-Ródenas, A., Németh, M.Z., Nóbrega, T.F., Nováková, A., Olariaga, I., Ozerskaya, S.M., Palma, M.A., Petters-Vandresen, D.A.L., Piontelli, E., Popov, E.S., Rodríguez, A., Requejo, Ó., Rodrigues, A.C.M., Rong, I.H., Roux, J., Seifert, K.A., Silva, B.D.B., Sklenář, F., Smith, J.A., Sousa, J.O., Souza, H.G., De Souza, J.T., Švec, K., Tanchaud, P., Tanney, J.B., Terasawa, F., Thanakitpipattana, D., Torres-Garcia, D., Vaca, I., Vaghefi, N., van Iperen, A.L., Vasilenko, O.V., Verbeken, A., Yilmaz, N., Zamora, J.C., Zapata, M., Jurjević, Ž., Groenewald, J.Z., Crous, P.W., Wingfield, M.J., Lombard, L., Roets, F., Swart, W.J., Alvarado, P., Carnegie, A.J., Moreno, G., Luangsa-ard, J., Thangavel, R., Alexandrova, A.V., Baseia, I.G., Bellanger, J.-M., Bessette, A.E., Bessette, A.R., De la Peña-Lastra, S., García, D., Gené, J., Pham, T.H.G., Heykoop, M., Malysheva, E., Malysheva, V., Martín, M.P., Morozova, O.V., Noisripoom, W., Overton, B.E., Rea, A.E., Sewall, B.J., Smith, M.E., Smyth, C.W., Tasanathai, K., Visagie, C.M., Adamčík, S., Alves, A., Andrade, J.P., Aninat, M.J., Araujo, R.V.B., Bordallo, J.J., Bonfleur, T., Baroncelli, R., Barreto, R.W., Bolin, J., Cabero, J., M. Caboň, M., Cafà, G., Caffot, M.L.H., Cai, L., Carlavilla, J.R., Chávez, R., de Castro, R.R.L., Delgat, L., Deschuyteneer, D., Dios, M.M., Domínguez, L.S., Evans, H.C., Eyssartier, G., Ferreira, B.W., Figueiredo, C.N., Liu, F., Fournier, J., Galli-Terasawa, L.V., Gil-Durán, C., Glienke, C., Gonçalves, M.F.M., Gryta, H., Guarro, J., Himaman, W., Hywel-Jones, N., Iturrieta-González, I., Ivanushkina, N.E., Jargeat, P., Khalid, A.N., Khan, J., Kiran, M., Kiss, L., Kochkina, G.A., Kolařík, M., Kubátová, A., Lodge, D.J., Loizides, M., Luque, D., Manjón, J.L., Marbach, P.A.S., Massola Jr, N.S., Mata, M., Miller, A.N., Mongkolsamrit, S., Moreau, P.-A., Morte, A., Mujic, A., Navarro-Ródenas, A., Németh, M.Z., Nóbrega, T.F., Nováková, A., Olariaga, I., Ozerskaya, S.M., Palma, M.A., Petters-Vandresen, D.A.L., Piontelli, E., Popov, E.S., Rodríguez, A., Requejo, Ó., Rodrigues, A.C.M., Rong, I.H., Roux, J., Seifert, K.A., Silva, B.D.B., Sklenář, F., Smith, J.A., Sousa, J.O., Souza, H.G., De Souza, J.T., Švec, K., Tanchaud, P., Tanney, J.B., Terasawa, F., Thanakitpipattana, D., Torres-Garcia, D., Vaca, I., Vaghefi, N., van Iperen, A.L., Vasilenko, O.V., Verbeken, A., Yilmaz, N., Zamora, J.C., Zapata, M., Jurjević, Ž., and Groenewald, J.Z.
- Abstract
Novel species of fungi described in this study include those from various countries as follows: Antarctica, Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina, Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera, Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbia ficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy on rotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannaccii from pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongispora on resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma caverna from carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. Costa Rica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambigua and Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood. Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracylla gen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyrium viticola on stems of Vitis vinifera
- Published
- 2019
7. Fungal Planet description sheets: 951-1041
- Author
-
Crous, PW, Wingfield, MJ, Lombard, L, Roets, F, Swart, WJ, Alvarado, P, Carnegie, AJ, Moreno, G, Luangsa-ard, J, Thangavel, R, Alexandrova, AV, Baseia, IG, Bellanger, J-M, Bessette, AE, Bessette, AR, De la Pena-Lastra, S, Garcia, D, Gene, J, Pham, THG, Heykoop, M, Malysheva, E, Malysheva, V, Martin, MP, Morozova, OV, Noisripoom, W, Overton, BE, Rea, AE, Sewall, BJ, Smith, ME, Smyth, CW, Tasanathai, K, Visagie, CM, Adamcik, S, Alves, A, Andrade, JP, Aninat, MJ, Araujo, RVB, Bordallo, JJ, Boufleur, T, Baroncelli, R, Barreto, RW, Bolin, J, Cabero, J, Cabon, M, Cafa, G, Caffot, MLH, Cai, L, Carlavilla, JR, Chavez, R, de Castro, RRL, Delgat, L, Deschuyteneer, D, Dios, MM, Dominguez, LS, Evans, HC, Eyssartier, G, Ferreira, BW, Figueiredo, CN, Liu, F, Fournier, J, Galli-Terasawa, LV, Gil-Duran, C, Glienke, C, Goncalves, MFM, Gryta, H, Guarro, J, Himaman, W, Hywel-Jones, N, Iturrieta-Gonzalez, I, Ivanushkina, NE, Jargeat, P, Khalid, AN, Khan, J, Kiran, M, Kiss, L, Kochkina, GA, Kolarik, M, Kubatova, A, Lodge, DJ, Loizides, M, Luque, D, Manjon, JL, Marbach, PAS, Massola, NS, Mata, M, Miller, AN, Mongkolsamrit, S, Moreau, P-A, Morte, A, Mujic, A, Navarro-Rodenas, A, Nemeth, MZ, Nobrega, TF, Novakova, A, Olariaga, I, Ozerskaya, SM, Palma, MA, Petters-Vandresen, DAL, Piontelli, E, Popov, ES, Rodriguez, A, Requejo, O, Rodrigues, ACM, Rong, IH, Roux, J, Seifert, KA, Silva, BDB, Sklenar, F, Smith, JA, Sousa, JO, Souza, HG, De Souza, JT, Svec, K, Tanchaud, P, Tanney, JB, Terasawa, F, Thanakitpipattana, D, Torres-Garcia, D, Vaca, I, Vaghefi, N, van Iperen, AL, Vasilenko, OV, Verbeken, A, Yilmaz, N, Zamora, JC, Zapata, M, Jurjevic, Z, Groenewald, JZ, Crous, PW, Wingfield, MJ, Lombard, L, Roets, F, Swart, WJ, Alvarado, P, Carnegie, AJ, Moreno, G, Luangsa-ard, J, Thangavel, R, Alexandrova, AV, Baseia, IG, Bellanger, J-M, Bessette, AE, Bessette, AR, De la Pena-Lastra, S, Garcia, D, Gene, J, Pham, THG, Heykoop, M, Malysheva, E, Malysheva, V, Martin, MP, Morozova, OV, Noisripoom, W, Overton, BE, Rea, AE, Sewall, BJ, Smith, ME, Smyth, CW, Tasanathai, K, Visagie, CM, Adamcik, S, Alves, A, Andrade, JP, Aninat, MJ, Araujo, RVB, Bordallo, JJ, Boufleur, T, Baroncelli, R, Barreto, RW, Bolin, J, Cabero, J, Cabon, M, Cafa, G, Caffot, MLH, Cai, L, Carlavilla, JR, Chavez, R, de Castro, RRL, Delgat, L, Deschuyteneer, D, Dios, MM, Dominguez, LS, Evans, HC, Eyssartier, G, Ferreira, BW, Figueiredo, CN, Liu, F, Fournier, J, Galli-Terasawa, LV, Gil-Duran, C, Glienke, C, Goncalves, MFM, Gryta, H, Guarro, J, Himaman, W, Hywel-Jones, N, Iturrieta-Gonzalez, I, Ivanushkina, NE, Jargeat, P, Khalid, AN, Khan, J, Kiran, M, Kiss, L, Kochkina, GA, Kolarik, M, Kubatova, A, Lodge, DJ, Loizides, M, Luque, D, Manjon, JL, Marbach, PAS, Massola, NS, Mata, M, Miller, AN, Mongkolsamrit, S, Moreau, P-A, Morte, A, Mujic, A, Navarro-Rodenas, A, Nemeth, MZ, Nobrega, TF, Novakova, A, Olariaga, I, Ozerskaya, SM, Palma, MA, Petters-Vandresen, DAL, Piontelli, E, Popov, ES, Rodriguez, A, Requejo, O, Rodrigues, ACM, Rong, IH, Roux, J, Seifert, KA, Silva, BDB, Sklenar, F, Smith, JA, Sousa, JO, Souza, HG, De Souza, JT, Svec, K, Tanchaud, P, Tanney, JB, Terasawa, F, Thanakitpipattana, D, Torres-Garcia, D, Vaca, I, Vaghefi, N, van Iperen, AL, Vasilenko, OV, Verbeken, A, Yilmaz, N, Zamora, JC, Zapata, M, Jurjevic, Z, and Groenewald, JZ
- Abstract
Novel species of fungi described in this study include those from various countries as follows: Antarctica, Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina, Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera, Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbia ficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy on rotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannaccii from pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongispora on resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma caverna from carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. Costa Rica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambigua and Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood. Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracylla gen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyrium viticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiae on Phoenix sp. Pakistan, Russula quercus-floribundae on forest floor. Portugal, Trichoderma aestuarinum from saline water. Russia, Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduous wood or soil. South Africa, Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostro
- Published
- 2019
8. Fungal Planet description sheets: 951-1041
- Author
-
Universitat Rovira i Virgili, Crous, P. W.; Wingfield, M. J.; Lombard, L.; Roets, F.; Swart, W. J.; Alvarado, P.; Carnegie, A. J.; Moreno, G.; Luangsa-ard, J.; Thangavel, R.; Alexandrova, A. V.; Baseia, I. G.; Bellanger, J. -M.; Bessette, A. E.; Bessette, A. R.; De la Pena-Lastra, S.; Garcia, D.; Gene, J.; Pham, T. H. G.; Heykoop, M.; Malysheva, E.; Malysheva, V.; Martin, M. P.; Morozova, O. V.; Noisripoom, W.; Overton, B. E.; Rea, A. E.; Sewall, B. J.; Smith, M. E.; Smyth, C. W.; Tasanathai, K.; Visagie, C. M.; Adamcik, S.; Alves, A.; Andrade, J. P.; Aninat, M. J.; Araujo, R. V. B.; Bordallo, J. J.; Boufleur, T.; Baroncelli, R.; Barreto, R. W.; Bolin, J.; Cabero, J.; Cabon, M.; Cafa, G.; Caffot, M. L. H.; Cai, L.; Carlavilla, J. R.; Chavez, R.; de Castro, R. R. L.; Delgat, L.; Deschuyteneer, D.; Dios, M. M.; Dominguez, L. S.; Evans, H. C.; Eyssartier, G.; Ferreira, B. W.; Figueiredo, C. N.; Liu, F.; Fournier, J.; Galli-Terasawa, L. V.; Gil-Duran, C.; Glienke, C.; Goncalves, M. F. M.; Gryta, H.; Guarro, J.; Himaman, W.; Hywel-Jones, N.; Iturrieta-Gonzalez, I.; Ivanushkina, N. E.; Jargeat, P.; Khalid, A. N.; Khan, J.; Kiran, M.; Kiss, L.; Kochkina, G. A.; Kolarik, M.; Kubatova, A.; Lodge, D. J.; Loizides, M.; Luque, D.; Manjon, J. L.; Marbach, P. A. S.; Massola, N. S., Jr.; Mata, M.; Miller, A. N.; Mongkolsamrit, S.; Moreau, P. -A.; Morte, A.; Mujic, A.; Navarro-Rodenas, A.; Nemeth, M. Z.; Nobrega, T. F.; Novakova, A.; Olariaga, I.; Ozerskaya, S. M.; Palma, M. A.; Petters-Vandresen, D. A. L.; Piontelli, E.; Popov, E. S.; Rodriguez, A.; Requejo, O.; Rodrigues, A. C. M.; Rong, I. H.; Roux, J.; Seifert, K. A.; Silva, B. D. B.; Sklenar, F.; Smith, J. A.; Sousa, J. O.; Souza, H. G.; De Souza, J. T.; Svec, K.; Tanchaud, P.; Tanney, J. B.; Terasawa, F.; Thanakitpipattana, D.; Torres-Garcia, D.; Vaca, I.; Va, Universitat Rovira i Virgili, and Crous, P. W.; Wingfield, M. J.; Lombard, L.; Roets, F.; Swart, W. J.; Alvarado, P.; Carnegie, A. J.; Moreno, G.; Luangsa-ard, J.; Thangavel, R.; Alexandrova, A. V.; Baseia, I. G.; Bellanger, J. -M.; Bessette, A. E.; Bessette, A. R.; De la Pena-Lastra, S.; Garcia, D.; Gene, J.; Pham, T. H. G.; Heykoop, M.; Malysheva, E.; Malysheva, V.; Martin, M. P.; Morozova, O. V.; Noisripoom, W.; Overton, B. E.; Rea, A. E.; Sewall, B. J.; Smith, M. E.; Smyth, C. W.; Tasanathai, K.; Visagie, C. M.; Adamcik, S.; Alves, A.; Andrade, J. P.; Aninat, M. J.; Araujo, R. V. B.; Bordallo, J. J.; Boufleur, T.; Baroncelli, R.; Barreto, R. W.; Bolin, J.; Cabero, J.; Cabon, M.; Cafa, G.; Caffot, M. L. H.; Cai, L.; Carlavilla, J. R.; Chavez, R.; de Castro, R. R. L.; Delgat, L.; Deschuyteneer, D.; Dios, M. M.; Dominguez, L. S.; Evans, H. C.; Eyssartier, G.; Ferreira, B. W.; Figueiredo, C. N.; Liu, F.; Fournier, J.; Galli-Terasawa, L. V.; Gil-Duran, C.; Glienke, C.; Goncalves, M. F. M.; Gryta, H.; Guarro, J.; Himaman, W.; Hywel-Jones, N.; Iturrieta-Gonzalez, I.; Ivanushkina, N. E.; Jargeat, P.; Khalid, A. N.; Khan, J.; Kiran, M.; Kiss, L.; Kochkina, G. A.; Kolarik, M.; Kubatova, A.; Lodge, D. J.; Loizides, M.; Luque, D.; Manjon, J. L.; Marbach, P. A. S.; Massola, N. S., Jr.; Mata, M.; Miller, A. N.; Mongkolsamrit, S.; Moreau, P. -A.; Morte, A.; Mujic, A.; Navarro-Rodenas, A.; Nemeth, M. Z.; Nobrega, T. F.; Novakova, A.; Olariaga, I.; Ozerskaya, S. M.; Palma, M. A.; Petters-Vandresen, D. A. L.; Piontelli, E.; Popov, E. S.; Rodriguez, A.; Requejo, O.; Rodrigues, A. C. M.; Rong, I. H.; Roux, J.; Seifert, K. A.; Silva, B. D. B.; Sklenar, F.; Smith, J. A.; Sousa, J. O.; Souza, H. G.; De Souza, J. T.; Svec, K.; Tanchaud, P.; Tanney, J. B.; Terasawa, F.; Thanakitpipattana, D.; Torres-Garcia, D.; Vaca, I.; Va
- Abstract
Novel species of fungi described in this study include those from various countries as follows: Antarctica,Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina,Geastrum wrightii on humus in mixed forest. Australia, Golovinomyces glandulariae on Glandularia aristigera,Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbiaficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil, Bovista psammophila on soil, Fusarium awaxy onrotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae(incl. Hermetothecium gen. nov.) on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannacciifrom pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada, Sorocybe oblongisporaon resin of Picea rubens. Chile, Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma cavernafrom carbonatite in Karst cave. Colombia, Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. CostaRica, Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambiguaand Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood.Guatemala, Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotracyllagen. nov.) and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand, Neoconiothyriumviticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiaeon Phoenix sp. Pakistan, Russula quercus-floribundae on forest floor. Portugal, Trichoderma aestuarinum fromsaline water. Russia, Pluteus liliputi
- Published
- 2019
9. First Report of Colletotrichum nymphaeae Causing Blossom Blight, Peduncle Rot, and Fruit Rot on Pyrus pyrifolia in Brazil
- Author
-
Moreira, R. R., primary, Vandresen, D. P., additional, Glienke, C., additional, and May-De-Mio, L. L., additional
- Published
- 2019
- Full Text
- View/download PDF
10. First report of Phyllosticta citricarpa and description of two new species, P. paracapitalensis and P. paracitricarpa, from citrus in Europe
- Author
-
Guarnaccia, V., Groenewald, J.Z., Li, H., Glienke, C., Carstens, E., Hattingh, V., Fourie, P.H., Crous, P.W., Guarnaccia, V., Groenewald, J.Z., Li, H., Glienke, C., Carstens, E., Hattingh, V., Fourie, P.H., and Crous, P.W.
- Abstract
The genus Phyllosticta occurs worldwide, and contains numerous plant pathogenic, endophytic and saprobic species. Phyllosticta citricarpa is the causal agent of Citrus Black Spot disease (CBS), affecting fruits and leaves of several citrus hosts (Rutaceae), and can also be isolated from asymptomatic citrus tissues. Citrus Black Spot occurs in citrus-growing regions with warm summer rainfall climates, but is absent in countries of the European Union (EU). Phyllosticta capitalensis is morphologically similar to P. citricarpa, but is a non-pathogenic endophyte, commonly isolated from citrus leaves and fruits and a wide range of other hosts, and is known to occur in Europe. To determine which Phyllosticta spp. occur within citrus growing regions of EU countries, several surveys were conducted (2015–2017) in the major citrus production areas of Greece, Italy, Malta, Portugal and Spain to collect both living plant material and leaf litter in commercial nurseries, orchards, gardens, backyards and plant collections. A total of 64 Phyllosticta isolates were obtained from citrus in Europe, of which 52 were included in a multi-locus (ITS, actA, tef1, gapdh, LSU and rpb2 genes) DNA dataset. Two isolates from Florida (USA), three isolates from China, and several reference strains from Australia, South Africa and South America were included in the overall 99 isolate dataset. Based on the data obtained, two known species were identified, namely P. capitalensis (from asymptomatic living leaves of Citrus spp.) in Greece, Italy, Malta, Portugal and Spain, and P. citricarpa (from leaf litter of C. sinensis and C. limon) in Italy, Malta and Portugal. Moreover, two new species were described, namely P. paracapitalensis (from asymptomatic living leaves of Citrus spp.) in Italy and Spain, and P. paracitricarpa (from leaf litter of C. limon) in Greece. On a genotypic level, isolates of P. citricarpa populations from Italy and Malta (MAT1-2-1) represented a single clone, and those from Port
- Published
- 2017
11. Endophytic and pathogenic Phyllosticta species, with reference to those associated with Citrus Black Spot
- Author
-
Glienke, C., Pereira, O.L., Stringari, D., Fabris, J., Kava-Cordeiro, V., Galli-Terasawa, L., Cunnington, J., Shivas, R.G., Groenewald, J.Z., Crous, Pedro Willem, and Naturalis journals & series
- Subjects
Guignardia mangiferae ,fungus guignardia-citricarpa ,plants ,EPS-4 ,anamorphs ,gene genealogies ,Phyllosticta citriasiana ,phylogeny ,diversity ,mangiferae ,Laboratorium voor Phytopathologie ,Guignardia endophyllicola ,Phyllosticta capitalensis ,taxonomy ,banana ,Phyllosticta citricarpa ,calonectria ,Laboratory of Phytopathology ,Phyllosticta citribraziliensis ,Phyllosticta brazilianiae ,mycosphaerella ,Research Article ,Phyllosticta bifrenariae - Abstract
We investigated the identity and genetic diversity of more than 100 isolates belonging to Phyllosticta (teleomorph Guignardia), with particular emphasis on Phyllosticta citricarpa and Guignardia mangiferae s.l. occurring on Citrus. Phyllosticta citricarpa is the causal agent of Citrus Black Spot and is subject to phytosanitary legislation in the EU. This species is frequently confused with a taxon generally referred to as G. mangiferae, the presumed teleomorph of P. capitalensis, which is a non-pathogenic endophyte, commonly isolated from citrus leaves and fruits and a wide range of other hosts. DNA sequence analysis of the nrDNA internal transcribed spacer region (ITS1, 5.8S nrDNA, ITS2) and partial translation elongation factor 1-alpha (TEF1), actin and glyceraldehyde-3-phosphate dehydrogenase (GPDH) genes resolved nine clades correlating to seven known, and two apparently undescribed species. Phyllosticta citribraziliensis is newly described as an endophytic species occurring on Citrus in Brazil. An epitype is designated for P. citricarpa from material newly collected in Australia, which is distinct from P. citriasiana, presently only known on C. maxima from Asia. Phyllosticta bifrenariae is newly described for a species causing leaf and bulb spots on Bifrenaria harrisoniae (Orchidaceae) in Brazil. It is morphologically distinct from P. capitalensis, which was originally described from Stanhopea (Orchidaceae) in Brazil; an epitype is designated here. Guignardia mangiferae, which was originally described from Mangifera indica (Anacardiaceae) in India, is distinguished from the non-pathogenic endophyte, P. brazilianiae sp. nov., which is common on M. indica in Brazil. Furthermore, a combined phylogenetic tree revealed the P. capitalensis s.l. clade to be genetically distinct from the reference isolate of G. mangiferae. Several names are available for this clade, the oldest being P. capitalensis. These results suggest that endophytic, non-pathogenic isolates occurring on a wide host range would be more correctly referred to as P. capitalensis. However, more genes need to be analysed to fully resolve the morphological variation still observed within this clade.
- Published
- 2011
12. A Global Perspective on the Population Structure and Reproductive System of Phyllosticta citricarpa
- Author
-
Carstens, E., primary, Linde, C. C., additional, Slabbert, R., additional, Miles, A. K., additional, Donovan, N. J., additional, Li, H., additional, Zhang, K., additional, Dewdney, M. M., additional, Rollins, J. A., additional, Glienke, C., additional, Schutte, G. C., additional, Fourie, P. H., additional, and McLeod, A., additional
- Published
- 2017
- Full Text
- View/download PDF
13. First report of Phyllosticta citricarpa and description of two new species, P. paracapitalensis and P. paracitricarpa, from citrus in Europe
- Author
-
Guarnaccia, V., primary, Groenewald, J.Z., additional, Li, H., additional, Glienke, C., additional, Carstens, E., additional, Hattingh, V., additional, Fourie, P.H., additional, and Crous, P.W., additional
- Published
- 2017
- Full Text
- View/download PDF
14. Characterization of Monilinia species associated with brown rot in stone fruit in Brazil
- Author
-
Fischer, J. M. M., primary, Savi, D. C., additional, Aluizio, R., additional, May De Mio, L. L., additional, and Glienke, C., additional
- Published
- 2016
- Full Text
- View/download PDF
15. Diaporthaceae 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence
- Author
-
Gomes, R.R., Glienke, C., Videira, S.I.R., Lombard, L., Groenewald, J.Z., Crous, P.W., Gomes, R.R., Glienke, C., Videira, S.I.R., Lombard, L., Groenewald, J.Z., and Crous, P.W.
- Published
- 2015
16. Diaporthaceae translation elongation factor 1-alpha (tef1) gene, partial cds
- Author
-
Gomes, R.R., Glienke, C., Videira, S.I.R., Lombard, L., Groenewald, J.Z., Crous, P.W., Gomes, R.R., Glienke, C., Videira, S.I.R., Lombard, L., Groenewald, J.Z., and Crous, P.W.
- Published
- 2015
17. Diaporthaceae calmodulin (cal) gene, partial cds
- Author
-
Gomes, R.R., Glienke, C., Videira, S.I.R., Lombard, L., Groenewald, J.Z., Crous, P.W., Gomes, R.R., Glienke, C., Videira, S.I.R., Lombard, L., Groenewald, J.Z., and Crous, P.W.
- Published
- 2015
18. Diaporthaceae beta-tubulin gene, partial cds
- Author
-
Gomes, R.R., Glienke, C., Videira, S.I.R., Lombard, L., Groenewald, J.Z., Crous, P.W., Gomes, R.R., Glienke, C., Videira, S.I.R., Lombard, L., Groenewald, J.Z., and Crous, P.W.
- Published
- 2015
19. Diaporthaceae histone H3 gene, partial cds
- Author
-
Gomes, R.R., Glienke, C., Videira, S.I.R., Lombard, L., Groenewald, J.Z., Crous, P.W., Gomes, R.R., Glienke, C., Videira, S.I.R., Lombard, L., Groenewald, J.Z., and Crous, P.W.
- Published
- 2015
20. Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi
- Author
-
Gomes, R.R., Glienke, C., Videira, S.I.R., Lombard, L., Groenewald, J.Z., Crous, P.W., and Naturalis journals & series
- Subjects
south-africa ,multigene analysis ,EPS-4 ,foeniculum-vulgare ,Phomopsis ,north-america ,ribosomal dna ,Laboratorium voor Phytopathologie ,internal transcribed spacer ,species concepts ,Laboratory of Phytopathology ,twig dieback ,Diaporthe ,coelomycete phomopsis ,sp-nov ,Diaporthales ,Multi-Locus Sequence Typing (MLST) ,systematics ,Research Article - Abstract
Diaporthe (Phomopsis) species have often been reported as plant pathogens, non-pathogenic endophytes or saprobes, commonly isolated from a wide range of hosts. The primary aim of the present study was to resolve the taxonomy and phylogeny of a large collection of Diaporthe species occurring on diverse hosts, either as pathogens, saprobes, or as harmless endophytes. In the present study we investigated 243 isolates using multilocus DNA sequence data. Analyses of the rDNA internal transcribed spacer (ITS1, 5.8S, ITS2) region, and partial translation elongation factor 1-alpha (TEF1), beta-tubulin (TUB), histone H3 (HIS) and calmodulin (CAL) genes resolved 95 clades. Fifteen new species are described, namely Diaporthe arengae, D. brasiliensis, D. endophytica, D. hongkongensis, D. inconspicua, D. infecunda, D. mayteni, D. neoarctii, D. oxe, D. paranensis, D. pseudomangiferae, D. pseudophoenicicola, D. raonikayaporum, D. schini and D. terebinthifolii. A further 14 new combinations are introduced in Diaporthe, and D. anacardii is epitypified. Although species of Diaporthe have in the past chiefly been distinguished based on host association, results of this study confirm several taxa to have wide host ranges, suggesting that they move freely among hosts, frequently co-colonising diseased or dead tissue. In contrast, some plant pathogenic and endophytic taxa appear to be strictly host specific. Given this diverse ecological behaviour among members of Diaporthe, future species descriptions lacking molecular data (at least ITS and HIS or TUB) should be strongly discouraged.
- Published
- 2013
21. Genome of Herbaspirillum seropedicae Strain SmR1, a Specialized Diazotrophic Endophyte of Tropical Grasses
- Author
-
PEDROSA, F. O., MONTEIRO, R. A., WASSEM, R., CRUZ, L. M., AYUB, R. A., COLAUTO, N. B., FERNANDEZ, M. A., FUNGARO, M. H. P., GRISARD, E. C., HUNGRIA, M., MADEIRA, H. M. F., NODARI, R. O., OSAKU, C. A., PETZL-ELER, M. L., TERENZI, H., VIEIRA, L. G. E., STEFFENS, M. B. R., WEISS, V. A., PEREIRA, L. F. P., ALMEIDA, M. I. M., ALVES, L. R., MARIN, A., ARAUJO, L. M., BALSANELLI, E., BAURA, V. A., CHUBATSU, L. S., FAORO, H., FAVETTI, A., FRIEDERMANN, G., GLIENKE, C., KARP, S., KAVA-CORDEIRO, V., RAITTZ, R. T., RAMOS, H. J. O., RIBEIRO, E. M. S. F., RIGO, L. U., ROCHA, S. N., SCHWAB, S., SILVA, A. G., TADRA-SFEIR, M. Z., TORRES, R. A., DABUL, A. N. G., SOARES, M. A. M., GASQUES, L. S., GIMENES, C. C. T., VALLE, J. S., CIFERRI, R. R., CORREA, L. C., MURACE, N. K., PAMPHILE, J. A., PATUSSI, E. V., PRIOLI, A. J., PRIOLI, S. M. A., ROCHA, C. L. M. S. C., ARANTES, O. M. N., FURLANETO, M. C., GODOY, L. P., OLIVEIRA, C. E. C., SATORI, D., VILAS-BOAS, L. A., WATANABE, M. A. E., DAMBROS, B. P., GUERRA, M. P., MATHIONI, S. M., SANTOS, K. L., STEINDEL, M., VERNAL, J., BARCELLOS, F. G., CAMPO, R. J., CHUEIRE, L. M. O., NICOLÁS, M. F., PEREIRA-FERRARI, L., SILVA, J. L. da C., GIOPPO, N. M. R., MARGARIDO, V. P., MENCK-SOARES, M. A., PINTO, F. G. S., SIMÃO, R. de C. G., TAKAHASHI, E. K., YATES, M. G., SOUZA, E. M., Universidade Federal do Paraná, Unidade Estadual de Ponta Grossa., Universidade Paranaense, Universidade Estadual de Maringá, and LUIZ FILIPE PROTASIO PEREIRA, SAPC.
- Subjects
Colonization ,Herbaspirillum seropedicae ,Plant recognition ,Nutrient - Abstract
The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Parana´ State Genome Programme?GENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/ hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species.
- Published
- 2011
22. Fungicide resistance and genetic variability in plant pathogenic strains of Guignardia citricarpa
- Author
-
Possiede, Y. M., Gabardo, J., Kava-Cordeiro, V., Galli-Terasawa, L., João Azevedo, and Glienke, C.
- Subjects
Fungicidas ,Azoxystrobin ,Azoxistrobina ,Mancha Preta dos Citros ,Environmental Microbiology ,food and beverages ,Benomyl ,Benomil ,G. citricarpa ,Citrus black spot ,Research Paper ,Fungicides - Abstract
Citrus black spot (CBS) is a plant disease of worldwide occurrence, affecting crops in Africa, Oceania, and South America. In Brazil, climate provides favorable conditions and CBS has spread to the Southeast and South regions. CBS is caused by the fungus Guignardia citricarpa (anamorph: Phyllosticta citricarpa) and its control is based on the use of fungicides, such as benzimidazoles. In South Africa, the disease was kept under control for 10 years with benomyl, until cases of resistance to high concentrations of this fungicide were reported from all citrus-producing areas. Azoxystrobin (a strobilurin) has been found effective in controlling phytopathogens, including CBS, in a wide range of economically important crops. The present study investigated in vitro the effects of the fungicides benomyl and azoxystrobin on 10 strains of G. citricarpa isolated from lesions in citrus plants from Brazil and South Africa. Benomyl at 0.5 µg/mL inhibited mycelial growth in all strains except PC3C, of African origin, which exhibited resistance to concentrations of up to 100.0 µg/mL. The spontaneous mutation frequency for resistance to benomyl was 1.25 ´ 10-7. Azoxystrobin, even at high concentrations, did not inhibit mycelial growth in any of the strains, but significantly reduced sporulation rates, by as much as 100%, at a concentration of 5.0 µg/mL. Variations in sensitivity across strains, particularly to the strobilurin azoxystrobin, are possibly related to genetic variability in G. citricarpa isolates. A Mancha Preta dos Citros (MPC) tem ocorrência mundial afetando a produção de citros na África, Oceania e América do Sul. No Brasil, onde o clima é favorável ao seu desenvolvimento, a doença está espalhada nas regiões Sul e Sudeste. O controle da MPC, causada pelo fungo Guignardia citricarpa (anamorfo: Phyllosticta citricarpa) é baseado na aplicação de fungicidas, como os benzimidazóis. Na África do Sul, após 10 anos de controle da doença com o fungicida benomil, os casos de resistência a altas concentrações deste fungicida atingiram todas as áreas produtoras. O fungicida estrolilurina chamado azoxistrobina tem se mostrado eficiente no controle dos fitopatógenos de uma grande variedade de culturas economicamente importantes, incluindo a MPC. Neste trabalho foram investigados os efeitos in vitro dos fungicidas benomil e azoxistrobina em 10 linhagens de G. citricarpa isoladas de lesões em plantas cítricas no Brasil e na África do Sul. Houve inibição do crescimento micelial a 0,5 µg/mL do fungicida benomil entre as linhagens testadas, com exceção de PC3C de origem sul-africana, que apresentou resistência até a concentração de 100,0 µg/mL de benomil. A freqüência de mutação espontânea para resistência ao benomil foi de 1,25 ´ 10-7. A estrobilurina azoxistrobina, mesmo em altas concentrações, não inibiu o crescimento micelial dos isolados, entretanto reduziu significativamente a produção de esporos, chegando a 100% de inibição em concentrações de 5,0 µg/mL de azoxistrobina. A variação na sensibilidade das linhagens, principalmente com a estrobilurina azoxistrobina, possivelmente está relacionada com a variabilidade genética dos isolados de G. citricarpa.
- Published
- 2009
23. Fungicide resistance and genetic variability in plant pathogenic strains of Guignardia citricarpa
- Author
-
Glienke, C.
- Subjects
FRUTAS CÍTRICAS - Published
- 2009
24. Characterization of Monilinia species associated with brown rot in stone fruit in Brazil.
- Author
-
Fischer, J. M. M., Savi, D. C., Aluizio, R., May De Mio, L. L., and Glienke, C.
- Subjects
MONILINIA ,BROWN rot ,STONE fruit diseases & pests ,BACTERIAL variation ,BACTERIAL genetics - Abstract
Fungi of the Monilinia genus occur worldwide and affect a wide range of economically important stone fruits. Several Monilinia species are responsible for brown rot. Although this disease is common in Brazil, Monilinia sp. genetic variability in Brazilian orchards has generally been poorly characterized. The present study represents the first report on the genetic diversity of Monilinia sp. from Brazilian orchards. The genetic structure of the Brazilian population was also compared to isolates from other countries, together with some morphological characteristics and aggressiveness. Sixty-one isolates belonging to the Monilinia genus were obtained from different orchards in Brazilian states. Ten Monilinia fructicola isolates from the United States and one isolate from a fruit imported into Brazil were also evaluated. Phylogenetic analysis of the ITS1-5.8S- ITS2 region (internal transcribed spacer) clustered most Brazilian and American isolates with M. fructicola authentic strains from Q-Bank. Two isolates (one from an imported fruit) clustered as Monilinia laxa. The results revealed M. fructicola as the prevalent species associated with brown rot in Brazilian orchards. To evaluate the intraspecific diversity of M. fructicola and M. laxa, multigene sequence analysis was performed using ITS1-5.8S- ITS2 and TEF1 (elongation factor 1). Whilst TEF1 is the most phylogenetically informative gene for intraspecific studies of M. fructicola, RPB2 ( RNA polymerase II gene) displayed low variation in intraspecific analysis, but was an informative locus for assigning isolates to M. fructicola or M. laxa species. The amova suggests that Brazilian isolates from the States of the main producing regions belong to a single genetic population, which is genetically distinct from the US (Californian) population of M. fructicola. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
25. 1-vinyl-β-carboline-3-carboxylate isolated from endophytic Microbispora sp. LGMB259, with antibacterial and antifungal activies
- Author
-
Savi, D, primary, Shaaban, KA, additional, Thorson, JS, additional, Glienke, C, additional, and Rohr, J, additional
- Published
- 2014
- Full Text
- View/download PDF
26. The Amsterdam Declaration on Fungal Nomenclature
- Author
-
Hawksworth, D.L., Crous, P.W., Redhead, S.A., Reynolds, D.R., Samson, R.A., Seifert, K.A., Taylor, J.W., Wingfield, M.J., Abaci, O., Aime, C., Asan, A., Bai, F-Y, de Beer, Z.W., Begerow, D., Berikten, D., Boekhout, T., Buchanan, P.K., Burgess, T., Buzina, W., Cai, L., Cannon, P.F., Crane, J.L., Damm, U., Daniel, H-M, van Diepeningen, A.D., Druzhinina, I., Dyer, P.S., Eberhardt, U., Fell, J.W., Frisvad, J.C., Geiser, D.M., Geml, J., Glienke, C., Gräfenhan, T., Groenewald, J.Z., Groenewald, M., de Gruyter, J., Guého-Kellermann, E., Guo, L-D, Hibbett, D.S., Hong, S-B, de Hoog, G.S., Houbraken, J., Huhndorf, S.M., Hyde, K.D., Ismail, A., Johnston, P.R., Kadaifciler, D.G., Kirk, P.M., Kõljalg, U., Kurtzman, C.P., Lagneau, P-E, Lévesque, C.A., Liu, X., Lombard, L., Meyer, W., Miller, A., Minter, D.W., Najafzadeh, M.J., Norvell, L., Ozerskaya, S.M., Öziç, R., Pennycook, S.R., Peterson, S.W., Pettersson, O.V., Quaedvlieg, W., Robert, V.A., Ruibal, C., Schnürer, J., Schroers, H-J, Shivas, R.G., Slippers, B., Spierenburg, H., Takashima, M., Taşkın, E., Thines, M., Thrane, U., Uztan, A.H., van Raak, M., Varga, J., Vasco, A., Verkley, G., Videira, S.I.R., de Vries, R.P., Weir, B.S., Yilmaz, N., Yurkov, A., Zhang, N., Hawksworth, D.L., Crous, P.W., Redhead, S.A., Reynolds, D.R., Samson, R.A., Seifert, K.A., Taylor, J.W., Wingfield, M.J., Abaci, O., Aime, C., Asan, A., Bai, F-Y, de Beer, Z.W., Begerow, D., Berikten, D., Boekhout, T., Buchanan, P.K., Burgess, T., Buzina, W., Cai, L., Cannon, P.F., Crane, J.L., Damm, U., Daniel, H-M, van Diepeningen, A.D., Druzhinina, I., Dyer, P.S., Eberhardt, U., Fell, J.W., Frisvad, J.C., Geiser, D.M., Geml, J., Glienke, C., Gräfenhan, T., Groenewald, J.Z., Groenewald, M., de Gruyter, J., Guého-Kellermann, E., Guo, L-D, Hibbett, D.S., Hong, S-B, de Hoog, G.S., Houbraken, J., Huhndorf, S.M., Hyde, K.D., Ismail, A., Johnston, P.R., Kadaifciler, D.G., Kirk, P.M., Kõljalg, U., Kurtzman, C.P., Lagneau, P-E, Lévesque, C.A., Liu, X., Lombard, L., Meyer, W., Miller, A., Minter, D.W., Najafzadeh, M.J., Norvell, L., Ozerskaya, S.M., Öziç, R., Pennycook, S.R., Peterson, S.W., Pettersson, O.V., Quaedvlieg, W., Robert, V.A., Ruibal, C., Schnürer, J., Schroers, H-J, Shivas, R.G., Slippers, B., Spierenburg, H., Takashima, M., Taşkın, E., Thines, M., Thrane, U., Uztan, A.H., van Raak, M., Varga, J., Vasco, A., Verkley, G., Videira, S.I.R., de Vries, R.P., Weir, B.S., Yilmaz, N., Yurkov, A., and Zhang, N.
- Abstract
The Amsterdam Declaration on Fungal Nomenclature was agreed at an international symposium convened in Amsterdam on 19–20 April 2011 under the auspices of the International Commission on the Taxonomy of Fungi (ICTF). The purpose of the symposium was to address the issue of whether or how the current system of naming pleomorphic fungi should be maintained or changed now that molecular data are routinely available. The issue is urgent as mycologists currently follow different practices, and no consensus was achieved by a Special Committee appointed in 2005 by the International Botanical Congress to advise on the problem. The Declaration recognizes the need for an orderly transitition to a single-name nomenclatural system for all fungi, and to provide mechanisms to protect names that otherwise then become endangered. That is, meaning that priority should be given to the first described name, except where that is a younger name in general use when the first author to select a name of a pleomorphic monophyletic genus is to be followed, and suggests controversial cases are referred to a body, such as the ICTF, which will report to the Committee for Fungi. If appropriate, the ICTF could be mandated to promote the implementation of the Declaration. In addition, but not forming part of the Declaration, are reports of discussions held during the symposium on the governance of the nomenclature of fungi, and the naming of fungi known only from an environmental nucleic acid sequence in particular. Possible amendments to the Draft BioCode (2011) to allow for the needs of mycologists are suggested for further consideration, and a possible example of how a fungus only known from the environment might be described is presented.
- Published
- 2011
27. Canopy structure, ingestive behavior and displacement patterns of beef heifers grazing warm-season pastures.
- Author
-
Glienke, C. L., Rocha, M. G., Pötter, L., Roso, D., Montagner, D. B., and Neto, R. A. Oliveira
- Subjects
CATTLE feeding & feeds ,HEIFERS ,GRAZING ,PLANT canopies - Abstract
Copyright of Arquivo Brasileiro de Medicina Veterinaria e Zootecnia is the property of Universidade Federal de Minas Gerais, Escola de Veterinaria and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2016
- Full Text
- View/download PDF
28. Genetic Diversity of Colletotrichum spp. an Endophytic Fungi in a Medicinal Plant, Brazilian Pepper Tree
- Author
-
Lima, J. S., primary, Figueiredo, J. G., additional, Gomes, R. G., additional, Stringari, D., additional, Goulin, E. H., additional, Adamoski, D., additional, Kava-Cordeiro, V., additional, Galli-Terasawa, L. V., additional, and Glienke, C., additional
- Published
- 2012
- Full Text
- View/download PDF
29. First report of Phyllosticta citricarpaand description of two new species, P. paracapitalensisand P. paracitricarpa, from citrus in Europe
- Author
-
Guarnaccia, V., Groenewald, J.Z., Li, H., Glienke, C., Carstens, E., Hattingh, V., Fourie, P.H., and Crous, P.W.
- Abstract
The genus Phyllostictaoccurs worldwide, and contains numerous plant pathogenic, endophytic and saprobic species. Phyllosticta citricarpais the causal agent of Citrus Black Spot disease (CBS), affecting fruits and leaves of several citrus hosts (Rutaceae), and can also be isolated from asymptomatic citrus tissues. Citrus Black Spot occurs in citrus-growing regions with warm summer rainfall climates, but is absent in countries of the European Union (EU). Phyllosticta capitalensisis morphologically similar to P. citricarpa, but is a non-pathogenic endophyte, commonly isolated from citrus leaves and fruits and a wide range of other hosts, and is known to occur in Europe. To determine which Phyllostictaspp. occur within citrus growing regions of EU countries, several surveys were conducted (2015–2017) in the major citrus production areas of Greece, Italy, Malta, Portugal and Spain to collect both living plant material and leaf litter in commercial nurseries, orchards, gardens, backyards and plant collections. A total of 64 Phyllostictaisolates were obtained from citrus in Europe, of which 52 were included in a multi-locus (ITS, actA, tef1, gapdh, LSU and rpb2genes) DNA dataset. Two isolates from Florida (USA), three isolates from China, and several reference strains from Australia, South Africa and South America were included in the overall 99 isolate dataset. Based on the data obtained, two known species were identified, namely P. capitalensis(from asymptomatic living leaves of Citrusspp.) in Greece, Italy, Malta, Portugal and Spain, and P. citricarpa(from leaf litter of C. sinensisand C. limon) in Italy, Malta and Portugal. Moreover, two new species were described, namely P. paracapitalensis(from asymptomatic living leaves of Citrusspp.) in Italy and Spain, and P. paracitricarpa(from leaf litter of C. limon) in Greece. On a genotypic level, isolates of P. citricarpapopulations from Italy and Malta (MAT1-2-1) represented a single clone, and those from Portugal (MAT1-1-1) another. Isolates of P. citricarpaand P. paracitricarpawere able to induce atypical lesions (necrosis) in artificially inoculated mature sweet orange fruit, while P. capitalensisand P. paracapitalensisinduced no lesions. The Phyllostictaspecies recovered were not found to be widespread, and were not associated with disease symptoms, indicating that the fungi persisted over time, but did not cause disease.
- Published
- 2017
- Full Text
- View/download PDF
30. Agrobacterium tumefaciens-mediated transformation of Guignardia citricarpa
- Author
-
Figueiredo, J.G., primary, Goulin, E.H., additional, Tanaka, F., additional, Stringari, D., additional, Kava-Cordeiro, V., additional, Galli-Terasawa, L.V., additional, Staats, C.C., additional, Schrank, A., additional, and Glienke, C., additional
- Published
- 2010
- Full Text
- View/download PDF
31. Fungicide resistance and genetic variability in plant pathogenic strains of Guignardia citricarpa
- Author
-
Possiede, Y.M., primary, Gabardo, J., additional, Kava-Cordeiro, V., additional, Galli-Terasawa, L.V., additional, Azevedo, J.L., additional, and Glienke, C., additional
- Published
- 2009
- Full Text
- View/download PDF
32. ANTITUMOR, ANTIOXIDANT AND ANTIBACTERIAL ACTIVITIES OF SECONDARY METABOLITES EXTRACTED BY ENDOPHYTIC ACTINOMYCETES ISOLATED FROM VOCHYSIA DIVERGENS.
- Author
-
Savi, D. C., Haminiuk, C. W. I., Sora, G. T. S., Adamoski, D. M., Kenski, J., Winnischofer, S. M. B., and Glienke, C.
- Subjects
ACTINOMYCES ,VOCHYSIACEAE ,ANTINEOPLASTIC agents - Abstract
Endophytic actinomycetes encompass bacterial groups that are well known for the production of a diverse range of secondary metabolites, including various antibiotics, antitumor, immunosuppressive agents, plant growth hormones, and have capacity of survive inside of plants tissues. Vochysia divergens is a Brazilian medicinal plant common isolated in the Pantanal region, and was focus of many researches, but the community endophytic remains unknown. Therefore, the goals of the present work were to carry out an initial assessment of antimicrobial, antitumor and antioxidant activities of crude extract produced by endophytic actinomycetes isolated from Vochysia divergens. Using 16S sequences, 10 isolates were classified as Microbispora sp. and two isolates were classified as Streptomyces sampsonii. The other two isolates were identified as Micromonospora sp. and are apparently undescribed species. The isolates were able to produce secondary metabolites with antioxidant activity, antitumor activity against of Glioblastoma cell and antimicrobial activity against bacteria Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Methicillin-Resistant Staphylococcus aureus and the yeast Candida albicans. Taking into consideration the lack of effective medicaments for the treatment of Glioblastoma multiforme, and the increasing number of bacterial strains expressing resistance, the basic research using microorganisms from unexplored environmental showed can be an alternative to discover new secondary metabolites to treat these diseases. [ABSTRACT FROM AUTHOR]
- Published
- 2015
33. Padrões de deslocamento de bezerras de corte que receberam suplementos isolipídicos em pastagem de azevém.
- Author
-
Sichonany, M. J. O., Rocha, M. G., Pötter, L., Rosa, A. T. N., Glienke, C. L., Ribeiro, L. A., Eloy, L. R., and Hampel, V. S.
- Published
- 2014
- Full Text
- View/download PDF
34. Produtividade de sistemas forrageiros consorciados com leguminosas.
- Author
-
Diehl, M. S., Olivo, C. J., Agnolin, C. A., Bratz, V. F., Bem, C. M., Agüirre, P. F., Glienke, C. L., Correa, M. R., and Serafim, G.
- Published
- 2013
- Full Text
- View/download PDF
35. Características da ingestão de forragem por cordeiras nos estádios fenológicos da pastagem de azevém.
- Author
-
Camargo, D. G., Rocha, M. G., Silva, J. H. S., Glienke, C. L., Confortin, A. C. C., and Machado, J. M.
- Published
- 2012
- Full Text
- View/download PDF
36. Correction and prevention of anemia developing in pregnancy.
- Author
-
Owen, John D., Glienke, Carl F., OWEN, J D, and GLIENKE, C F
- Published
- 1962
37. Endophytic fungi isolated from Vochysia divergens in the pantanal, mato grosso do sul: Diversity, phylogeny and biocontrol of Phyllosticta citricarpa
- Author
-
Hokama, Y. M., Savi, D. C., Assad, B., Aluizio, R., Gomes-Figueiredo, J. A., Douglas Adamoski, Possiede, Y. M., and Glienke, C.
38. Genetic Diversity of Colletotrichum spp. an Endophytic Fungi in a Medicinal Plant, Brazilian Pepper Tree
- Author
-
S. Lima, J., G. Figueiredo, J., G. Gomes, R., Stringari, D., H. Goulin, E., Adamoski, D., Kava-Cordeiro, V., V. Galli-Terasawa, L., and Glienke, C.
- Abstract
In this study, we reported thirty-nine endophytic fungi identified as Colletotrichum spp. associated with Brazilian pepper tree or aroeira (Schinus terebinthifolius Raddi. Anacardiaceae) in Paraná state, Brazil. These endophytes were identified by morphological and molecular methods, using PCR taxon-specific with CaInt/ITS4, CgInt/ITS4, and Col1/ITS4 primers, which amplify specific bands in C. acutatum, C. gloeosporioides lato sensu, and Colletotrichum boninensis, respectively, and by DNA sequence analysis of the nrDNA internal transcribed spacer region (ITS1, 5.8S, ITS2). We also assayed the presence of dsRNA particles in Colletotrichum spp. isolates. Combining both morphological characters and molecular data, we identified the species C. gloeosporioides, C. boninense, and C. simmondsii. However, we found a high genetic variability intraspecific in C. gloeosporioides which suggests the existence of several other species. Bands of double-stranded RNA (dsRNA) were detected in three of thirty-nine isolates. Identity of these bands was confirmed by RNAse, DNAse, and S1 nuclease treatments for the isolates LGMF633, LGMF726, and LGMF729. This is the first study reporting these particles of dsRNA in C. gloeosporioides.
- Published
- 2012
- Full Text
- View/download PDF
39. Fungal Planet description sheets: 951–1041
- Author
-
Li-Zhen Cai, M. Heykoop, Rong Ih, Fengjiang Liu, D. Thanakitpipattana, Gonçalves Mfm, Lorenzo Lombard, Luque D, Carlavilla, Hywel-Jones N, J. Jennifer Luangsa-ard, Malysheva, Nóbrega Tf, Lygia Vitoria Galli-Terasawa, Rea Ae, Švec K, Iuri Goulart Baseia, Bolin J, Tanchaud P, Carlos Gil-Durán, Josep Guarro, E. Piontelli, O. V. Vasilenko, E. F. Malysheva, Jean-Michel Bellanger, Gabriel Moreno, Juan Carlos Zamora, Alena Nováková, Suchada Mongkolsamrit, Araújo Rvb, Juan-Julián Bordallo, Dania García, Miroslav Caboň, Inmaculada Vaca, Christopher W. Smyth, František Sklenář, Keith A. Seifert, Riccardo Baroncelli, Johannes Z. Groenewald, Pablo Alvarado, Giovanni Cafà, C.N. Figueiredo, B. E. Overton, Márk Z. Németh, Ibai Olariaga, Željko Jurjević, de Castro Rrl, Pierre-Arthur Moreau, Neriman Yilmaz, Petters-Vandresen Dal, Levente Kiss, Artur Alves, E. S. Popov, Pedro W. Crous, Alija B. Mujic, José Luis Manjón, Marbach Pas, Jason A. Smith, Renato Chávez, De la Peña-Lastra S, Julieth O. Sousa, Rodrigues Acm, Munazza Kiran, W. Noisripoom, O.V. Morozova, Cobus M. Visagie, Annemieke Verbeken, Himaman W, Deschuyteneer D, Robert W. Barreto, M.A. Palma, De Souza Jt, A. Rodríguez, Lodge Dj, N. E. Ivanushkina, M. Zapata, D. Torres-Garcia, Thaís Regina Boufleur, Requejo Ó, Caffot Mlh, Andrew N. Miller, Michael J. Wingfield, Brent J. Sewall, J.P. Andrade, Eyssartier G, Joey B. Tanney, R. Thangavel, Pham Thg, I. Iturrieta-González, Jolanda Roux, A. V. Alexandrova, Niloofar Vaghefi, Chirlei Glienke, Francois Roets, Khan J, Souza Hg, Abdul Nasir Khalid, Asunción Morte, Harry C. Evans, Svetlana Ozerskaya, Aninat Mj, K. Tasanathai, Matthew E. Smith, Alfonso Navarro-Ródenas, María P. Martín, Slavomír Adamčík, Mata M, B.W. Ferreira, Wijnand J. Swart, Domínguez Ls, Gryta H, A.R. Bessette, Lynn Delgat, Josepa Gené, Julio Cabero, van Iperen Al, Michael Loizides, G. A. Kochkina, Jargeat P, Jacques Fournier, Dios Mm, Angus J. Carnegie, Alena Kubátová, Silva Bdb, A.E. Bessette, Terasawa F, Miroslav Kolařík, Nelson Sidnei Massola, Naturalis Biodiversity Center (The Netherlands), Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), Université Paul-Valéry - Montpellier 3 (UPVM)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Muséum national d'Histoire naturelle (MNHN), Evolution et Diversité Biologique (EDB), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Impact de l'environnement chimique sur la santé humaine - ULR 4483 (IMPECS), Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Westerdijk Fungal Biodiversity Institute - Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Westerdijk Fungal Biodiversity Institute - Collection, CHU Lille, Institut Pasteur de Lille, Université de Lille, Centre d’Ecologie Fonctionnelle et Evolutive [CEFE], IMPact de l'Environnement Chimique sur la Santé humaine (IMPECS) - EA 4483, Muséum national d'Histoire naturelle [MNHN], Evolution et Diversité Biologique [EDB], Crous P.W., Wingfield M.J., Lombard L., Roets F., Swart W.J., Alvarado P., Carnegie A.J., Moreno G., Luangsa-Ard J., Thangavel R., Alexandrova A.V., Baseia I.G., Bellanger J.-M., Bessette A.E., Bessette A.R., De la Pena-Lastra S., Garcia D., Gene J., Pham T.H.G., Heykoop M., Malysheva E., Malysheva V., Martin M.P., Morozova O.V., Noisripoom W., Overton B.E., Rea A.E., Sewall B.J., Smith M.E., Smyth C.W., Tasanathai K., Visagie C.M., Adamcik S., Alves A., Andrade J.P., Aninat M.J., Araujo R.V.B., Bordallo J.J., Boufleur T., Baroncelli R., Barreto R.W., Bolin J., Cabero J., Cabon M., Cafa G., Caffot M.L.H., Cai L., Carlavilla J.R., Chavez R., de Castro R.R.L., Delgat L., Deschuyteneer D., Dios M.M., Dominguez L.S., Evans H.C., Eyssartier G., Ferreira B.W., Figueiredo C.N., Liu F., Fournier J., Galli-Terasawa L.V., Gil-Duran C., Glienke C., Goncalves M.F.M., Gryta H., Guarro J., Himaman W., Hywel-Jones N., Iturrieta-Gonzalez I., Ivanushkina N.E., Jargeat P., Khalid A.N., Khan J., Kiran M., Kiss L., Kochkina G.A., Kolarik M., Kubatova A., Lodge D.J., Loizides M., Luque D., Manjon J.L., Marbach P.A.S., Massola N.S., Mata M., Miller A.N., Mongkolsamrit S., Moreau P.-A., Morte A., Mujic A., Navarro-Rodenas A., Nemeth M.Z., Nobrega T.F., Novakova A., Olariaga I., Ozerskaya S.M., Palma M.A., Petters-Vandresen D.A.L., Piontelli E., Popov E.S., Rodriguez A., Requejo O., Rodrigues A.C.M., Rong I.H., Roux J., Seifert K.A., Silva B.D.B., Sklenar F., Smith J.A., Sousa J.O., Souza H.G., De Souza J.T., Svec K., Tanchaud P., Tanney J.B., Terasawa F., Thanakitpipattana D., Torres-Garcia D., Vaca I., Vaghefi N., van Iperen A.L., Vasilenko O.V., Verbeken A., Yilmaz N., Zamora J.C., Zapata M., Jurjevic Z., and Groenewald J.Z.
- Subjects
ITS nrDNA barcodes ,new taxa ,systematics ,LSU ,Phyllosticta ,BASIDIOMYCOTA ,Evolution ,[SDV]Life Sciences [q-bio] ,1ST REPORT ,CLASSIFICATION ,030308 mycology & parasitology ,03 medical and health sciences ,GENUS ,Behavior and Systematics ,Systematics ,Botany ,ITS nrDNA barcode ,Ecology, Evolution, Behavior and Systematics ,Olea capensis ,Eugenia capensis ,0303 health sciences ,Ecology ,biology ,Pittosporum tenuifolium ,Biology and Life Sciences ,CLADOSPORIUM ,FUNGOS ,BAYESIAN PHYLOGENETIC INFERENCE ,TAXONOMY ,15. Life on land ,Plant litter ,biology.organism_classification ,Eucalyptus ,Corymbia ficifolia ,GUMMY STEM BLIGHT ,SP-NOV ,Geastrum - Abstract
Las nuevas especies de hongos descritas en este estudio incluyen las de varios países de la siguiente manera: Antártida, Apenidiella antarctica de permafrost, Cladosporium fildesense de una esponja marina no identificada. Argentina, Geastrum wrightii sobre humus en bosque mixto. Australia, Golovinomyces glandulariae en Glandularia aristigera, Neoanungitea eucalyptorum en hojas de Eucalyptus grandis, Teratosphaeria corymbiicola en hojas de Corymbia ficifolia, Xylaria eucalypti en hojas de Eucalyptus radiata. Brasil, Bovista psammophila en suelo, Fusarium awaxy en tallos podridos de Zea mays, Geastrum lanuginosum en suelo cubierto de hojarasca, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. Nov.) En Mikania micrantha, Penicillium reconvexovelosoi en suelo, Stagonoscciiops de podnacciiopsis de glicina máx. Islas Vírgenes Británicas, Lactifluus guanensis en suelo., Novel species of fungi described in this study include those from various countries as follows: Antarctica , Apenidiella antarctica from permafrost, Cladosporium fildesense from an unidentified marine sponge. Argentina , Geastrum wrightii on humus in mixed forest. Australia , Golovinomyces glandulariae on Glandularia aristigera, Neoanungitea eucalyptorum on leaves of Eucalyptus grandis, Teratosphaeria corymbiicola on leaves of Corymbia ficifolia, Xylaria eucalypti on leaves of Eucalyptus radiata. Brazil , Bovista psammophila on soil, Fusarium awaxy on rotten stalks of Zea mays, Geastrum lanuginosum on leaf litter covered soil, Hermetothecium mikaniae-micranthae (incl. Hermetothecium gen. nov.)on Mikania micrantha, Penicillium reconvexovelosoi in soil, Stagonosporopsis vannaccii from pod of Glycine max. British Virgin Isles, Lactifluus guanensis on soil. Canada , Sorocybe oblongispora on resin of Picea rubens. Chile , Colletotrichum roseum on leaves of Lapageria rosea. China, Setophoma caverna from carbonatite in Karst cave. Colombia , Lareunionomyces eucalypticola on leaves of Eucalyptus grandis. Costa Rica , Psathyrella pivae on wood. Cyprus, Clavulina iris on calcareous substrate. France, Chromosera ambigua and Clavulina iris var. occidentalis on soil. French West Indies, Helminthosphaeria hispidissima on dead wood. Guatemala , Talaromyces guatemalensis in soil. Malaysia, Neotracylla pini (incl. Tracyllales ord. nov. and Neotra- cylla gen. nov.)and Vermiculariopsiella pini on needles of Pinus tecunumanii. New Zealand , Neoconiothyrium viticola on stems of Vitis vinifera, Parafenestella pittospori on Pittosporum tenuifolium, Pilidium novae-zelandiae on Phoenix sp. Pakistan , Russula quercus-floribundae on forest floor. Portugal, Trichoderma aestuarinum from saline water. Russia, Pluteus liliputianus on fallen branch of deciduous tree, Pluteus spurius on decaying deciduous wood or soil. South Africa, Alloconiothyrium encephalarti, Phyllosticta encephalarticola and Neothyrostroma encephalarti (incl. Neothyrostroma gen. nov.)on leaves of Encephalartos sp., Chalara eucalypticola on leaf spots of Eucalyptus grandis × urophylla, Clypeosphaeria oleae on leaves of Olea capensis, Cylindrocladiella postalofficium on leaf litter of Sideroxylon inerme, Cylindromonium eugeniicola (incl. Cylindromonium gen. nov.)on leaf litter of Eugenia capensis, Cyphellophora goniomatis on leaves of Gonioma kamassi, Nothodactylaria nephrolepidis (incl. Nothodactylaria gen. nov. and Nothodactylariaceae fam. nov.)on leaves of Nephrolepis exaltata , Falcocladium eucalypti and Gyrothrix eucalypti on leaves of Eucalyptus sp., Gyrothrix oleae on leaves of Olea capensis subsp. macrocarpa, Harzia metrosideri on leaf litter of Metrosideros sp., Hippopotamyces phragmitis (incl. Hippopota-myces gen. nov.)on leaves of Phragmites australis, Lectera philenopterae on Philenoptera violacea , Leptosillia mayteni on leaves of Maytenus heterophylla , Lithohypha aloicola and Neoplatysporoides aloes on leaves of Aloe sp., Millesimomyces rhoicissi (incl. Millesimomyces gen. nov.) on leaves of Rhoicissus digitata, Neodevriesia strelitziicola on leaf litter of Strelitzia nicolai, Neokirramyces syzygii (incl. Neokirramyces gen. nov.)on leaf spots of Syzygium sp., Nothoramichloridium perseae (incl. Nothoramichloridium gen.nov.and Anungitiomycetaceae fam. nov.)on leaves of Persea americana, Paramycosphaerella watsoniae on leaf spots of Watsonia sp., Penicillium cuddlyae from dog food, Podocarpomyces knysnanus (incl. Podocarpomyces, gen.nov.)on leaves of Podocarpus falcatus, Pseudocercospora heteropyxidicola on leaf spots of Heteropyxis natalensis, Pseudopenidiella podocarpi, Scolecobasidium podocarpi and Ceramothyrium podocarpicola on leaves of Podocarpus latifolius, Scolecobasidium blechni on leaves of Blechnum capense, Stomiopeltis syzygii on leaves of Syzygium chordatum, Strelitziomyces knysnanus (incl. Strelitziomyces gen.nov.)on leaves of Strelitzia alba, Talaromyces clemensii from rotting wood in goldmine, Verrucocladosporium visseri on Carpobrotus edulis. Spain, Boletopsis mediterraneensis on soil, Calycina cortegadensisi on a living twig of Castanea sativa, Emmonsiellopsis tuberculata in fluvial sediments, Mollisia cor-tegadensis on dead attached twig of Quercus robur, Psathyrella ovispora on soil, Pseudobeltrania lauri on leaf litter of Laurus azorica, Terfezia dunensis in soil, Tuber lucentum in soil, Venturia submersa on submerged plant debris. Thailand,/b>, Cordyceps jakajanicola on cicada nymph, Cordyceps kuiburiensis on spider, Distoseptispora caricis on leaves of Carex sp., Ophiocordyceps khonkaenensis on cicada nymph. USA, Cytosporella juncicola and Davidiello- myces juncicola on culms of Juncus effusus, Monochaetia massachusettsianum from air sample, Neohelicomyces melaleucae and Periconia neobrittanica on leaves of Melaleuca styphelioides ?? lanceolata, Pseudocamarosporium eucalypti on leaves of Eucalyptus sp., Pseudogymnoascus lindneri from sediment in a mine, Pseudogymnoascus turneri from sediment in a railroad tunnel, Pulchroboletus sclerotiorum on soil, Zygosporium pseudomasonii on leaf of Serenoa repens. Vietnam, Boletus candidissimus and Veloporphyrellus vulpinus on soil.Morphological and culture characteristics are supported by DNA barcodes.
- Published
- 2019
40. The serine-threonine protein kinase Snf1 orchestrates the expression of plant cell wall-degrading enzymes and is required for full virulence of the maize pathogen Colletotrichum graminicola.
- Author
-
de Oliveira Silva A, Fernando Devasahayam BR, Aliyeva-Schnorr L, Glienke C, and Deising HB
- Subjects
- Virulence genetics, Cell Wall genetics, Cell Wall metabolism, Saccharomyces cerevisiae genetics, Protein Serine-Threonine Kinases genetics, Protein Serine-Threonine Kinases metabolism, Plant Diseases genetics, Fungal Proteins genetics, Fungal Proteins metabolism, Zea mays genetics, Colletotrichum
- Abstract
Colletotrichum graminicola, the causal agent of maize leaf anthracnose and stalk rot, differentiates a pressurized infection cell called an appressorium in order to invade the epidermal cell, and subsequently forms biotrophic and necrotrophic hyphae to colonize the host tissue. While the role of force in appressorial penetration is established (Bechinger et al., 1999), the involvement of cell wall-degrading enzymes (CWDEs) in this process and in tissue colonization is poorly understood, due to the enormous number and functional redundancy of these enzymes. The serine/threonine protein kinase gene SNF1 identified in Sucrose Non-Fermenting yeast mutants mediates de-repression of catabolite-repressed genes, including many genes encoding CWDEs. In this study, we identified and functionally characterized the SNF1 homolog of C. graminicola. Δsnf1 mutants showed reduced vegetative growth and asexual sporulation rates on media containing polymeric carbon sources. Microscopy revealed reduced efficacies in appressorial penetration of cuticle and epidermal cell wall, and formation of unusual medusa-like biotrophic hyphae by Δsnf1 mutants. Severe and moderate virulence reductions were observed on intact and wounded leaves, respectively. Employing RNA-sequencing we show for the first time that more than 2,500 genes are directly or indirectly controlled by Snf1 in necrotrophic hyphae of a plant pathogenic fungus, many of which encode xylan- and cellulose-degrading enzymes. The data presented show that Snf1 is a global regulator of gene expression and is required for full virulence., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024. Published by Elsevier Inc.)
- Published
- 2024
- Full Text
- View/download PDF
41. Paecilins Q and R: Antifungal Chromanones Produced by the Endophytic Fungus Pseudofusicoccum stromaticum CMRP4328.
- Author
-
Iantas J, Savi DC, Ponomareva LV, Thorson JS, Rohr J, Glienke C, and Shaaban KA
- Subjects
- Plant Diseases prevention & control, Plant Diseases microbiology, Endophytes, Antifungal Agents pharmacology, Citrus
- Abstract
Chemical investigation of the endophyte Pseudofusicoccum stromaticum CMRP4328 isolated from the medicinal plant Stryphnodendron adstringens yielded ten compounds, including two new dihydrochromones, paecilins Q (1: ) and R (2: ). The antifungal activity of the isolated metabolites was assessed against an important citrus pathogen, Phyllosticta citricarpa . Cytochalasin H (6: ) (78.3%), phomoxanthone A (3: ) (70.2%), phomoxanthone B (4: ) (63.1%), and paecilin Q (1: ) (50.5%) decreased in vitro the number of pycnidia produced by P. citricarpa , which are responsible for the disease dissemination in orchards. In addition, compounds 3: and 6: inhibited the development of citrus black spot symptoms in citrus fruits. Cytochalasin H (6: ) and one of the new compounds, paecilin Q (1: ), appear particularly promising, as they showed strong activity against this citrus pathogen, and low or no cytotoxic activity. The strain CMRP4328 of P. stromaticum and its metabolites deserve further investigation for the control of citrus black spot disease., Competing Interests: The authors declare that they have no conflict of interest., (Thieme. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
42. The Friend Within: Endophytic Bacteria as a Tool for Sustainability in Strawberry Crops.
- Author
-
de Moura GGD, de Barros AV, Machado F, da Silva Dambroz CM, Glienke C, Petters-Vandresen DAL, Alves E, Schwan RF, Pasqual M, and Dória J
- Abstract
Strawberry ( Fragaria x ananassa , Duch.) is an important crop worldwide. However, since it is a highly demanding crop in terms of the chemical conditions of the substrate, a large part of strawberry production implies the application of large amounts of fertilizers in the production fields. This practice can cause environmental problems, in addition to increases in the fruit's production costs. In this context, applying plant growth-promoting bacteria in production fields can be an essential strategy, especially thanks to their ability to stimulate plant growth via different mechanisms. Therefore, this study aimed to test in vitro and in vivo the potential of bacteria isolated from strawberry leaves and roots to directly promote plant growth. The isolates were tested in vitro for their ability to produce auxins, solubilize phosphate and fix nitrogen. Isolates selected in vitro were tested on strawberry plants to promote plant growth and increase the accumulation of nitrogen and phosphorus in the leaves. The tested isolates showed an effect on plant growth according to biometric parameters. Among the tested isolates, more expressive results for the studied variables were observed with the inoculation of the isolate MET12M2, belonging to the species Brevibacillus fluminis . In general, bacterial inoculation induced strain-dependent effects on strawberry growth. In vitro and in vivo assays showed the potential use of the B. fluminis MET12M2 isolate as a growth promoter for strawberries.
- Published
- 2022
- Full Text
- View/download PDF
43. Evolutionary relationships of adenylation domains in fungi.
- Author
-
Noriler S, Navarro-Muñoz JC, Glienke C, and Collemare J
- Subjects
- Phylogeny, Coenzyme A, Genomics, Amino Acids
- Abstract
Non-ribosomal peptide synthetases (NRPSs) and NRPS-like enzymes are abundant in microbes as they are involved in the production of primary and secondary metabolites. In contrast to the well-studied NRPSs, known to produce non-ribosomal peptides, NRPS-like enzymes exhibit more diverse activities and their evolutionary relationships are unclear. Here, we present the first in-depth phylogenetic analysis of fungal NRPS-like A domains from functionally characterized pathways, and their relationships to characterized A domains found in fungal NRPSs. This study clearly differentiated amino acid reductases, including NRPSs, from CoA/AMP ligases, which could be divided into 10 distinct phylogenetic clades that reflect their conserved domain organization, substrate specificity and enzymatic activity. In particular, evolutionary relationships of adenylate forming reductases could be refined and explained the substrate specificity difference. Consistent with their phylogeny, the deduced amino acid code of A domains differentiated amino acid reductases from other enzymes. However, a diagnostic code was found for α-keto acid reductases and clade 7 CoA/AMP ligases only. Comparative genomics of loci containing these enzymes revealed that they can be independently recruited as tailoring genes in diverse secondary metabolite pathways. Based on these results, we propose a refined and clear phylogeny-based classification of A domain-containing enzymes, which will provide a robust framework for future functional analyses and engineering of these enzymes to produce new bioactive molecules., (Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
44. Discerning the global phylogeographic distribution of Phyllosticta citricarpa by means of whole genome sequencing.
- Author
-
Coetzee B, Carstens E, Fourie PH, Dewdney MM, Rollins JA, Manzano León AM, Donovan NJ, Glienke C, Miles AK, Li H, and Bester-van der Merwe AE
- Subjects
- Plant Diseases microbiology, South Africa, Whole Genome Sequencing, Ascomycota genetics, Citrus microbiology
- Abstract
Phyllosticta citricarpa is a fungal pathogen causing citrus black spot (CBS). As a regulated pest in some countries, the presence of the pathogen limits the export of fruit and is therefore of agricultural and economic importance. In this study, we used high throughput sequencing data to infer the global phylogeographic distribution of this pathogen, including 71 isolates from eight countries, Argentina, Australia, Brazil, China, Cuba, Eswatini, South Africa and the United States of America. We assembled draft genomes and used a pairwise read mapping approach for the detection and enumeration of variants between isolates. We performed SSR marker discovery based on the assembled genome with the best assembly statistics, and generated genotype profiles for all isolates with 1987 SSR markers in silico. Furthermore, we identified 32,560 SNPs relative to a reference sequence followed by population genetic analyses based on the three datasets; pairwise variant counts, SSR genotypes and SNP genotypes. All three analysis approaches gave similar overall results. Possible pathways of dissemination among the populations from China, Australia, southern Africa and the Americas are postulated. The Chinese population is the most diverse, and is genetically the furthest removed from all other populations, and is therefore considered the closest to the origin of the pathogen. Isolates from Australia, Eswatini and the South African province Mpumalanga are closely associated and clustered together with those from Argentina and Brazil. The Eastern Cape, North West, and KwaZulu-Natal populations in South Africa grouped in another cluster, while isolates from Limpopo are distributed between the two aforementioned clusters. Southern African populations showed a close relationship to populations in North America, and could be a possible source of P. citricarpa populations that are now found in North America. This study represents the largest whole genome sequencing survey of P. citricarpa to date and provides a more comprehensive assessment of the population genetic diversity and connectivity of P. citricarpa from different geographic origins. This information could further assist in a better understanding of the epidemiology of the CBS pathogen, its long-distance dispersal and dissemination pathways, and can be used to refine phytosanitary regulations and management programmes for the disease., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
45. Endophytes of Brazilian Medicinal Plants With Activity Against Phytopathogens.
- Author
-
Iantas J, Savi DC, Schibelbein RDS, Noriler SA, Assad BM, Dilarri G, Ferreira H, Rohr J, Thorson JS, Shaaban KA, and Glienke C
- Abstract
Plant diseases caused by phytopathogens are responsible for significant crop losses worldwide. Resistance induction and biological control have been exploited in agriculture due to their enormous potential. In this study, we investigated the antimicrobial potential of endophytic fungi of leaves and petioles of medicinal plants Vochysia divergens and Stryphnodendron adstringens located in two regions of high diversity in Brazil, Pantanal, and Cerrado, respectively. We recovered 1,304 fungal isolates and based on the characteristics of the culture, were assigned to 159 phenotypes. One isolate was selected as representative of each phenotype and studied for antimicrobial activity against phytopathogens. Isolates with better biological activities were identified based on DNA sequences and phylogenetic analyzes. Among the 159 representative isolates, extracts from 12 endophytes that inhibited the mycelial growth (IG) of Colletotrichum abscissum (≥40%) were selected to expand the antimicrobial analysis. The minimum inhibitory concentrations (MIC) of the extracts were determined against citrus pathogens, C. abscissum , Phyllosticta citricarpa and Xanthomonas citri subsp. citri and the maize pathogen Fusarium graminearum . The highest activity against C. abscissum were from extracts of Pseudofusicoccum stromaticum CMRP4328 (IG: 83% and MIC: 40 μg/mL) and Diaporthe vochysiae CMRP4322 (IG: 75% and MIC: 1 μg/mL), both extracts also inhibited the development of post-bloom fruit drop symptoms in citrus flowers. The extracts were promising in inhibiting the mycelial growth of P. citricarpa and reducing the production of pycnidia in citrus leaves. Among the isolates that showed activity, the genus Diaporthe was the most common, including the new species D. cerradensis described in this study. In addition, high performance liquid chromatography, UV detection, and mass spectrometry and thin layer chromatography analyzes of extracts produced by endophytes that showed high activity, indicated D. vochysiae CMRP4322 and P. stromaticum CMRP4328 as promising strains that produce new bioactive natural products. We report here the capacity of endophytic fungi of medicinal plants to produce secondary metabolites with biological activities against phytopathogenic fungi and bacteria. The description of the new species D. cerradensis , reinforces the ability of medicinal plants found in Brazil to host a diverse group of fungi with biotechnological potential., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Iantas, Savi, Schibelbein, Noriler, Assad, Dilarri, Ferreira, Rohr, Thorson, Shaaban and Glienke.)
- Published
- 2021
- Full Text
- View/download PDF
46. Molecular Identification and Antimicrobial Activity of Foliar Endophytic Fungi on the Brazilian Pepper Tree (Schinus terebinthifolius) Reveal New Species of Diaporthe.
- Author
-
Dos Santos GD, Gomes RR, Gonçalves R, Fornari G, Maia BHLNS, Schmidt-Dannert C, Gaascht F, Glienke C, Schneider GX, Colombo IR, Degenhardt-Goldbach J, Pietsch JLM, Costa-Ribeiro MCV, and Vicente VA
- Subjects
- Ascomycota, Endophytes genetics, Escherichia coli, Fungi, Microbial Sensitivity Tests, Phylogeny, Staphylococcus aureus, Anacardiaceae, Anti-Infective Agents pharmacology
- Abstract
The presence of endophytes promotes the biosynthesis of secondary plant metabolites. In this study, endophytic fungi were isolated from Schinus terebinthifolius to investigate their diversity and antimicrobial activity. A total of 272 endophytic fungi was obtained. These belonged to nine different genera: Alternaria, Colletotrichum, Diaporthe, Epicoccum, Fusarium, Pestalotiopsis, Phyllosticta, Xylaria, and Cryptococcus. Notably, Diaporthe foliorum was introduced as a new species, with accompanying morphological descriptions, illustrations, and a multigene phylogenetic analysis (using ITS, TEF1, TUB, HIS, and CAL). Among the 26 fungal morphotypes evaluated for antimicrobial activity, five strains had inhibitory effects against pathogenic microorganisms. Xylaria allantoidea CMRP1424 extracts showed antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Diaporthe terebinthifolii CMRP1430 and CMRP1436 showed antimicrobial activity against E. coli, P. aeruginosa, S. aureus, and C. albicans. Meanwhile, D. foliorum CMRP1321 and D. malorum CMRP1438 extracts inhibited C. albicans alone. Three classes of chemical compounds were identified in D. foliorum CMRP1438 extracts: ferric chloride, potassium hydroxide, and vanillin-sulfuric acid. In conclusion, the endophytic isolates were able to produce bioactive agents with pharmaceutical potential as antibacterial and antifungal agents. As such, they may provide fresh leads in the search for new, biological sources of drug therapies., (© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2021
- Full Text
- View/download PDF
47. Endophytic actinobacteria of Hymenachne amplexicaulis from the Brazilian Pantanal wetland produce compounds with antibacterial and antitumor activities.
- Author
-
Assad BM, Savi DC, Biscaia SMP, Mayrhofer BF, Iantas J, Mews M, de Oliveira JC, Trindade ES, and Glienke C
- Subjects
- Actinobacteria classification, Actinobacteria isolation & purification, Actinobacteria metabolism, Animals, Anti-Bacterial Agents chemistry, Anti-Bacterial Agents metabolism, Antineoplastic Agents chemistry, Antineoplastic Agents metabolism, Brazil, Cell Line, Tumor, Cell Survival drug effects, Endophytes classification, Endophytes isolation & purification, Endophytes metabolism, Enterococcus drug effects, Enterococcus growth & development, Humans, Methicillin-Resistant Staphylococcus aureus drug effects, Methicillin-Resistant Staphylococcus aureus growth & development, Mice, Wetlands, Actinobacteria chemistry, Anti-Bacterial Agents pharmacology, Antineoplastic Agents pharmacology, Endophytes chemistry, Poaceae microbiology
- Abstract
The increase in the number of deaths from infections caused by multidrug-resistant bacteria and cancer diseases highlights the need for new molecules with biological activity. Actinobacteria represent a potential source of new compounds, as these microorganisms have already produced a great diversity of clinically employed antibiotics. Endophytes from unexplored biomes, such as the Pantanal (the largest wetland in the world), can be a source of new molecules. Hymenachne amplexicaulis is among the unexplored native plants of the Pantanal in terms of its endophytic community. This plant is considered a weed in other countries due to its ability to adapt and compete with native plants, and there is evidence to suggest that the endophytic community of H. amplexicaulis plays an important role in this competitiveness. To explore its therapeutic potential, the present study isolated, identified (using partial sequence of the 16S rDNA) and bioprospected H. amplexicaulis endophytic actinobacteria. Ten isolates belonging to the genera Streptomyces, Microbispora, Leifsonia, and Verrucosispora were obtained from root fragments. The susceptibility profile of the isolates to the different classes of antibiotics was evaluated, with 80 % of the isolates showing resistance to the antibiotics Nalidixic Acid, Ampicillin, Chloramphenicol, Oxacillin, and Rifampicin. To assess antibacterial and antitumor activities, methanolic extracts were obtained by fermentation in SG culture medium at 36 °C at 180 rpm for 10 days. The extract produced from the S. albidoflavus CMRP4854 isolate was the only one to show activity against the Gram-negative bacterium Acinetobacter baumanii. Due to the great clinical importance of this pathogen and the difficulty in obtaining active compounds against it, the CMRP4854 isolate should be further investigated for the identification of active compounds and mode of action. We also emphasize the results obtained by the extract of the isolates Streptomyces albidoflavus CMRP4852 and Verrucosispora sp. CMRP4860 that presented antibacterial effect against Methicilin-resistant Staphylococcus aureus (MRSA) (MIC: 1.5 μg/mL and 13 μg/mL, respectively) and Vancomycin-resistant Enterococcus (VRE) (MIC: 40 μg/mL for both extracts). Extracts (200 μg/mL) of these two endophytes also showed selective cytotoxicity action against murine B16-F10 melanoma cells. However, the CMRP4852 extract also affected the density of normal cells. Due to these results, the crude extract of isolate CMRP4860 Verrucosispora sp., which was the only one that presented cytotoxicity and reduced cell density only in tumor cells, was selected for subsequent analysis involving scale-up fermentation of the CMRP4860 resulting in 9 fractions that were tested against both bacteria and tumor cells, with particular fractions showing promise and meriting further investigation. Taken together, the results of this study not only show for the first time that the endophytic community of H. amplexicaulis actinobacteria can produce secondary metabolites that potentially possess important antibacterial and cytotoxic properties, but also reinforce the pressing need to conserve biomes such as the Brazilian Pantanal., (Copyright © 2021. Published by Elsevier GmbH.)
- Published
- 2021
- Full Text
- View/download PDF
48. Mating-type locus rearrangements and shifts in thallism states in Citrus-associated Phyllosticta species.
- Author
-
Petters-Vandresen DAL, Rossi BJ, Groenewald JZ, Crous PW, Machado MA, Stukenbrock EH, and Glienke C
- Subjects
- Ascomycota genetics, Ascomycota growth & development, Ascomycota pathogenicity, Citrus genetics, Citrus growth & development, Plant Diseases microbiology, Citrus microbiology, Genes, Mating Type, Fungal genetics, Plant Diseases genetics, Reproduction genetics
- Abstract
Currently, eight Phyllosticta species are known to be associated with several Citrus hosts, incorporating diverse lifestyles: while some of them are endophytic (P. capitalensis and P. citribraziliensis), others are pathogenic (P. citriasiana, P. citricarpa, P. citrichinaensis and P. paracitricarpa). Sexual reproduction plays a key role in the interaction between these Phyllosticta species and their Citrus hosts, especially for the spread and persistence of the pathogenic species in the environment. Given this, differences in sexual reproduction strategies could be related to the differences in lifestyles. To evaluate this hypothesis, we characterized the mating-type loci of six Citrus-associated Phyllosticta species from whole genome assemblies. Mating-type genes in the Citrus-associated Phyllosticta species are highly variable in their sequence content, but the genomic locations and organization of the mating-type loci are conserved. Phyllosticta citriasiana, P. citribraziliensis, P. citricarpa and P. paracitricarpa are heterothallic, while P. capitalensis and P. citrichinaensis are homothallic. In addition, the P. citrichinaensis MAT1-2 idiomorph occurs in a separate location from the mating-type locus. Ancestral state reconstruction suggests that homothallism is the ancestral thallism state in Phyllosticta, with a shift to heterothallism in Phyllosticta species that are pathogenic to Citrus. Moreover, the homothallic strategies of P. capitalensis and P. citrichinaensis result from independent evolutionary events, as P. capitalensis locus likely represents the ancestral state, and P. citrichinaensis homothallism has risen through a reversion in a heterothallic ancestor and underwent remodelling events. As the pathogenic species P. citriasiana, P. citricarpa and P. paracitricarpa are heterothallic and incapable of selfing, disease management practices focused in preventing the occurrence of sexual reproduction could assist in the control of Citrus Black Spot and Citrus Tan Spot diseases. This study emphasizes the importance of studying Citrus-Phyllosticta interactions under evolutionary and genomic perspectives, as these approaches can provide valuable information about the association between Phyllosticta species and their hosts, and also serve as guidance for the improvement of disease management practices., (Copyright © 2020 Elsevier Inc. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
49. Molecular Characterization of the Purine Degradation Pathway Genes ALA1 and URE1 of the Maize Anthracnose Fungus Colletotrichum graminicola Identified Urease as a Novel Target for Plant Disease Control.
- Author
-
Benatto Perino EH, Glienke C, de Oliveira Silva A, and Deising HB
- Subjects
- Plant Diseases, Purines, Urease, Zea mays, Colletotrichum
- Abstract
Fungal pathogenicity is governed by environmental factors, with nitrogen playing a key role in triggering pathogenic development. Spores germinating on the plant cuticle are exposed to a nitrogen-free environment, and reprograming of nitrogen metabolism is required for bridging the time needed to gain access to the nitrogen sources of the host. Although degradation of endogenous purine bases efficiently generates ammonium and may allow the fungus to bridge the preinvasion nitrogen gap, the roles of the purine degradation pathway and of the key genes encoding allantoicase and urease are largely unknown in plant pathogenic fungi. To investigate the roles of the allantoicase and urease genes ALA1 and URE1 of the maize anthracnose fungus Colletotrichum graminicola in pathogenic development, we generated ALA1 : eGFP and URE1 : eGFP fusion strains as well as allantoicase- and urease-deficient mutants. Virulence assays, live cell, and differential interference contrast imaging, chemical complementation and employment of a urease inhibitor showed that the purine degradation genes ALA1 and URE1 are required for bridging nitrogen deficiency at early phases of the infection process and for full virulence. Application of the urease inhibitor acetohydroxamic acid did not only protect maize from C. graminicola infection, but also interfered with the infection process of the wheat powdery mildew fungus Blumeria graminis f. sp. tritici , the maize and broad bean rusts Puccinia sorghi and Uromyces viciae-fabae , and the potato late blight pathogen Phytophthora infestans . Our data strongly suggest that inhibition of the purine degradation pathway might represent a novel approach to control plant pathogenic fungi and oomycetes.
- Published
- 2020
- Full Text
- View/download PDF
50. Dihydroisocoumarins produced by Diaporthe cf. heveae LGMF1631 inhibiting citrus pathogens.
- Author
-
Savi DC, Noriler SA, Ponomareva LV, Thorson JS, Rohr J, Glienke C, and Shaaban KA
- Subjects
- Ascomycota physiology, Colletotrichum drug effects, Colletotrichum physiology, Fabaceae microbiology, Fruit microbiology, Fungicides, Industrial chemistry, Fungicides, Industrial metabolism, Isocoumarins chemistry, Isocoumarins metabolism, Phylogeny, Plant Diseases microbiology, Plant Leaves microbiology, Saccharomycetales classification, Saccharomycetales genetics, Saccharomycetales isolation & purification, Ascomycota drug effects, Citrus microbiology, Fungicides, Industrial pharmacology, Isocoumarins pharmacology, Saccharomycetales chemistry
- Abstract
Citrus black spot (CBS) and post-bloom fruit drop (PFD), caused by Phyllosticta citricarpa and Colletotrichum abscissum, respectively, are two important citrus diseases worldwide. CBS depreciates the market value and prevents exportation of citrus fruits to Europe. PFD under favorable climatic conditions can cause the abscission of flowers, thereby reducing citrus production by 80%. An ecofriendly alternative to control plant diseases is the use of endophytic microorganisms, or secondary metabolites produced by them. Strain LGMF1631, close related to Diaporthe cf. heveae 1, was isolated from the medicinal plant Stryphnodendron adstringens and showed significant antimicrobial activity, in a previous study. In view of the potential presented by strain LGMF1631, and the absence of chemical data for secondary metabolites produced by D. cf. heveae, we decided to characterize the compounds produced by strain LGMF1631. Based on ITS, TEF1, and TUB phylogenetic analysis, strain LGMF1631 was confirmed to belong to D. cf. heveae 1. Chemical assessment of the fungal strain LGMF1631 revealed one new seco-dihydroisocoumarin [cladosporin B (1)] along with six other related, already known dihydroisocoumarin derivatives and one monoterpene [(-)-(1S,2R,3S,4R)-p-menthane-1,2,3-triol (8)]. Among the isolated metabolites, compound 5 drastically reduced the growth of both phytopathogens in vitro and completely inhibited the development of CBS and PFD in citrus fruits and flowers. In addition, compound 5 did not show toxicity against human cancer cell lines or citrus leaves, at concentrations higher than used for the inhibition of the phytopathogens, suggesting the potential use of (-)-(3R,4R)-cis-4-hydroxy-5-methylmellein (5) to control citrus diseases.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.