42 results on '"Giuseppe D. Racca"'
Search Results
2. Euclid mission status
- Author
-
Marc Sauvage, J. Hoar, Stefanie Wachter, A. Short, L. Gaspar Venancio, Warren Holmes, G. Saavedra Criado, Mark Cropper, Yannick Mellier, P. Musi, Knud Jahnke, Ulf E. Israelsson, Luca Stagnaro, R. Kohley, V. Cazaubiel, Michael Seiffert, Anne Ealet, Guillermo Buenadicha, Giuseppe D. Racca, J. Amiaux, Michel Berthé, R. Vavrek, Cyril Colombo, S. Pottinger, S. Niemi, P. Strada, Jean-Christophe Salvignol, R. J. Laureijs, Alberto Anselmi, Thierry Maciaszek, J. Lorenzo Alvarez, Fabio Pasian, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Observatoire Astronomique de Marseille Provence (OAMP), and Université de Provence - Aix-Marseille 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Scientific instrument ,Spacecraft ,Computer science ,Payload ,business.industry ,ComputerApplications_COMPUTERSINOTHERSYSTEMS ,law.invention ,Telescope ,Spitzer Space Telescope ,law ,[SDU]Sciences of the Universe [physics] ,Systems engineering ,Key (cryptography) ,business ,Simulation - Abstract
International audience; In June 2012, Euclid, ESA's Cosmology mission was approved for implementation. Afterwards the industrial contracts were signed for the payload module and the spacecraft prime, and the mission requirements consolidated. We present the status of the mission in the light of the design solutions adopted by the contractors. The performances of the spacecraft in its operation, the telescope assembly, the scientific instruments as well as the data-processing have been carefully budgeted to meet the demanding scientific requirements. We give an overview of the system and where necessary the key items for the interfaces between the subsystems.
- Published
- 2022
3. Status of the performance of the Euclid spacecraft
- Author
-
R. Vavrek, Tobias Boenke, A. Short, R. J. Laureijs, Paolo Strada, Giuseppe D. Racca, Luis M. Gaspar Venancio, Luciana Bonino, J. Amiaux, and Lionel Carminati
- Subjects
Space segment ,Spacecraft ,Computer science ,business.industry ,Payload ,Dark matter ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,law.invention ,Telescope ,Service module ,law ,Physics::Space Physics ,Dark energy ,Astrophysics::Earth and Planetary Astrophysics ,Aerospace engineering ,business - Abstract
The Euclid mission, of which the spacecraft is the essential space segment, is being developed to undertake the challenges of mapping the dark energy and dark matter distribution in the Universe. As the launch date is approaching (2nd half of 2022), the development of the spacecraft has successfully passed critical milestones with the manufacturing and integration of the telescope, instruments and service module. Each sub-element of the spacecraft has been qualified and their performance assessed. The assembly of the complete payload and spacecraft is currently on-going. The integrated optical performance end to end of the payload module is currently being assessed based on the as-built knowledge of the parts of the telescope and instruments.
- Published
- 2020
4. Euclid preparation: VII. Forecast validation for Euclid cosmological probes
- Author
-
Ivan Lloro, Peter Schneider, S. Ilić, Elisabetta Maiorano, Andrea Zacchei, E. Franceschi, A. Balaguera-Antolinez, M. Frailis, Fabio Pasian, S. Kermiche, S. Paltani, B. Gillis, S. Casas, Ralf Bender, Jason Rhodes, Javier Graciá-Carpio, Luca Valenziano, R. Kohley, Franck Ducret, Mauro Roncarelli, S. Farrens, Sotiria Fotopoulou, Remi A. Cabanac, V. F. Cardone, Jean Coupon, Paula Gomez-Alvarez, Herve Aussel, S. Galeotta, Alain Blanchard, Lucia Pozzetti, Jean-Luc Starck, F. Torradeflot, P. B. Lilje, Ole Marggraf, S. Bardelli, Massimo Brescia, L. Stanco, J. Carretero, Rafael Toledo-Moreo, G. A. Verdoes Kleijn, S. Yahia-Cherif, Richard Massey, Knud Jahnke, G. Polenta, Michele Moresco, Enrico Bozzo, M. Poncet, Stefano Cavuoti, S. Brau-Nogue, G. Sirri, Stefano Andreon, Elisabetta Majerotto, D. Tavagnacco, Isaac Tutusaus, Valeria Pettorino, Carmelita Carbone, D. Di Ferdinando, Davide Maino, Felix Hormuth, Sebastien Clesse, F. Dubath, Simona Mei, A. Boucaud, F. J. Castander, C. A. J. Duncan, R. Cledassou, Z. Sakr, E. Romelli, Robert C. Nichol, E. Munari, Henk Hoekstra, V. Capobianco, Hélène M. Courtois, Stefano Camera, B. Kubik, E. Medinaceli, J. J. Metge, M. H. Fabricius, P. Tallada-Crespí, Matteo Viel, S. Dusini, Andrea Cimatti, Emanuel Rossetti, Yannick Mellier, D. Bonino, C. Padilla, Benjamin J. Metcalf, K. Markovic, Andrea Biviano, Andy Taylor, F. Lacasa, E. Zucca, P. Franzetti, S. de la Torre, A. Da Silva, Julien Zoubian, W. Gillard, Carlo Burigana, Marco Baldi, Martin Kilbinger, L. Conversi, Will J. Percival, T. Vassallo, Yu Wang, Marco Castellano, C. C. Kirkpatrick, V. Yankelevich, Giuseppe D. Racca, Y. Copin, S. Niemi, Domenico Sapone, Pablo Fosalba, G. Congedo, N. Fourmanoit, F. Raison, Enzo Branchini, A. Secroun, N. Martinet, M. Martinelli, Mark Cropper, Ismael Tereno, M. Tenti, A. Cappi, Sandrine Pires, C. J. Conselice, Eric V. Linder, Giulio Fabbian, H. Israel, G. Meylan, Alkistis Pourtsidou, Leonardo Corcione, X. Dupac, Lauro Moscardini, Carlo Giocoli, E. Keihänen, Roberto P. Saglia, F. Grupp, Luigi Guzzo, Ricard Casas, Ariel G. Sánchez, A. Renzi, V. Scottez, Martin Kunz, Federico Marulli, M. Fumana, C. Colodro-Conde, F. Sureau, Sebastiano Ligori, Achille A. Nucita, Hannu Kurki-Suonio, Thomas D. Kitching, Jarle Brinchmann, C. S. Carvalho, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Eurecat, Ctr Tecnol Catalunya, Placa Ciencia 2, Manresa 08242, Spain, Corporate technology Siemens, Siemens AG [Munich], Département d'Astrophysique (ex SAP) (DAP), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Astrophysique Interprétation Modélisation (AIM (UMR7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre Jean Perrin [Clermont-Ferrand] (UNICANCER/CJP), UNICANCER, INAF - Osservatorio Astronomico di Brera (OAB), Istituto Nazionale di Astrofisica (INAF), Max Planck Institute for Extraterrestrial Physics (MPE), Max-Planck-Gesellschaft, Ludwig-Maximilians-Universität München (LMU), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), INAF - Osservatorio Astronomico di Capodimonte (OAC), Institut de Ciencies de l'Espai [Barcelona] (ICE-CSIC), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Centre National d'Études Spatiales [Toulouse] (CNES), Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Durham University, Université de Genève = University of Geneva (UNIGE), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Fisica (Milano), Università degli Studi di Milano = University of Milan (UNIMI), Department of Surgical Oncology, University of Groningen [Groningen], Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique et Atmosphères = Laboratory for Studies of Radiation and Matter in Astrophysics and Atmospheres (LERMA), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Milieux aquatiques, écologie et pollutions (UR MALY), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Centre International de Recherches Médicales de Franceville (CIRMF), Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Department of Biogeochemical Integration [Jena], Max Planck Institute for Biogeochemistry (MPI-BGC), Max-Planck-Gesellschaft-Max-Planck-Gesellschaft, Euclid Collaboration, Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Joseph Louis LAGRANGE (LAGRANGE), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Université Paris Diderot - Paris 7 (UPD7), Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique (LERMA (UMR_8112)), Sorbonne Université (SU)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Cergy Pontoise (UCP), Université Paris-Seine-Université Paris-Seine-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Euclid, Blanchard A., Camera S., Carbone C., Cardone V.F., Casas S., Clesse S., Ilic S., Kilbinger M., Kitching T., Kunz M., Lacasa F., Linder E., Majerotto E., Markovic K., Martinelli M., Pettorino V., Pourtsidou A., Sakr Z., Sanchez A.G., Sapone D., Tutusaus I., Yahia-Cherif S., Yankelevich V., Andreon S., Aussel H., Balaguera-Antolinez A., Baldi M., Bardelli S., Bender R., Biviano A., Bonino D., Boucaud A., Bozzo E., Branchini E., Brau-Nogue S., Brescia M., Brinchmann J., Burigana C., Cabanac R., Capobianco V., Cappi A., Carretero J., Carvalho C.S., Casas R., Castander F.J., Castellano M., Cavuoti S., Cimatti A., Cledassou R., Colodro-Conde C., Congedo G., Conselice C.J., Conversi L., Copin Y., Corcione L., Coupon J., Courtois H.M., Cropper M., Da Silva A., De La Torre S., Di Ferdinando D., Dubath F., Ducret F., Duncan C.A.J., Dupac X., Dusini S., Fabbian G., Fabricius M., Farrens S., Fosalba P., Fotopoulou S., Fourmanoit N., Frailis M., Franceschi E., Franzetti P., Fumana M., Galeotta S., Gillard W., Gillis B., Giocoli C., Gomez-Alvarez P., Gracia-Carpio J., Grupp F., Guzzo L., Hoekstra H., Hormuth F., Israel H., Jahnke K., Keihanen E., Kermiche S., Kirkpatrick C.C., Kohley R., Kubik B., Kurki-Suonio H., Ligori S., Lilje P.B., Lloro I., Maino D., Maiorano E., Marggraf O., Martinet N., Marulli F., Massey R., Medinaceli E., Mei S., Mellier Y., Metcalf B., Metge J.J., Meylan G., Moresco M., Moscardini L., Munari E., Nichol R.C., Niemi S., Nucita A.A., Padilla C., Paltani S., Pasian F., Percival W.J., Pires S., Polenta G., Poncet M., Pozzetti L., Racca G.D., Raison F., Renzi A., Rhodes J., Romelli E., Roncarelli M., Rossetti E., Saglia R., Schneider P., Scottez V., Secroun A., Sirri G., Stanco L., Starck J.-L., Sureau F., Tallada-Crespi P., Tavagnacco D., Taylor A.N., Tenti M., Tereno I., Toledo-Moreo R., Torradeflot F., Valenziano L., Vassallo T., Verdoes Kleijn G.A., Viel M., Wang Y., Zacchei A., Zoubian J., Zucca E., Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Météo France-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Centre National d'Études Spatiales [Toulouse] (CNES)-Météo France-Université Toulouse III - Paul Sabatier (UT3), Centre National de la Recherche Scientifique (CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015 - 2019) (COMUE UCA), Academy of Finland, European Commission, Agenzia Spaziale Italiana, Belgian Science Policy Office, Canadian Euclid Consortium, Centre National D'Etudes Spatiales (France), Danish Space Research Institute, German Centre for Air and Space Travel, Fundação para a Ciência e a Tecnologia (Portugal), Ministerio de Economía y Competitividad (España), National Aeronautics and Space Administration (US), Netherlands Research School for Astronomy, Norwegian Space Agency, Romanian Space Agency, State Secretariat for Education, Research and Innovation (Switzerland), Swiss Space Office, UK Space Agency, Ministero dell'Istruzione, dell'Università e della Ricerca, California Institute of Technology, Ministerio de Ciencia, Innovación y Universidades (España), International Max Planck Research Schools, Swiss National Science Foundation, Blanchard, A., Camera, S., Carbone, C., Cardone, V. F., Casas, S., Clesse, S., Ilić, S., Kilbinger, M., Kitching, T., Kunz, M., Lacasa, F., Linder, E., Majerotto, E., Markovič, K., Martinelli, M., Pettorino, V., Pourtsidou, A., Sakr, Z., Sánchez, A. G., Sapone, D., Tutusaus, I., Yahia-Cherif, S., Yankelevich, V., Andreon, S., Aussel, H., Balaguera-Antolínez, A., Baldi, M., Bardelli, S., Bender, R., Biviano, A., Bonino, D., Boucaud, A., Bozzo, E., Branchini, E., Brau-Nogue, S., Brescia, M., Brinchmann, J., Burigana, C., Cabanac, R., Capobianco, V., Cappi, A., Carretero, J., Carvalho, C. S., Casas, R., Castander, F. J., Castellano, M., Cavuoti, S., Cimatti, A., Cledassou, R., Colodro-Conde, C., Congedo, G., Conselice, C. J., Conversi, L., Copin, Y., Corcione, L., Coupon, J., Courtois, H. M., Cropper, M., Da, Silva, de la, Torre, Di, Ferdinando, D., Dubath, F., Ducret, F., Duncan, C. A. J., Dupac, X., Dusini, S., Fabbian, G., Fabriciu, M., Farren, S., Fosalba, P., Fotopoulou, S., Fourmanoit, N., Fraili, M., Franceschi, E., Franzetti, P., Fumana, M., Galeotta, S., Gillard, W., Gilli, B., Giocoli, C., Gómez-Alvarez, P., Graciá-Carpio, J., Grupp, F., Guzzo, L., Hoekstra, H., Hormuth, F., Israel, H., Jahnke, K., Keihanen, E., Kermiche, S., Kirkpatrick, C. C., Kohley, R., Kubik, B., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lloro, I., Maino, D., Maiorano, E., Marggraf, O., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Mellier, Y., Metcalf, B., Metge, J. J., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Nichol, R. C., Niemi, S., Nucita, A. A., Padilla, C., Paltani, S., Pasian, F., Percival, W. J., Pire, S., Polenta, G., Poncet, M., Pozzetti, L., Racca, G. D., Raison, F., Renzi, A., Rhode, J., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Schneider, P., Scottez, V., Secroun, A., Sirri, G., Stanco, L., Starck, J., -L., Sureau, F., Tallada-Crespí, P., Tavagnacco, D., Taylor, A. N., Tenti, M., Tereno, I., Toledo-Moreo, R., Torradeflot, F., Valenziano, L., Vassallo, T., Verdoes, Kleijn, G. A., Viel, M., Wang, Y., Zacchei, A., Zoubian, J., Zucca, Ilic, S., Markovic, K., Sanchez, A. G., Balaguera-Antolinez, A., Da Silva, A., De La Torre, S., Di Ferdinando, D., Dubath, F., Ducret, F., Duncan, C. A. J., Dupac, X., Dusini, S., Fabbian, G., Fabricius, M., Farrens, S., Fosalba, P., Fotopoulou, S., Fourmanoit, N., Frailis, M., Franceschi, E., Franzetti, P., Fumana, M., Galeotta, S., Gillard, W., Gillis, B., Giocoli, C., Gomez-Alvarez, P., Gracia-Carpio, J., Grupp, F., Guzzo, L., Hoekstra, H., Hormuth, F., Israel, H., Jahnke, K., Keihanen, E., Kermiche, S., Kirkpatrick, C. C., Kohley, R., Kubik, B., Kurki-Suonio, H., Ligori, S., Lilje, P. B., Lloro, I., Maino, D., Maiorano, E., Marggraf, O., Martinet, N., Marulli, F., Massey, R., Medinaceli, E., Mei, S., Mellier, Y., Metcalf, B., Metge, J. J., Meylan, G., Moresco, M., Moscardini, L., Munari, E., Nichol, R. C., Niemi, S., Nucita, A. A., Padilla, C., Paltani, S., Pasian, F., Percival, W. J., Pires, S., Polenta, G., Poncet, M., Pozzetti, L., Racca, G. D., Raison, F., Renzi, A., Rhodes, J., Romelli, E., Roncarelli, M., Rossetti, E., Saglia, R., Schneider, P., Scottez, V., Secroun, A., Sirri, G., Stanco, L., Starck, J. -L., Tallada-Crespi, P., Verdoes Kleijn, G. A., Viel, M., Wang, Y., Zacchei, A., Zoubian, J., Zucca, E., Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), University of Geneva [Switzerland], Università degli Studi di Milano [Milano] (UNIMI), Institut Régional de Médecine Physique et de Réadaptation Louis Pierquin [Nancy] (IRR Louis Pierquin), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Department of Physics, Helsinki Institute of Physics, and Astronomy
- Subjects
cosmology: observations / cosmological parameters / cosmology: theory ,Cosmological parameter ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,DARK ENERGY CONSTRAINTS ,IMPACT ,ANGULAR POWER SPECTRA ,Cosmological parameters ,Cosmology: observations ,Cosmology: theory ,FOS: Physical sciences ,observation [Cosmology] ,GALAXY REDSHIFT SURVEYS ,Astrophysics ,Cosmological constant ,Astrophysics::Cosmology and Extragalactic Astrophysics ,ACOUSTIC-OSCILLATIONS ,01 natural sciences ,Measure (mathematics) ,Cosmology: observation ,PRIMORDIAL NON-GAUSSIANITY ,Set (abstract data type) ,INFORMATION-CONTENT ,HALO-MODEL ,theory [Cosmology] ,cosmology: theory ,0103 physical sciences ,cosmological parameters ,observations [Cosmology] ,Cluster analysis ,010303 astronomy & astrophysics ,Astrophysique ,Weak gravitational lensing ,Physics ,COSMIC cancer database ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,INTRINSIC ALIGNMENTS ,115 Astronomy, Space science ,MASSIVE NEUTRINOS ,Space and Planetary Science ,cosmology: observations ,astro-ph.CO ,Dark energy ,Baryon acoustic oscillations ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Algorithm ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Aims. The Euclid space telescope will measure the shapes and redshifts of galaxies to reconstruct the expansion history of the Universe and the growth of cosmic structures. The estimation of the expected performance of the experiment, in terms of predicted constraints on cosmological parameters, has so far relied on various individual methodologies and numerical implementations, which were developed for different observational probes and for the combination thereof. In this paper we present validated forecasts, which combine both theoretical and observational ingredients for different cosmological probes. This work is presented to provide the community with reliable numerical codes and methods for Euclid cosmological forecasts. Methods. We describe in detail the methods adopted for Fisher matrix forecasts, which were applied to galaxy clustering, weak lensing, and the combination thereof. We estimated the required accuracy for Euclid forecasts and outline a methodology for their development. We then compare and improve different numerical implementations, reaching uncertainties on the errors of cosmological parameters that are less than the required precision in all cases. Furthermore, we provide details on the validated implementations, some of which are made publicly available, in different programming languages, together with a reference training-set of input and output matrices for a set of specific models. These can be used by the reader to validate their own implementations if required. Results. We present new cosmological forecasts for Euclid. We find that results depend on the specific cosmological model and remaining freedom in each setting, for example flat or non-flat spatial cosmologies, or different cuts at non-linear scales. The numerical implementations are now reliable for these settings. We present the results for an optimistic and a pessimistic choice for these types of settings. We demonstrate that the impact of cross-correlations is particularly relevant for models beyond a cosmological constant and may allow us to increase the dark energy figure of merit by at least a factor of three., 0, info:eu-repo/semantics/published
- Published
- 2020
5. SMART-1 technology, scientific results and heritage for future space missions
- Author
-
Bernard Foing, Detlef Koschny, O. Camino-Ramos, Manuel Grande, Jean-Luc Josset, D. Frew, Giuseppe D. Racca, B. Grieger, and A. Marini
- Subjects
Earth's orbit ,Space technology ,010504 meteorology & atmospheric sciences ,Spacecraft ,Ion thruster ,business.industry ,Astronomy and Astrophysics ,01 natural sciences ,Regolith ,Space exploration ,law.invention ,Astrobiology ,Orbiter ,Space and Planetary Science ,law ,0103 physical sciences ,Systems engineering ,Space research ,business ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
ESA's SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone; 3) most fuel effective mission (60 L of Xenon) and longest travel (13 months) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the International Lunar Exploration Working Group (ILEWG) in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang’ E1 and future international lunar exploration. We review SMART-1 highlights and new results that are relevant to the preparation for future lunar exploration. The technology and methods had impact on space research and applications. Recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of illumination, 4) radio observations and science from the Moon, 5) support to future missions, 6) identifying and characterising sites for exploration and exploitation. On these respective topics, we discuss recent SMART-1 results and challenges. We also discuss the use of SMART-1 publications library. The SMART-1 archive observations have been used to support the goals of ILEWG. SMART-1 has been useful to prepare for Kaguya, Chandrayaan-1, Chang'E 1, the US Lunar Reconnaissance Orbiter, the LCROSS impact, future lunar landers and upcoming missions, and to contribute towards objectives of the Moon Village and future exploration.
- Published
- 2018
6. The LISA Pathfinder mission
- Author
-
Gerhard Heinzel, Domenico Giardini, J. Bogenstahl, N. Karnesis, C. García Marirrodriga, N. Brandt, H. Ward, S. Strandmoe, J. Reiche, M. Chmeissani, Mauro Hueller, H. Rozemeijer, A. Grynagier, Daniele Nicolodi, Oliver Jennrich, Paul McNamara, H.-B. Tu, M. Diaz-Aguilo, V. Hernández, J. H. Hough, R. Gerndt, G. Dixon, A. Schleicher, D. Nicolini, S. Waschke, Karsten Danzmann, Gudrun Wanner, A. F. Garcia Marin, P. Prat, I. Harrison, V. Ferrone, J. A. Romera Perez, Michele Armano, I. Cristofolini, J. Fauste, M. Schulte, Daniele Bortoluzzi, Peter Zweifel, Eric Plagnol, Juan Ramos-Castro, Felipe Guzman, J. Sanjuan, A. Conchillo, Miquel Nofrarías, Davor Mance, M. Freschi, M. Cruise, M. Caleno, F. Antonucci, D. Texier, S. Madden, Christian J. Killow, F. De Marchi, Stefano Vitale, A. Monsky, A.M. Taylor, F. Pedersen, Paolo Bosetti, D. Shaul, Pierre Binétruy, Matteo Benedetti, Michael Perreur-Lloyd, T. J. Sumner, Walter Fichter, M. Cesa, Tobias Ziegler, Rita Dolesi, Philippe Jetzer, Peter Wass, Ignacio Mateos, Ivan Lloro, X. Llamas, Priscilla Canizares, Lluis Gesa, Ewan Fitzsimons, B. Guillaume, A. Lobo, D. Hoyland, Ingo Diepholz, G. Auger, J. Huesler, Frank Steier, Antonella Cavalleri, Giuseppe D. Racca, R. Maarschalkerweerd, David Robertson, G. Congedo, Luigi Ferraioli, Catia Grimani, F. Gilbert, C. Trenkel, E. Mitchell, José F. F. Mendes, N. Dunbar, W. J. Weber, L. Stagnaro, B. Johlander, Martin Hewitson, Daniel Hollington, Heather Audley, APC - Cosmologie, Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), APC - THEORIE, AstroParticule et Cosmologie (APC (UMR_7164)), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut für theoretische Physik, Universität Hamburg (UHH)-Universität Hamburg (UHH), LISA, Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,Physics ,Physics and Astronomy (miscellaneous) ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,010308 nuclear & particles physics ,business.industry ,Gravitational wave ,Astrophysics ,01 natural sciences ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Pathfinder ,0103 physical sciences ,Free flight ,Experimental methods ,Aerospace engineering ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,business ,010303 astronomy & astrophysics ,Inertial navigation system - Abstract
In this paper, we describe the current status of the LISA Pathfinder mission, a precursor mission aimed at demonstrating key technologies for future space-based gravitational wave detectors, like LISA. Since much of the flight hardware has already been constructed and tested, we will show that performance measurements and analysis of these flight components lead to an expected performance of the LISA Pathfinder which is a significant improvement over the mission requirements, and which actually reaches the LISA requirements over the entire LISA Pathfinder measurement band. © 2012 IOP Publishing Ltd.
- Published
- 2016
7. The Euclid mission design
- Author
-
Marc Sauvage, J. Hoar, Valentina Lesna, Cyril Colombo, Jérôme Amiaux, Yannick Mellier, R. Vavrek, Alex Short, Roberto Scaramella, Michel Berthé, Sylvain Prezelus, S. Pottinger, Elena Maiorano, Paolo Musi, R. Kohley, Tobias Boenke, Thierry Maciaszek, Jacques Pinel, Paolo Strada, Anne Ealet, Ruyman Azzollini, Luis Gaspar Venancio, H. Rozemeijer, Jean Christophe Salvignol, Micha Schmidt, Marco Sias, Luca Stagnaro, Fabio Pasian, Knud Jahnke, Adriano Calvi, René J. Laureijs, Pierluigi Rosato, Andrea Zacchei, Jose Lorenzo Alvarez, Vincent Cazaubiel, Mark Cropper, Giuseppe D. Racca, Osvaldo Piersanti, Andreas Rudolph, Alberto Anselmi, Gonzalo Saavedra Criado, Ludovic Vaillon, ITA, GBR, FRA, DEU, ESP, NLD, Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), and EUCLID
- Subjects
Computer science ,media_common.quotation_subject ,Dark matter ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,7. Clean energy ,law.invention ,Photometry (optics) ,Telescope ,Service module ,law ,0103 physical sciences ,Ground segment ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Weak gravitational lensing ,media_common ,Spacecraft ,010308 nuclear & particles physics ,Payload ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Redshift ,Galaxy ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,13. Climate action ,Sky ,Dark energy ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,business - Abstract
Euclid is a space-based optical/near-infrared survey mission of the European Space Agency (ESA) to investigate the nature of dark energy, dark matter and gravity by observing the geometry of the Universe and on the formation of structures over cosmological timescales. Euclid will use two probes of the signature of dark matter and energy: Weak gravitational Lensing, which requires the measurement of the shape and photometric redshifts of distant galaxies, and Galaxy Clustering, based on the measurement of the 3-dimensional distribution of galaxies through their spectroscopic redshifts. The mission is scheduled for launch in 2020 and is designed for 6 years of nominal survey operations. The Euclid Spacecraft is composed of a Service Module and a Payload Module. The Service Module comprises all the conventional spacecraft subsystems, the instruments warm electronics units, the sun shield and the solar arrays. In particular the Service Module provides the extremely challenging pointing accuracy required by the scientific objectives. The Payload Module consists of a 1.2 m three-mirror Korsch type telescope and of two instruments, the visible imager and the near-infrared spectro-photometer, both covering a large common field-of-view enabling to survey more than 35% of the entire sky. All sensor data are downlinked using K-band transmission and processed by a dedicated ground segment for science data processing. The Euclid data and catalogues will be made available to the public at the ESA Science Data Centre., Comment: 23 pages, 19 figures, Presented at the SPIE Astronomical Telescopes and Instrumentation conference in Edinburgh, Scotland, United Kingdom, 6 June 1 July 2016
- Published
- 2016
8. Euclid Near Infrared Spectrometer and Photometer instrument concept and first test results obtained for different breadboards models at the end of phase C
- Author
-
S. Ventura, Eric Prieto, Cédric Thizy, Florent Beaumont, Jean-Christophe Salvignol, René J. Laureijs, Warren Holmes, A. N. Sørensen, Carlotta Bonoli, Maurizio Spurio, Augustyn Waczynski, Jérôme Amiaux, J. F. Macías-Pérez, P. Sanchez, G. Sirri, Favio Bortoletto, Francesca Sortino, Giuseppe D. Racca, Natalia Auricchio, Doriane Dormoy, Paolo Strada, Ricard Casas, Corinne Toulouse-Aastrup, David Lizán, Maurizio D'Alessandro, David Le Mignant, C. Rosset, S. Vives, Anne Bonnefoi, L. Stanco, J. Garcia, M. Tenti, Jean-Luc Gimenez, N. Mauri, Frank Grupp, F. Fornari, Rafael Toledo-Moreo, Michael Seiffert, A. Caillat, Felix Hormuth, Allan Hornstrup, Annarita Margiotta, Tony Pamplona, Gian Paolo Guizzo, Leonardo Corcione, Michel Berthé, Riccardo Travaglini, Anne Costille, Niels Christian Jessen, L. Pasqualini, Luca Valenziano, F. Laudisio, L. Patrizii, Gianluca Morgante, Cristobal Padilla, S. Dusini, Philippe Laurent, A. Secroun, Ivan Lloro, Anne Ealet, Thierry Maciaszek, M. Trifoglio, G. Seidel, Yannick Mellier, Ulf E. Israelsson, A. Balestra, Adriano De Rosa, E. Medinaceli, M. Carle, Sylvain Ferriol, Chiara Sirignano, Jaime Gomez, Michael I. Andersen, Knud Jahnke, Christophe Fabron, R. Farinelli, Emmanuel Grassi, F. Giacomini, B. Foulon, Remi Barbier, Jean Christophe Barrière, J. J. Díaz, Mathieu Niclas, P. B. Lilje, Sebastiano Ligori, F. Dal Corso, Peter Viggo Jakobsen, Carlos Colodro-Conde, Franck Ducret, J. C. Clemens, E. Franceschi, Mikel Lamensans, W. Gillard, Tobias Boenke, Tommaso Chiarusi, William Bon, B. Serra, Stefanie Wachter, Laurent Martin, C. Rossin, Aurélien Febvre, E. Borsato, Carolin Wimmer, B. Kubik, Centre National d’Études Spatiales [Paris] (CNES), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), EUCLID, Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), MacEwen, Howard A., G. Fazio, Giovanni, Lystrup, Makenzie, Maciaszek, Thierry, Ealet, Anne, Jahnke, Knud, Prieto, Eric, Barbier, Rémi, Mellier, Yannick, Beaumont, Florent, Bon, William, Bonefoi, Anne, Carle, Michael, Caillat, Amandine, Costille, Anne, Dormoy, Doriane, Ducret, Franck, Fabron, Christophe, Febvre, Aurélien, Foulon, Benjamin, Garcia, Jose, Gimenez, Jean-Luc, Grassi, Emmanuel, Laurent, Philippe, Mignant, David Le, Martin, Laurent, Rossin, Christelle, Pamplona, Tony, Sanchez, Patrice, Vives, Sebastien, Clémens, Jean Claude, Gillard, William, Niclas, Mathieu, Secroun, Aurélia, Serra, Benoit, Kubik, Bogna, Ferriol, Sylvain, Amiaux, Jérome, Barrière, Jean Christophe, Berthe, Michel, Rosset, Cyrille, Macias-Perez, Juan Francisco, Auricchio, Natalia, De Rosa, Adriano, Franceschi, Enrico, Guizzo, Gian Paolo, Morgante, Gianluca, Sortino, Francesca, Trifoglio, Massimo, Valenziano, Luca, Patrizii, Laura, Chiarusi, T., Fornari, F., Giacomini, F., Margiotta, A., Mauri, N., Pasqualini, L., Sirri, G., Spurio, M., Tenti, M., Travaglini, R., Dusini, Stefano, Dal Corso, F., Laudisio, F., Sirignano, C., Stanco, L., Ventura, S., Borsato, Enrico, Bonoli, Carlotta, Bortoletto, Favio, Balestra, Andrea, D'Alessandro, Maurizio, Celi, Eduardo Medina, Farinelli, Ruben, Corcione, Leonardo, Ligori, Sebastiano, Grupp, Frank, Wimmer, Carolin, Hormuth, Felix, Seidel, Gregor, Wachter, Stefanie, Padilla, Cristobal, Lamensans, Mikel, Casas, Ricard, Lloro, Ivan, Toledo-Moreo, Rafael, Gomez, Jaime, Colodro-Conde, Carlo, Lizán, David, Diaz, Jose Javier, Lilje, Per B., Toulouse-Aastrup, Corinne, Andersen, Michael I., Sørensen, Anton N., Jakobsen, Peter, Hornstrup, Allan, Jessen, Niels-Christian, Thizy, Cédric, Holmes, Warren, Israelsson, Ulf, Seiffert, Michael, Waczynski, Augustyn, Laureijs, René J., Racca, Giuseppe, Salvignol, Jean-Christophe, Boenke, Tobia, and Strada, Paolo
- Subjects
Cosmic Vision ,[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Control unit ,Condensed Matter Physic ,01 natural sciences ,7. Clean energy ,law.invention ,Photometry ,010309 optics ,Optics ,law ,0103 physical sciences ,NISP ,Electrical and Electronic Engineering ,010303 astronomy & astrophysics ,Spectroscopy ,ComputingMilieux_MISCELLANEOUS ,Physics ,Instrument control ,Spacecraft ,Spectrometer ,business.industry ,Electronic, Optical and Magnetic Material ,Euclid ,Computer Science Applications1707 Computer Vision and Pattern Recognition ,Instrument ,Photometer ,Breadboard ,Applied Mathematic ,Grism ,13. Climate action ,Infrared ,business - Abstract
The Euclid mission objective is to understand why the expansion of the Universe is accelerating through by mapping the geometry of the dark Universe by investigating the distance-redshift relationship and tracing the evolution of cosmic structures. The Euclid project is part of ESA's Cosmic Vision program with its launch planned for 2020 (ref [1]). The NISP (Near Infrared Spectrometer and Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (900- 2000nm) as a photometer and spectrometer. The instrument is composed of: - a cold (135K) optomechanical subsystem consisting of a Silicon carbide structure, an optical assembly (corrector and camera lens), a filter wheel mechanism, a grism wheel mechanism, a calibration unit and a thermal control system - a detection subsystem based on a mosaic of 16 HAWAII2RG cooled to 95K with their front-end readout electronic cooled to 140K, integrated on a mechanical focal plane structure made with molybdenum and aluminum. The detection subsystem is mounted on the optomechanical subsystem structure - a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the spacecraft via a 1553 bus for command and control and via Spacewire links for science data This presentation describes the architecture of the instrument at the end of the phase C (Detailed Design Review), the expected performance, the technological key challenges and preliminary test results obtained for different NISP subsystem breadboards and for the NISP Structural and Thermal model (STM). © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only. Copyright (2016) Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
- Published
- 2016
9. Mission-level performance verification approach for the Euclid space mission
- Author
-
Roberto Scaramella, Tom Kitching, Marc Sauvage, Anna Gregorio, J. Hoar, René J. Laureijs, Will J. Percival, Christophe Dabin, Guillermo Buenadicha, Stefanie Wachter, Andrea Zacchei, Yun Wang, Jose Lorenzo Alvarez, Bianca Garilli, Jérôme Amiaux, Jean Christophe Salvignol, Gonzalo Saavedra Criado, Ruyman Azzollini, Mark Cropper, Yannick Mellier, Martin Kilbinger, Giuseppe D. Racca, Anne Ealet, Luis M. Gaspar Venancio, Knud Jahnke, Henk Hoekstra, R. Vavrek, Angeli, George Z., Dierickx, Philippe, George Z. Angeli, Philippe Dierickx, Vavrek, Roland D., Laureijs, René J., Lorenzo Alvarez, Jose, Amiaux, Jérôme, Mellier, Yannick, Azzollini, Ruyman, Buenadicha, Guillermo, Saavedra Criado, Gonzalo, Cropper, Mark, Dabin, Christophe, Ealet, Anne, Garilli, Bianca, Gregorio, Anna, Hoekstra, Henk, Jahnke, Knud, Kilbinger, Martin, Kitching, Tom, Hoar, John, Percival, Will, Racca, Giuseppe D., Salvignol, Jean Christophe, Sauvage, Marc, Scaramella, Roberto, Gaspar Venancio, Luis M., Wang, Yun, Zacchei, Andrea, and Wachter, Stefanie
- Subjects
Mission Database ,Galactic astronomy ,Condensed Matter Physic ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,law.invention ,010309 optics ,Telescope ,Euclid ,parameter database ,performance verification ,Electronic, Optical and Magnetic Materials ,Condensed Matter Physics ,Computer Science Applications1707 Computer Vision and Pattern Recognition ,Applied Mathematics ,Electrical and Electronic Engineering ,law ,0103 physical sciences ,Electronic ,Optical and Magnetic Materials ,Aerospace engineering ,010303 astronomy & astrophysics ,Weak gravitational lensing ,Astrophysics::Galaxy Astrophysics ,Photometric redshift ,Physics ,Spacecraft ,Spectrometer ,business.industry ,Electronic, Optical and Magnetic Material ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Galaxy ,Applied Mathematic ,Dark energy ,Astrophysics::Earth and Planetary Astrophysics ,business - Abstract
ESA's Dark Energy Mission Euclid will map the 3D matter distribution in our Universe using two Dark Energy probes: Weak Lensing (WL) and Galaxy Clustering (GC). The extreme accuracy required for both probes can only be achieved by observing from space in order to limit all observational biases in the measurements of the tracer galaxies. Weak Lensing requires an extremely high precision measurement of galaxy shapes realised with the Visual Imager (VIS) as well as photometric redshift measurements using near-infrared photometry provided by the Near Infrared Spectrometer Photometer (NISP). Galaxy Clustering requires accurate redshifts (Δz/(z+1)
- Published
- 2016
10. The LISA Pathfinder Mission
- Author
-
Giuseppe D. Racca and Paul McNamara
- Subjects
Earth's orbit ,business.industry ,Computer science ,General relativity ,Gravitational wave ,Astrophysics::Instrumentation and Methods for Astrophysics ,Lagrangian point ,Astronomy and Astrophysics ,Interferometry ,Pathfinder ,Space and Planetary Science ,Physics::Space Physics ,Orbit (dynamics) ,Astrophysics::Earth and Planetary Astrophysics ,Aerospace engineering ,business ,Space environment - Abstract
LISA Pathfinder, formerly known as SMART-2, is the second of the European Space Agency’s Small Missions for Advance Research and Technology, and is designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission, by testing the core assumption of gravitational wave detection and general relativity: that free particles follow geodesics. The new technologies to be demonstrated in a space environment include: inertial sensors, high precision laser interferometry to free floating mirrors, and micro-Newton proportional thrusters. LISA Pathfinder will be launched on a dedicated launch vehicle in late 2011 into a low Earth orbit. By a transfer trajectory, the sciencecraft will enter its final orbit around the first Sun-Earth Lagrange point. First science results are expected approximately 3 months thereafter. Here, we give an overview of the mission including the technologies being demonstrated.
- Published
- 2009
11. SMART-1 from Conception to Moon Impact
- Author
-
Giuseppe D. Racca
- Subjects
Engineering ,Fuel Technology ,Space and Planetary Science ,business.industry ,Mechanical Engineering ,Perspective (graphical) ,Aerospace Engineering ,Public relations ,business ,Cradle to grave ,Simulation - Abstract
This paper provides an overview of the SMART-1 project from cradle to grave: from its conception in 1997, launch on 27 September 2003, moon arrival on 11 November 2004, until its impact on the moon surface on 3 September 2006. It is necessarily kept to a sufficiently high level to contain its length, but it is intended to give enough information to provide the basis for those readers who intend to deepen their knowledge in more focused papers in this journal or in the references provided. At the time of writing, the project has been completed for more than one year and I can see, with some historical perspective, all the events that lead to this globally very successful mission. Obviously, the emphasis given to certain topics now is rather different from what it was when the issue was just discovered, but I believe that the reader is more interested in learning the objective facts and how they actually affected the mission performance.
- Published
- 2009
12. SMART-1: Development and lessons learnt
- Author
-
Per Bodin, Joakim Kugelberg, Luca Stagnaro, Giuseppe D. Racca, Peter Rathsman, and Bernard Foing
- Subjects
Engineering ,Cosmic Vision ,Spacecraft ,business.industry ,In-space propulsion technologies ,Aerospace Engineering ,Avionics ,Propulsion ,Lunar orbit ,Electrically powered spacecraft propulsion ,Systems engineering ,Aerospace engineering ,business ,Transponder - Abstract
SMART-1 is the first of the small missions for advanced research and technology as part of ESA's science programme “Cosmic vision”. It was successfully launched on September 27, 2003 and is presently traveling towards its destination, the Moon. The main objective of the mission, to demonstrate solar electric primary propulsion for future Cornerstones (such as Bepi-Colombo), has already been achieved. At the time of writing the electric propulsion system has been working already for more than 3400 h and has provided a Delta-V to the spacecraft of more than 2500 m/s. The other technology objectives are also being fulfilled by the verification of the proper functioning of such on-board experiments like the X-Ka band transponder, the X-ray spectrometer, the near IR spectrometer, the laser link, etc. The scientific objectives are related to lunar science and will be fulfilled once the spacecraft enters its operational lunar orbit, currently expected for January 2005. SMART-1 lunar science investigations will include studies of the chemical composition of the Moon, of geophysical processes, environment and high-resolution studies in preparation for future steps of lunar exploration. SMART-1 has been an innovative mission in many aspects and we are now drawing some preliminary conclusions about the lessons to be learnt. The paper describes the spacecraft and the technology elements with particular emphasis to the technology nature of the mission. The on-board avionics employs many novel designs for spacecraft, including a serial CAN bus for data communication, autonomous star trackers and extensive use of auto-code generation for implementing the attitude control system and the failure, detection, isolation and recovery (FDIR). Finally, the orbital operation phase currently ongoing, including the routine electric propulsion operations and the instrument commissioning, is providing a wealth of data and lesson-learnt useful for future autonomous planetary missions.
- Published
- 2005
13. SMART-1 mission to the moon: Technology and science goals
- Author
-
Jean-Luc Josset, Bernard Foing, Zoran Sodnik, P. McManamon, Giuseppe D. Racca, G. Noci, Luciano Iess, A. Marini, Detlef Koschny, Manuel Grande, Andreas Nathues, David Heather, Wolfgang Schmidt, A. Malkki, H. U. Keller, Reinhard Birkl, and Juhani Huovelin
- Subjects
Atmospheric Science ,Engineering ,Spacecraft ,business.industry ,Cruise ,Aerospace Engineering ,Astronomy and Astrophysics ,NASA Deep Space Network ,Propulsion ,Lunar orbit ,Astrobiology ,Geophysics ,Aeronautics ,Space and Planetary Science ,Remote sensing (archaeology) ,General Earth and Planetary Sciences ,business - Abstract
SMART-1 is a technology demonstration mission for deep space solar electrical propulsion and Technologies for the Future. SMART-1 will be Europe's first lunar mission and will contribute to developing an international program of lunar exploration. The spacecraft has been readied in April 2003 for a launch in summer 2003, as an auxiliary passenger to GTO on Ariane 5, to reach the Moon after 15 month's cruise. SMART-1 will carry six experiments, including three remote sensing instruments that will be used during the mission's nominal six months in lunar orbit. These instruments will contribute to key planetary scientific questions, related to theories of lunar origin and evolution, the global and local crustal composition, the search for cold traps at the lunar poles and the mapping of potential lunar resources.
- Published
- 2003
14. [Untitled]
- Author
-
Giuseppe D. Racca
- Subjects
Physics ,Ion thruster ,Spacecraft ,business.industry ,Applied Mathematics ,In-space propulsion technologies ,Astronomy and Astrophysics ,Solar sail ,Propulsion ,Computational Mathematics ,Electrically powered spacecraft propulsion ,Space and Planetary Science ,Modeling and Simulation ,Physics::Space Physics ,Trajectory ,Geostationary orbit ,Astrophysics::Earth and Planetary Astrophysics ,Aerospace engineering ,business ,Mathematical Physics - Abstract
The design of spacecraft trajectories is a crucial part of a space mission design. Often the mission goal is tightly related to the spacecraft trajectory. A geostationary orbit is indeed mandatory for a stationary equatorial position. Visiting a solar system planet implies that a proper trajectory is used to bring the spacecraft from Earth to the vicinity of the planet. The first planetary missions were based on conventional trajectories obtained with chemical engine rockets. The manoeuvres could be considered 'impulsive' and clear limitations to the possible missions were set by the energy required to reach certain orbits. The gravity-assist trajectories opened a new way of wandering through the solar system, by exploiting the gravitational field of some planets. The advent of other propulsion techniques, as electric or ion propulsion and solar sail, opened a new dimension to the planetary trajectory, while at the same time posing new challenges. These 'low thrust' propulsion techniques cannot be considered 'impulsive' anymore and require for their study mathematical techniques which are substantially different from before. The optimisation of such trajectories is also a new field of flight dynamics, which involves complex treatments especially in multi-revolution cases as in a lunar transfer trajectory. One advantage of these trajectories is that they allow to explore regions of space where different bodies gravitationally compete with each other. We can exploit therefore these gravitational perturbations to save fuel or reduce time of flight. The SMART-1 spacecraft, first European mission to the Moon, will test for the first time all these techniques. The paper is a summary report on various activities conducted by the project team in these areas.
- Published
- 2003
15. SMART-1 mission description and development status
- Author
-
D. Estublier, A Mörtsell, R. Grünagel, Peter Rathsman, B Ljung, J. Volp, M McKay, M Khan, Sten Berge, J Schoemaekers, G Andersson, Staffan Persson, Bernard Foing, Luca Stagnaro, J. van Dooren, L. di Napoli, Per Bodin, K Anflo, J. Brinkmann, O. Camino, R. Lumb, E Tremolizzo, Anders Edfors, Joakim Kugelberg, N Larsson, T. Nordebäck, L Meijer, A. Marini, M. Hechler, Giuseppe D. Racca, A Hussain, and F Sjöberg
- Subjects
Engineering ,Spacecraft ,Geostationary transfer orbit ,business.industry ,Payload ,Cruise ,Astronomy and Astrophysics ,Geophysics ,NASA Deep Space Network ,Propulsion ,Space and Planetary Science ,Trajectory ,Orbit (dynamics) ,Aerospace engineering ,business - Abstract
SMART-1 is the first of the Small Missions for Advanced Research in Technology of the ESA Horizons 2000 scientific programme. The SMART-1 mission is dedicated to testing of new technologies for future cornerstone missions, using Solar-Electric Primary Propulsion (SEPP) in Deep Space. The chosen mission planetary target is the Moon. The target orbit will be polar with the pericentre close to the South-Pole. The pericentre altitude lies between 300 and 2000 km , while the apocentre will extend to about 10,000 km . During the cruise phase, before reaching the Moon, the spacecraft thrusting profile allows extended periods for cruise science. The SMART-1 spacecraft will be launched in the spring of 2003 as an auxiliary passenger on an Ariane 5 and placed into a Geostationary Transfer Orbit (GTO). The expected launch mass is about 370 kg , including 19 kg of payload. The selected type of SEPP is a Hall-effect thruster called PPS-1350. The thruster is used to spiral out of the GTO and for all orbit maneuvers including lunar capture and descent. The trajectory has been optimised by inserting coast arcs and the presence of the Moon's gravitational field is exploited in multiple weak gravity assists. The Development Phase started in October 1999 and is expected to be concluded by a Flight Acceptance Review in January 2003. The short development time for this high technology spacecraft requires a concerted effort by industry, science institutes and ESA centres. This paper describes the mission and the project development status both from a technical and programmatic standpoint.
- Published
- 2002
16. The Euclid VIS CCD detector design, development, and programme status
- Author
-
N. Boudin, Holger Israel, Thibaut Prod'homme, W. Suske, James Endicott, R. Kohley, Jean-Christophe Salvignol, R. J. Laureijs, Jason Gow, Neil J. Murray, Peter J. Pool, Richard Massey, Magdalena B. Szafraniec, Michel Berthé, S. Pottinger, J. Martignac, Ludovic Duvet, Peter Verhoeve, P. Guttridge, Andrew D. Holland, S. Niemi, L. Gaspar Venancio, Olivier Boulade, A. Short, David Hall, J. Lorenzo Alvarez, J. Maskell, R. Wheeler, Giuseppe D. Racca, D. Walton, Mark Cropper, R. Cole, and D. Barry
- Subjects
Cardinal point ,business.industry ,Computer science ,Ccd detector ,business ,Computer hardware ,Remote sensing - Abstract
The focal plane array of the Euclid VIS instrument comprises 36 large area, back-illuminated, red-enhanced CCD detectors (designated CCD 273). These CCDs were specified by the Euclid VIS instrument team in close collaboration with ESA and e2v technologies. Prototypes were fabricated and tested through an ESA pre-development activity and the contract to qualify and manufacture flight CCDs is now underway. This paper describes the CCD requirements, the design (and design drivers) for the CCD and package, the current status of the CCD production programme and a summary of key performance measurements.
- Published
- 2014
17. Euclid near infrared spectrophotometer instrument concept and first test results at the end of phase B
- Author
-
Frank Grupp, Ferran Grañena, Michael A. E. Andersen, Paolo Strada, Marco Riva, Carolin Vogel, Adriano De Rosa, Felix Hormuth, Jean-Christophe Salvignol, P. B. Lilje, Bianca Garilli, E. Franceschi, Eric Prieto, Luca Valenziano, Rafael Toledo, Michael Seiffert, Jean Christophe Barrière, Pascal Vola, Stefanie Wachter, Anne Costille, Jérôme Amiaux, Christophe Fabron, Robert Grange, Warren Holmes, J. J. Díaz, Tony Pamplona, Sebastiano Ligori, Gianluca Morgante, Favio Bortoletto, M. Trifoglio, Anne Ealet, René J. Laureijs, Cristobal Padilla, Knud Jahnke, Carissa Weber, J. C. Clemens, G. Seidel, Yannick Mellier, Ulf E. Israelsson, Remi Barbier, Corinne Toulouse-Aastrup, Augustyn Waczynski, Maurizio D'Alessandro, Jean-Luc Gimenez, Giuseppe D. Racca, Leonardo Corcione, Bjarte G. B. Solheim, C. Rossin, Franck Ducret, Michel Berthé, G. Smadja, Carlotta Bonoli, Laurent Martin, Thierry Maciaszek, Centre National d'Études Spatiales [Toulouse] (CNES), Centre de Physique des Particules de Marseille (CPPM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), Institut Pythéas (OSU PYTHEAS), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut de Recherche pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
Physics ,Instrument control ,Cosmic Vision ,Spectrometer ,Spacecraft ,business.industry ,Control unit ,Photometer ,SpaceWire ,law.invention ,Grism ,Optics ,13. Climate action ,law ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,business - Abstract
The Euclid mission objective is to understand why the expansion of the Universe is accelerating by mapping the geometry of the dark Universe by investigating the distance-redshift relationship and tracing the evolution of cosmic structures. The Euclid project is part of ESA's Cosmic Vision program with its launch planned for 2020. The NISP (Near Infrared Spectro-Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (0.9-2µm) as a photometer and spectrometer. The instrument is composed of: - a cold (135K) optomechanical subsystem consisting of a SiC structure, an optical assembly (corrector and camera lens), a filter wheel mechanism, a grism wheel mechanism, a calibration unit and a thermal control system - a detection subsystem based on a mosaic of 16 Teledyne HAWAII2RG cooled to 95K with their front-end readout electronic cooled to 140K, integrated on a mechanical focal plane structure made with Molybdenum and Aluminum. The detection subsystem is mounted on the optomechanical subsystem structure - a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the spacecraft via a 1553 bus for command and control and via Spacewire links for science data This presentation describes the architecture of the instrument at the end of the phase B (Preliminary Design Review), the expected performance, the technological key challenges and preliminary test results obtained on a detection system demonstration model. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only. Copyright 2014 Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
- Published
- 2014
18. Capability of solar electric propulsion for planetary missions
- Author
-
Giuseppe D. Racca
- Subjects
Ion thruster ,Payload ,business.industry ,Computer science ,In-space propulsion technologies ,Astronomy and Astrophysics ,Propulsion ,Electric power system ,Electrically powered spacecraft propulsion ,Deep space exploration ,Space and Planetary Science ,Specific impulse ,Aerospace engineering ,business - Abstract
Historically, deep space exploration was initiated by a series of flyby missions that were propulsively and energetically modest. The basic energy barrier given by the use of chemical propulsion system was not a limiting factor. Later on, the use of gravity assists has enabled missions with enlarged velocity increments. Unfortunately, multiple gravity assists have the drawback to narrow dramatically the launch windows. Moreover, the cruise phases are extremely long with obvious impacts on the operation costs. The most promising solution for the future deep space missions is found in the use of the electric propulsion (EP). Owing to its high specific impulse, the EP enables very high velocity increments, higher payload ratios and the use of smaller launchers. In addition it allows to have more flexible launch windows and ultimately reduces the cruise time. Europe possesses a variety of EP systems. Two main parameters characterise the performance of these EP systems: the specific impulse and the specific power. The first parameter is a measure of the fuel consumption, while the second is the main design driver for the on board power system. The increase in specific impulse enables missions requiring a large ΔV. However, in practice the maximum ΔV is limited to some 10 km / s , while a typical EP-based mission to Mercury requires 16 km / s . Hence, trajectories combining both low-trust and gravity-assist techniques have been devised for the ESA's BepiColombo mission. SMART-1 is a precursor mission to test these system and mission aspects.
- Published
- 2001
19. SMART 1: The first small mission for advanced research in technology
- Author
-
Giuseppe D. Racca
- Subjects
Engineering ,Near-Earth object ,Procurement ,Spacecraft ,Ion thruster ,Aeronautics ,business.industry ,Payload ,In-space propulsion technologies ,Aerospace Engineering ,Propulsion ,business ,Budget constraint - Abstract
SMART-1 is the first of the Small Missions for Advanced Research in Technology of the ESA Horizons 2000 Science plan. The main mission objective of SMART-1 is to demonstrate innovative and key technologies for scientific deep-space missions. One of the key technologies is the solar electric propulsion used as primary propulsion. The launch is foreseen at the end of 2001 and the total life cost budget allocated to this mission is 50 million ECU (~ 65 million US dollars). Given this budget constraint, the obvious European launch system is as Piggyback passenger of an Ariane 5 in a standard GTO. This imposes stringent spacecraft mass constraints and by consequence limitations on the planetary bodies which can be reached in a given short (1.5–2 years) overall mission lifetime. Alternatively a direct injection into an escape trajectory has been considered with a small launcher, e.g. Eurockot. The planetary bodies identified are the Moon and Earth crossing asteroids or comets, generally classified as Near Earth Objects (NEO). Three mission options are currently envisaged. An Announcement of Opportunity for scientific payload, issued in March 1998, calls for scientific investigations to be performed and indication of the preferred mission options. A second Announcement of Opportunity will be issued in April 1998, concerning the technology payload. SMART-1 will also be a test case for a new approach in the implementation strategy and spacecraft procurement for the ESA Science Programme.
- Published
- 1999
20. [Untitled]
- Author
-
Marcello Coradini, Giuseppe D. Racca, and Bernard Foing
- Subjects
Engineering ,business.industry ,Astronomy and Astrophysics ,Space (commercial competition) ,Space exploration ,Astrobiology ,Planetary science ,Aeronautics ,Space and Planetary Science ,Primary (astronomy) ,Earth and Planetary Sciences (miscellaneous) ,Satellite ,Technology innovation ,business - Abstract
After 40 years from the first lunar missions, Europe has startedfor the first time the development of a mission which has the Moonas a target. SMART-1 will be the first Western-European mission tothe Earth's satellite. The primary objective of the mission is toflight test technology innovation for the future scientificdeep-space missions. This paper describes the mission concept, thetechnology and the scientific aspects.
- Published
- 1999
21. ESA solar stereo mission studies
- Author
-
Giuseppe D. Racca
- Subjects
Physics ,Solar conjunction ,Spacecraft ,Payload ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Optical telescope ,Orbital station-keeping ,Electrically powered spacecraft propulsion ,Physics::Space Physics ,Orbit (dynamics) ,Astrophysics::Solar and Stellar Astrophysics ,General Earth and Planetary Sciences ,Astrophysics::Earth and Planetary Astrophysics ,business ,Heliocentric orbit - Abstract
Two solar and heliospheric missions have been recently studied by ESA in the frame of a supporting study given to the Horizon 2000 Plus Survey Committee. The first one, called STEREO, has as its objective the 3D observation of the Sun, from a 1 AU solar orbit. The mission requires several spacecraft with line of sight to the Sun separated by a substantial amount. Several options with up to six spacecraft have been considered. As the payload mass decreases rapidly with the number of spacecraft, a multi spacecraft mission could carry less instrumentation, e.g. no optical telescope. A two spacecraft mission is therefore proposed. This opens the possibility to another Space Agency to contribute with a third spacecraft, which would allow a nearly continuous observation of the solar surface. The second mission studied is a Stereoscopic Solar Corona Probe, a mission into a region near the Sun that has never been investigated before. The probe is equipped with an electric propulsion system. The thruster is fired throughout the whole mission allowing a progressive approach to the Sun in a quasi-spiralling orbit. The stereoscopic observation can be accomplished either by two probes injected at a suitable separation angle, or by one probe approaching the Sun and a contemporary observation of the solar corona by a low Earth orbit spacecraft. The 3D structure of the solar corona could also be reconstructed applying tomographic techniques to the series of images recorded by a coronographic optical imager in various projections during the perihelion passages.
- Published
- 1997
22. Global lunar gravity recovery from satellite-to-satellite tracking
- Author
-
R. Noomen, Pieter Visser, Giuseppe D. Racca, and Rune Floberghagen
- Subjects
Orbital plane ,Orbital node ,Polar orbit ,Astronomy and Astrophysics ,Tracking (particle physics) ,Gravitational field ,Space and Planetary Science ,Physics::Space Physics ,Satellite ,Astrophysics::Earth and Planetary Astrophysics ,Gravimetry ,Right ascension ,Geology ,Remote sensing - Abstract
A feasibility study is presented of high resolution and accuracy determination of the global grayity field of the Moon from a combination of low-low satellite-to-satellite range-rate observations and conventional tracking from stations on Earth. The European Moon ORbiting Observatory (MORO) mission, studied as a candidate for the third mediumsized science mission (M3) under the European Space Agency's Horizon 2000 scientific programme, is adopted for the simulation purposes. Global coverage and mapping of the fine details of the gravity field is achieved by satellite-to-satellite tracking (SST) of a small sub-satellite deployed by MORO in its 100 km polar orbit, whereas the long-wavelength features are obtained from Earth-based tracking. The combination of SST and Earth-based tracking therefore represents a powerful tool over a wide range of wavelengths. Moreover, tracking from Earth provides a clear reference for the satellite orbits, which are hard to determine from SST data only. The baseline mission proposal foresees a co-orbiting satellite pair in which the two satellites follow each other in essentially the same orbital plane with only a small spacing in time. The MORO gravimetry experiment requirements prescribe a surface level radial acceleration accuracy of a few mGal with a surface resolution of 50–100km. A number of satellite tracking configurations has been investigated and the influence of noise and systematic errors has been studied. Using perfect measurements and in the absence of systematic model errors the gravity field of the Moon, assumed to be pertectly represented by the 60 × 60 Lun60d model of Konopliv et al. (1993) with a surface resolution of 91 km, has been recovered with a radial acceleration accuracy better than 0.003 mGal using a 3° in-plane satellite spacing. Introducing uncorrelated random noise to the tracking links and a 10% model error in the direct solar radiation pressure model, still an accuracy better than 5 mGal can be achieved. Finally, it is shown that a small angular separation in right ascension of the ascending node of the orbital planes of MORO and its sub-satellite adds extra cross-track information to the SST range-rate signal and thus enables better determination of high sectorial and near-sectorial terms of the gravity field.
- Published
- 1996
23. LUVIMS lunar UV and IR mapping spectrometer
- Author
-
Angioletta Coradini, A. Chicarro, M. C. De Sanctis, F. Reininger, Giuseppe D. Racca, and R. Bonsignori
- Subjects
Spacecraft ,Spectrometer ,Infrared ,business.industry ,Imaging spectrometer ,Astronomy and Astrophysics ,Terrain ,Characterization (materials science) ,Space and Planetary Science ,Observatory ,Physics::Space Physics ,Environmental science ,Astrophysics::Earth and Planetary Astrophysics ,Spectral resolution ,business ,Remote sensing - Abstract
A new imaging spectrometer particularly designed for the lunar mission MORO (Moon ORbiting Observatory) is presented. This spectrometer, named LUVIMS (Lunar UV and Infrared Mapping Spectrometer), is characterized by high performances—high spectral, high spatial resolution—being at the same time small, light weight and has a low power consumption. An imaging spectrometer, operating in the visible an infrared, is able to provide information about lunar mineralogical composition. By means of LUVIMS it will be possible to identify most of the mineralogical species and to relate their distribution with the surface morphology LUVIMS scientific objectives concerned the geochemical characterization of the Moon's surface in terms of global mapping, identification of different material and their distribution, mineralogical analysis of different terrain observations with high spatial resolution added to high spectral resolution can be the most powerful technique to have information on the lunar material origin and evolution. The spectrometer has been designed in order to work properly on either a tri-axis stabilized or a spinning spacecraft. In fact MORO has being studied as a candidate mission for the third cycle of Medium size missions, M3, in the framework of ESA's Horizon 2000 scientific programme. During the assessment phase, parametric solutions have been evaluated, but it has been shown that LUVIMS can fulfil the scientific requirements in any of the proposed spacecraft configurations. During phase A of the MORO mission the three-axis stabilized option has been selected, however it is thought that the evaluation of the performance of LUVIMS for a spinning spacecraft can be relevant also for other small spinning satellites.
- Published
- 1996
24. Smallsat version of the European Moon Orbiting Observatory (MORO)
- Author
-
J.B. Farrow, Bernard Foing, Giuseppe D. Racca, and C.P. Chaloner
- Subjects
Clementine (nuclear reactor) ,Transfer orbit ,Spacecraft ,Payload ,Observatory ,business.industry ,Aerospace Engineering ,Environmental science ,Satellite ,business ,Spacecraft design ,Space exploration ,Remote sensing - Abstract
As the third medium-class mission in the ESA's Horison 2000 science programme, a Moon Orbiting Observatory (MORO) was proposed for global mapping of lunar topography, mineralogy, geochemistry and gravity. The growing need to reduce the cost of the space missions led the study team to look for several approaches to limit the costs. It was decided therefore to study in parallel to the baseline a smallsat version of MORO which would just address the most important scientific issues in complement to Clementine, Lunar Prospector and Lunar A, notably gravimetry and high accuracy stereo imaging, topography, mineralogy and some elemental composition detection capability. This resulted in halving the payload mass (42 kg) and reducing substantially the spacecraft dry mass (≤300 kg). Such a small satellite can be placed into a lunar transfer orbit directly by a number of emerging new small-medium class launchers. The paper presents the mission and spacecraft design and describes the areas where the smallsat approach has allowed the largest cost reductions.
- Published
- 1996
25. Moon surface thermal characteristics for moon orbiting spacecraft thermal analysis
- Author
-
Giuseppe D. Racca
- Subjects
Surface (mathematics) ,Physics ,Steady state ,Spacecraft ,Mathematical model ,business.industry ,Astronomy and Astrophysics ,Geophysics ,USable ,Space and Planetary Science ,Thermal ,Transient (oscillation) ,Aerospace engineering ,business ,Thermal analysis - Abstract
The thermal characteristics of the funar surface are of great importance for the calculation of the surface heat flux affecting a lunar orbiting spacecraft. This paper aims to collate the existing information from the literature and systematically arrange the data in a readily usable way. Two simple surface temperature mathematical models are deyeloped, to simulate steady state and transient behaviour. The analytical model results are compared with experimental measurements and good agreement is found. Finally, the problem of the worst cases for the spacecraft thermal analysis is discussed.
- Published
- 1995
26. The Moon Orbiting Observatory, a low-cost mission for global lunar characterisation
- Author
-
Giuseppe D. Racca, A. Chicarro, and Gordon Whitcomb
- Subjects
Radiometer ,Spacecraft ,Spectrometer ,business.industry ,Payload ,Observatory ,Trajectory ,Aerospace Engineering ,Natural satellite ,Aerospace engineering ,business ,Spacecraft design - Abstract
The global characterisation of the lunar surface, together with investigations of the interior and the environment of our natural satellite represent the main scientific objectives of MORO, the European Moon ORbiting Observatory. MORO is being studied as a candidate mission for the next medium size (M3) project of ESA, in the framework of the Agency's Horizon 2000 scientific programme. The following disciplines will be addressed by the core instrument payload: geology and morphology (imaging system); geochemistry and mineralogy (γ-ray spectrometer, UV-Vis-IR spectrometer); topography and heat flow (altimeter with radiometer capability); geodesy/gravimetry (satellite tracking). The stringent budgetary limitations for this class of mission and the constraint to carry out an all European mission has imposed to the study team a minimum spacecraft design and mission scenario. This paper shows how the study team has tackled the complex trade-off's between scientific objectives and spacecraft simplicity, regarded as key issue for low-cost missions. The cost of the launch representing a substantial share of the overall mission cost, a decision was made to share the launcher with other payloads. This led to a scenario entailing a launch into a geo-transfer orbit with subsequent transfer into a proper autonomous lunar trajectory. Given the amount of fuel necessary to reach the Moon and the shared launch, the dry mass of the spacecraft has to be quite limited, in the order of 600 kg. Several trade-off studies have been performed to chose the simplest spacecraft configuration which could satisfy the mission objectives. Spin stabilised and body-fixed spacecrafts have been evaluated. A continuous trade of requirements has allowed the study to come to a solution which is considered the optimum compromise between scientific objectives and low-cost mission.
- Published
- 1995
27. The LISA Pathfinder interferometryhardware and system testing
- Author
-
H. Ward, S. Strandmoe, A. Monsky, Gudrun Wanner, M. Schulte, Juan Ramos-Castro, Felipe Guzman, Peter Wass, Gerhard Heinzel, A.M. Taylor, D. Fertin, Walter Fichter, Davor Mance, Michael Perreur-Lloyd, D. Gerardi, C. Trenkel, D. Hoyland, V. Wand, X. Llamas, Matteo Benedetti, Heather Audley, D. Texier, D. Nicolini, A. Perreca, J. A. Romera Perez, B. Rais, C. Boatella, Michele Armano, Eric Plagnol, J. Bogenstahl, Ignacio Mateos, Philippe Jetzer, M. Freschi, Ulrich Johann, Daniele Bortoluzzi, M. Diaz-Aguilo, Karsten Danzmann, F. Pedersen, D. Tombolato, Ivan Lloro, B. Guillaume, D. Shaul, J. Huesler, P. Prat, W. J. Weber, A. Lobo, M. Caleno, J. H. Hough, A. Conchillo, T. J. Sumner, O. Jeannin, I. Harrison, Miquel Nofrarías, Giuseppe D. Racca, D. I. Robertson, Domenico Giardini, F. Antonucci, Frank Steier, Rita Dolesi, M. Cesa, C. García Marirrodriga, M. Cruise, L. Stagnaro, S. Waschke, M. Chmeissani, Mauro Hueller, Stefano Vitale, J. Reiche, I. Cristofolini, Ewan Fitzsimons, G. Dixon, H. Rozemeijer, Pierre Binétruy, B. Johlander, Daniele Nicolodi, S. Madden, A. F. Garcia Marin, Giacomo Ciani, Christian J. Killow, Ingo Diepholz, Peter Zweifel, Antonella Cavalleri, F. De Marchi, P. Luetzow-Wentzky, Catia Grimani, J. Fauste, Lluis Gesa, Oliver Jennrich, G. Auger, Martin Hewitson, Daniel Hollington, R. Maarschalkerweerd, A. Grynagier, Paul McNamara, Gerald Hechenblaikner, J. Sanjuan, Paolo Bosetti, R. Gerndt, F. Gibert, E. Mitchell, José F. F. Mendes, G. Congedo, Luigi Ferraioli, Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft, EADS Astrium GmbH, Gruppo Collegato di Trento, Istituto Nazionale di Fisica Nucleare (INFN), European Space Astronomy Centre (ESAC), European Space Agency (ESA), AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), DCT / AQ / EC, Centre National d'Études Spatiales [Toulouse] (CNES), European Space Technology Centre, Institut de Física d’Altes Energies [Barcelone] (IFAE), Universitat Autònoma de Barcelona (UAB), Department of Physics [Gainesville] (UF|Physics), University of Florida [Gainesville] (UF), Facultat de Ciències, Institut d'Estudis Espacials de Catalunya (IEEC-CSIC), School of Physics and Astronomy [Birmingham], University of Birmingham [Birmingham], EPSC, Institut für Flugmechanik und Flugregelung, SUPA School of Physics and Astronomy [Glasgow], University of Glasgow, Institut für Geophysik [Zürich], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Istituto di Fisica, INFN Urbino, NASA Goddard Space Flight Center (GSFC), European Space Operations Centre, Blackett Laboratory, Imperial College London, Institut für Theoretische Physik, Universität Zürich [Zürich] = University of Zurich (UZH), NTE-SENER, Departament d'Enginyeria Electrònica [Barcelona], Astrium Ltd, APC - Cosmologie, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, APC - THEORIE, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut für theoretische Physik, Universität Hamburg (UHH)-Universität Hamburg (UHH), LISA, Agence Spatiale Européenne = European Space Agency (ESA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), European Space Research and Technology Centre (ESTEC), National Institute for Nuclear Physics (INFN), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Universitat Autònoma de Barcelona [Barcelona] (UAB), Department of Physics [Gainesville], University of Florida [Gainesville], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Universität Zürich [Zürich] (UZH), Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, and PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut für theoretische Physik
- Subjects
Physics ,Physics and Astronomy (miscellaneous) ,010308 nuclear & particles physics ,Integration testing ,business.industry ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,99.55.Ym ,System testing ,01 natural sciences ,04.80.Nn ,07.60.Ly ,Toolbox ,Test (assessment) ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Interferometry ,Pathfinder ,0103 physical sciences ,Data analysis ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,010306 general physics ,MATLAB ,business ,computer ,Computer hardware ,computer.programming_language - Abstract
International audience; The LISA Pathfinder interferometry- hardware and system testing 2 Abstract. Preparations for the LISA Pathfinder mission have reached an exciting stage. Tests of the engineering model (EM) of the optical metrology system (OMS) have recently been completed at the Albert Einstein Institute, Hannover, and flight model (FM) tests are now underway. Significantly, they represent the first complete integration and testing of the space-qualified hardware and are the first tests on an optical system level. The results and test procedures of these campaigns will be utilised directly in the ground-based flight hardware tests, and subsequently during in-flight operations. In addition, they allow valuable testing of the data analysis methods using the MATLAB based LTP data analysis (LTPDA) toolbox. This paper presents an overview of the results from the EM test campaign that was successfully completed in December 2009. The LISA Pathfinder interferometry- hardware and system testing 3
- Published
- 2011
28. LISA Pathfinder data analysis
- Author
-
Lluis Gesa, G. Auger, R. Maarschalkerweerd, S. Strandmoe, Ivan Lloro, Gudrun Wanner, Juan Ramos-Castro, X. Llamas, Antonella Cavalleri, Karsten Danzmann, Michele Armano, S. Madden, A. Perreca, D. Fertin, M. Freschi, H. Rozemeijer, I. Harrison, M. Schulte, Ignacio Mateos, M. Cesa, Pierre Binétruy, D. Shaul, D. Texier, Michael Perreur-Lloyd, O. Jeannin, Paolo Bosetti, C. García Marirrodriga, T. J. Sumner, J. Fauste, Felipe Guzman, A. Monsky, B. Guillaume, M. Caleno, Gerhard Heinzel, Ingo Diepholz, D. I. Robertson, M. Chmeissani, Mauro Hueller, P. Prat, Peter Wass, D. Mance, A. Conchillo, Ewan Fitzsimons, A.M. Taylor, J. H. Hough, A. Grynagier, H. Ward, Paul McNamara, A. Lobo, D. Nicolini, D. Tombolato, Giuseppe D. Racca, Matteo Benedetti, F. Antonucci, J. Reiche, C. Trenkel, G. Dixon, G. Congedo, Luigi Ferraioli, J. Huesler, J. A. Romera Perez, Giacomo Ciani, J. Sanjuan, B. Rais, C. Boatella, Eric Plagnol, Domenico Giardini, Frank Steier, M. Diaz-Aguilo, Peter Zweifel, Oliver Jennrich, F. De Marchi, Daniele Bortoluzzi, F. Pedersen, E. Mitchell, José F. F. Mendes, Catia Grimani, Daniele Nicolodi, I. Cristofolini, Philippe Jetzer, Christian J. Killow, Miquel Nofrarías, Rita Dolesi, W. J. Weber, A. F. Garcia Marin, L. Stagnaro, Martin Hewitson, Daniel Hollington, B. Johlander, Heather Audley, S. Waschke, J. Bogenstahl, M. Cruise, Stefano Vitale, Walter Fichter, D. Hoyland, APC - Cosmologie, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), APC - THEORIE, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut für theoretische Physik, Universität Hamburg (UHH)-Universität Hamburg (UHH), Centre National d'Études Spatiales [Toulouse] (CNES), LISA, Gruppo Collegato di Trento, Istituto Nazionale di Fisica Nucleare (INFN), European Space Astronomy Centre (ESAC), European Space Agency (ESA), Max-Planck-Institut für Gravitationsphysik ( Albert-Einstein-Institut ) (AEI), Max-Planck-Gesellschaft, DCT / AQ / EC, European Space Technology Centre, Institut de Física d’Altes Energies [Barcelone] (IFAE), Universitat Autònoma de Barcelona (UAB), Department of Physics [Gainesville] (UF|Physics), University of Florida [Gainesville] (UF), ICE, Institut d'Estudis Espacials de Catalunya (IEEC-CSIC), School of Physics and Astronomy [Birmingham], University of Birmingham [Birmingham], EPSC, Institut für Flugmechanik und Flugregelung, SUPA School of Physics and Astronomy [Glasgow], University of Glasgow, Institut für Geophysik [Zürich], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Istituto di Fisica, INFN Urbino, NASA Goddard Space Flight Center (GSFC), European Space Operations Centre, Blackett Laboratory, Imperial College London, Institut für Theoretische Physik, Universität Zürich [Zürich] = University of Zurich (UZH), NTE-SENER, Université Paris Diderot - Paris 7 (UPD7), Departament d'Enginyeria Electrònica [Barcelona], Astrium Ltd, Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Institut für theoretische Physik, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), National Institute for Nuclear Physics (INFN), Universitat Autònoma de Barcelona [Barcelona] (UAB), Department of Physics [Gainesville], University of Florida [Gainesville], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Universität Zürich [Zürich] (UZH), Agence Spatiale Européenne = European Space Agency (ESA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and European Space Research and Technology Centre (ESTEC)
- Subjects
Physics ,Mission operations ,Physics and Astronomy (miscellaneous) ,010308 nuclear & particles physics ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,01 natural sciences ,Phase (combat) ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Noise ,Identification (information) ,Pathfinder ,Full data ,Physical Sciences ,0103 physical sciences ,[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc] ,Systems engineering ,Key (cryptography) ,Satellite ,010303 astronomy & astrophysics - Abstract
International audience; As the launch of LISA Pathfinder draws near, more and more effort is being put in to the preparation of the data analysis activities that will be carried out during the mission operations. The operations phase of the mission will be composed of a series of experiments that will be carried out on the satellite. These experiments will be directed and analysed by the data analysis team, which is part of the operations team. The operations phase will last about 90 days, during which time the data analysis team aims to fully characterise the LISA Pathfinder satellite, and in particular, its core instrument the LISA Technology Package. By analysing the various couplings present in the system, the different noise sources that will disturb the system, and through the identification of the key physical parameters of the system, a detailed noise budget of the instrument will be constructed that will allow the performance of the different subsystems to be assessed and projected towards LISA. This paper describes the various aspects of the full data analysis chain that are needed to successfully characterise LPF and build up the noise budget during mission operations.
- Published
- 2011
29. LISA Pathfinder: the experiment and the route to LISA
- Author
-
David Robertson, Luigi Ferraioli, Ignacio Mateos, Gerhard Heinzel, M. Schulte, J. Bogenstahl, Daniel Hollington, Michael Perreur-Lloyd, Eric Plagnol, J. H. Hough, A. Grynagier, Paul McNamara, B. Johlander, Mauro Hueller, A. Monsky, H. Ward, Rita Dolesi, M. Hewitson, Tobias Ziegler, Felipe Guzman, Peter Zweifel, Stefano Vitale, A. Lobo, Daniele Nicolodi, Giuseppe D. Racca, Davor Mance, G. Dixon, G. Vischer, S. Waschke, Paolo Bosetti, Walter Fichter, D. Tombolato, J Sanjuán, Oliver Jennrich, D. Hoyland, I. Cristofolini, V. Wand, Frank Steier, Christian J. Killow, Antonella Cavalleri, Michele Armano, M. Freschi, W. J. Weber, L. Stagnaro, N. Brandt, Giacomo Ciani, D. Nicolini, Daniele Bortoluzzi, D. Shaul, M. Smit, T. J. Sumner, Miquel Nofrarías, C. Garcia, Ewan Fitzsimons, D. Fertin, A. M. Cruise, Antonio Garcia, J. Fauste, Gudrun Wanner, M. Benedetti, Juan Ramos-Castro, P J Wass, N. Tateo, Ingo Diepholz, Karsten Danzmann, APC - Cosmologie, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), LISA, Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Data processing ,Spacecraft ,Physics and Astronomy (miscellaneous) ,010308 nuclear & particles physics ,business.industry ,Gravitational wave ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Mission plan ,01 natural sciences ,7. Clean energy ,On board ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Theoretical physics ,Pathfinder ,0103 physical sciences ,Free flight ,Aerospace engineering ,business ,010303 astronomy & astrophysics - Abstract
LISA Pathfinder (LPF) is a science and technology demonstrator planned by the European Space Agency in view of the LISA mission. As a scientific payload, the LISA Technology Package on board LPF will be the most precise geodesics explorer flown as of today, both in terms of displacement and acceleration sensitivity. The challenges embodied by LPF make it a unique mission, paving the way towards the space-borne detection of gravitational waves with LISA. This paper summarizes the basics of LPF, and the progress made in preparing its effective implementation in flight. We hereby give an overview of the experiment philosophy and assumptions to carry on the measurement. We report on the mission plan and hardware design advances and on the progress on detailing measurements and operations. Some light will be shed on the related data processing algorithms. In particular, we show how to single out the acceleration noise from the spacecraft motion perturbations, how to account for dynamical deformation parameters distorting the measurement reference and how to decouple the actuation noise via parabolic free flight.
- Published
- 2009
30. Data analysis for the LISA technology package
- Author
-
B. Johlander, A. Grynagier, Paul McNamara, Karsten Danzmann, Gerhard Heinzel, Mauro Hueller, M. Schulte, Felipe Guzman, N. Brandt, Giacomo Ciani, Rita Dolesi, Christian J. Killow, D. Shaul, D. Nicolini, M. Smit, T. J. Sumner, D. Fertin, M. Hewitson, C. Garcia, J. H. Hough, Paolo Bosetti, Oliver Jennrich, Ewan Fitzsimons, W. J. Weber, Daniele Bortoluzzi, Tobias Ziegler, L. Stagnaro, Ignacio Mateos, Antonella Cavalleri, A. Lobo, N. Tateo, Ingo Diepholz, A. Monsky, Giuseppe D. Racca, Miquel Nofrarías, V. Wand, Luigi Ferraioli, Michele Armano, D. Tombolato, Antonio Garcia, J. Bogenstahl, Daniele Nicolodi, Frank Steier, M. Cruise, Stefano Vitale, J. Fauste, Gudrun Wanner, Walter Fichter, Juan Ramos-Castro, D. Hoyland, P J Wass, Matteo Benedetti, Eric Plagnol, D. I. Robertson, H. Ward, Michael Perreur-Lloyd, I. Cristofolini, Davor Mance, G. Vischer, Peter Zweifel, S. Waschke, J Sanjuán, Daniel Hollington, APC - Cosmologie, Physique Corpusculaire et Cosmologie - Collège de France (PCC), Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-AstroParticule et Cosmologie (APC (UMR_7164)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7), LISA, AstroParticule et Cosmologie (APC (UMR_7164)), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Mission operations ,Physics and Astronomy (miscellaneous) ,010308 nuclear & particles physics ,business.industry ,[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Timeline ,01 natural sciences ,On board ,[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO] ,Pathfinder ,Software ,0103 physical sciences ,Systems engineering ,Key (cryptography) ,Analysis software ,010306 general physics ,business - Abstract
The LISA Technology Package (LTP) on board the LISA Pathfinder mission aims to demonstrate some key concepts for LISA which cannot be tested on ground. The mission consists of a series of preplanned experimental runs. The data analysis for each experiment must be designed in advance of the mission. During the mission, the analysis must be carried out promptly so that the results can be fed forward into subsequent experiments. As such a robust and flexible data analysis environment needs to be put in place. Since this software is used during mission operations and effects the mission timeline, it must be very robust and tested to a high degree. This paper presents the requirements, design and implementation of the data analysis environment (LTPDA) that will be used for analysing the data from LTP. The use of the analysis software to perform mock data challenges (MDC) is also discussed, and some highlights from the first MDC are presented.
- Published
- 2009
31. SMART-1 mission to the moon: Status, first results and goals
- Author
-
James P. Heather, Giuseppe D. Racca, E. Evrard, Reinhard Birkl, Luca Stagnaro, A. Marini, Andreas Nathues, Juhani Huovelin, G. Noci, Walter Schmidt, Manuel Grande, A. Malkki, H. U. Keller, Zoran Sodnik, Detlef Koschny, Bernard Foing, D. Frew, Miguel Almeida, P. McManamon, Jean Luc Josset, Joe Zender, and Luciano Iess
- Subjects
Atmospheric Science ,Engineering ,Geostationary transfer orbit ,imaging payloads ,Cruise ,Aerospace Engineering ,Astrobiology ,moon ,smart-1 ,mineralogy ,surface composition ,technology ,Aerospace engineering ,Spacecraft ,Payload ,business.industry ,Astronomy and Astrophysics ,Geophysics ,Electrically powered spacecraft propulsion ,Space and Planetary Science ,Remote sensing (archaeology) ,Orbit (dynamics) ,General Earth and Planetary Sciences ,business ,Lunar science - Abstract
We present the first results from SMART-1’s science and technology payload. SMART-1 is Europe’s first lunar mission and will provide some significant advances to many issues currently active in lunar science, such as our understanding of lunar origin and evolution. The mission also contributes a step in developing an international program of lunar exploration. The spacecraft was launched on 27 September 2003 on an Ariane 5, as an auxiliary passenger to Geostationary Transfer Orbit (GTO), performed a 14-month long cruise using the tiny thrust of electric propulsion alone, reached lunar capture in November 2004, and lunar science orbit in March 2005. SMART-1 carries seven hardware experiments (performing 10 investigations, including three remote sensing instruments, used during the cruise, the mission’s nominal six months and one year extension in lunar science orbit). The remote sensing instruments will contribute to key planetary scientific questions related to theories of lunar origin and evolution, the global and local crustal composition, the search for cold traps at the lunar poles and the mapping of potential lunar resources.
- Published
- 2006
32. SMART-1 after lunar capture: First results and perspectives
- Author
-
E. Evrard, Zoran Sodnik, Manuel Grande, Joe Zender, Miguel Almeida, Luciano Iess, Juhani Huovelin, Bernard Foing, G. Noci, Detlef Koschny, Reinhard Birkl, D. Frew, A. Marini, P. McManamon, Walter Schmidt, A. Malkki, H. U. Keller, David Heather, Jean Luc Josset, Giuseppe D. Racca, Andreas Nathues, and Luca Stagnaro
- Subjects
Engineering ,Spacecraft ,business.industry ,Lune ,Cruise ,General Earth and Planetary Sciences ,NASA Deep Space Network ,Aerospace engineering ,Propulsion ,business ,Lunar science ,Astrobiology - Abstract
SMART-1 is a technology demonstration mission for deep space solar electrical propulsion and technologies for the future. SMART-1 is Europe’s first lunar mission and will contribute to developing an international program of lunar exploration. The spacecraft was launched on 27th September 2003, as an auxiliary passenger to GTO on Ariane 5, to reach the Moon after a 15-month cruise, with lunar capture on 15th November 2004, just a week before the International Lunar Conference in Udaipur. SMART-1 carries seven experiments, including three remote sensing instruments used during the mission’s nominal six months and one year extension in lunar science orbit. These instruments will contribute to key planetary scientific questions, related to theories of lunar origin and evolution, the global and local crustal composition, the search for cold traps at the lunar poles and the mapping of potential lunar resources
- Published
- 2005
33. The SMART-1 Attitude and Orbit Control System: Flight Results from the First Mission Phase
- Author
-
Anders Edfors, Per Bodin, Joakim Kugelberg, Martin Björk, Sten Berge, Helmut Meier, Ton van Overbeek, Peter Rathsman, Giuseppe D. Racca, and Luca Stagnaro
- Subjects
Computer science ,business.industry ,Orbit Attitude and Maneuvering System ,Control system ,Phase (waves) ,Orbit (control theory) ,Aerospace engineering ,Graveyard orbit ,Orbit insertion ,business - Published
- 2004
34. Europe to the moon: Smart-1 Final Preparation for Launch
- Author
-
Giuseppe D. Racca
- Subjects
Engineering ,Aeronautics ,business.industry ,Aerospace engineering ,business - Published
- 2003
35. SMART-1: The First Time of Europe to the Moon
- Author
-
Bernard Foing, Marcello Coradini, and Giuseppe D. Racca
- Subjects
Engineering ,Aeronautics ,Flight dynamics ,business.industry ,Primary (astronomy) ,Satellite ,business ,Technology innovation ,Space exploration ,Flight test ,Astrobiology - Abstract
After 40 years from the first lunar missions, Europe has started for the first time the development of a mission which has the Moon as a target. SMART-1 will be the first Western-European mission to the Earth’s satellite. The primary objective of the mission is to flight test technology innovation for the future scientific deep-space missions. This paper describes the mission concept, the technology and the scientific aspects.
- Published
- 2001
36. Highlights from ICEUM4, The 4th International Conference on the Exploration and Utilisation of the Moon
- Author
-
P. Van Susante, E. Galimov, Miguel Almeida, Bernard Foing, N. Frischauf, H. Mizutani, Giuseppe D. Racca, M. Duke, David Heather, and Carle M. Pieters
- Subjects
Outreach ,Task group ,Political science ,Declaration ,Library science ,Human development (humanity) ,World space - Abstract
The Fourth International Conference on the Exploration and Utilisation of the Moon (ICEUM4) at ESTEC in July 2000 was organised by the International Lunar Exploration Working Group (ILEWG) and ESA. The conference had a broad content including future missions such as ESA’s SMART-1 mission and the Japanese Lunar-A and SELENE projects, technology support for these missions, the recent advances in science of the Moon, human development of the Moon, and public outreach. The proceedings of the conference have been published as ESA Publication ESA SP-462 and an official declaration from the conference has been constructed from recommendations made by task groups set up at the conference. The declaration will be used as a focus for the efforts of the Lunar Explorers Society (LUNEX), which was founded during the meeting. Progress will be reported at ICEUM5, to be held as part of the World Space Congress in Houston in October 2002.
- Published
- 2001
37. SMART-1 - A technology demonstration mission for science using electric propulsion
- Author
-
G. Saccoccia, D. Estublier, and Giuseppe D. Racca
- Subjects
Engineering ,Electrically powered spacecraft propulsion ,business.industry ,In-space propulsion technologies ,Aerospace engineering ,business - Published
- 1998
38. EURECA Thermal Control Flight Performance
- Author
-
Wolfgang Hahn, Giuseppe D. Racca, and Angus Blackwood
- Subjects
Data processing ,Freon ,Temperature control ,business.industry ,Environmental science ,Space Shuttle ,Aerospace engineering ,business ,Thermal control ,Spacecraft design - Published
- 1993
39. The Thermal Control of the European Retrievable Carrier, An Example of Flexible Thermal Control System
- Author
-
Wolfgang Hahn and Giuseppe D. Racca
- Subjects
Engineering ,Temperature control ,business.industry ,Thermal insulation ,Control system ,Thermal control system ,Electric heating ,Water cooling ,Mechanical engineering ,Aerospace ,business ,Thermal control - Published
- 1991
40. SMART-1 highlights and relevant studies on early bombardment and geological processes on rocky planets
- Author
-
Miguel Almeida, Barry Kellett, Manuel Grande, Pascale Ehrenfreund, P. McCannon, Urs Mall, D. Frew, Joe Zender, S. Peters, Detlef Koschny, Luca Stagnaro, Andreas Nathues, Juhani Huovelin, A. Marini, Stephane Beauvivre, Jean Luc Josset, David Heather, Giuseppe D. Racca, and Bernard Foing
- Subjects
Physics ,Geostationary transfer orbit ,Spacecraft ,Payload ,business.industry ,Context (language use) ,Planetary system ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Astrobiology ,Planet ,Orbit (dynamics) ,Terrestrial planet ,business ,Mathematical Physics - Abstract
We present results from SMART-1 science and technology payload, in the context of the Nobel symposium on 'Physics of Planetary Systems'. SMART-1 is Europe' first lunar mission (Foing et al 2000 LPSC XXXI Abstract #1677 (CDROM); Foing et al 2001 Earth, Moon Planets 85–86 523–31; Marini et al 2002 Adv. Space Res. 30 1895–900; Racca et al 2001 Earth Moon Planets 85–86 379–95, Racca et al 2002 Planet Space Sci. 50 1323–37) demonstrating technologies for future science and exploration missions, and providing advances in our understanding of lunar origin and evolution, and general planetary questions. The mission also contributes a step in developing an international program of lunar exploration. The spacecraft, launched on 27 September 2003 as an Ariane 5 Auxiliary passenger to geostationary transfer orbit (GTO), performed a 14-month long cruise using a tiny thrust of electric propulsion alone, reached lunar capture in November 2004, and lunar science orbit in March 2005. SMART-1 carried 7 hardware experiments (Foing et al 2003 Adv. Space Res. 31 2323, Foing et al 2005 LPI/LPSC XXXVI 2404 (CDROM)) performing 10 investigations, including 3 remote-sensing instruments, used during the cruise, the mission' nominal six-months and one-year extension in lunar science orbit. Three remote sensing instruments, D-CIXS, SIR and AMIE, have returned data that are relevant to a broad range of lunar studies. The mission provided regional and global x-ray measurements of the Moon, global high-spectral resolution NIR spectrometry, high spatial resolution colour imaging of selected regions. The South Pole-Aitken Basin (SPA) and other impact basins have been prime targets for studies using the SMART-1 suite of instruments. Combined, these should aid a large number of science studies, from bulk crustal composition and theories of lunar origin/evolution, the global and local crustal composition, to the search for cold traps at the lunar poles and the mapping of potential lunar resources. We present here SMART-1 results relevant to the study of the early bombardment and geological processes on rocky planets. Further information and updates on the SMART-1 mission can be found on the ESA Science and Technology web pages, at: http://sci.esa.int/smart-1/.
- Published
- 2008
41. New Challenges to Trajectory Design by the Use of Electric Propulsion and Other New Means of Wandering in the Solar System.
- Author
-
Giuseppe D. Racca
- Published
- 2003
42. Thermal Control Definition of COLUMBUS Pressurized Modules
- Author
-
Lazzaro Costamagna and Giuseppe D. Racca
- Subjects
Engineering ,business.industry ,Mechanical engineering ,business ,Thermal control - Published
- 1987
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.