7 results on '"Giulimondi, V."'
Search Results
2. Catalytic Synergies in Bimetallic Ru-Pt Single-Atom Catalysts via Speciation Control
- Author
-
Química Física i Inorgànica, Universitat Rovira i Virgili, Giulimondi V; Ruiz–Ferrando A; Clark AH; Kaiser SK; Krumeich F; Martín AJ; López N; Pérez–Ramírez J, Química Física i Inorgànica, Universitat Rovira i Virgili, and Giulimondi V; Ruiz–Ferrando A; Clark AH; Kaiser SK; Krumeich F; Martín AJ; López N; Pérez–Ramírez J
- Abstract
Bimetallic single-atom catalysts (b-SACs) have recently gained prominence by virtue of the unique catalytic cooperative interactions they can exhibit, intertwining electronic and geometric effects. To date, research efforts have exclusively focused on direct mechanisms such as electron density transfer or sequential reactivity. Herein, the first study on indirect, coordination-induced catalytic synergies in carbon-supported Ru-Pt SACs is conducted. To this end, a holistic approach is developed, combining i) precision synthesis, ii) advanced characterization, iii) exploration of single-site adsorption properties via the hydrogen evolution reaction, and iv) modeling through density functional theory. Despite the lack of both intermetallic coordination in the first or second shell and charge redistribution effects, the Ru-Pt SACs exhibit a H-2 formation rate enhanced up to 15-fold compared with their monometallic counterparts. To unfold the origin of the intermetallic cooperativity, modifications of the structural and catalytic properties induced by the integration of a second metal species are investigated. Thus, Pt atoms are found to selectively occupy the most energeticallyfavorable cavities in the support, prompting Ru atoms to assume a distinct, more active, configuration. This contribution unveils a novel principle of bimetallic cooperativity, demonstrating the key role of integrative experimental and computational analyses in studying b-SACs.
- Published
- 2022
3. Evidence of bifunctionality of carbons and metal atoms in catalyzed acetylene hydrochlorination.
- Author
-
Giulimondi V, Ruiz-Ferrando A, Giannakakis G, Surin I, Agrachev M, Jeschke G, Krumeich F, López N, Clark AH, and Pérez-Ramírez J
- Abstract
Carbon supports are ubiquitous components of heterogeneous catalysts for acetylene hydrochlorination to vinyl chloride, from commercial mercury-based systems to more sustainable metal single-atom alternatives. Their potential co-catalytic role has long been postulated but never unequivocally demonstrated. Herein, we evidence the bifunctionality of carbons and metal sites in the acetylene hydrochlorination catalytic cycle. Combining operando X-ray absorption spectroscopy with other spectroscopic and kinetic analyses, we monitor the structure of single metal atoms (Pt, Au, Ru) and carbon supports (activated, non-activated, and nitrogen-doped) from catalyst synthesis, using various procedures, to operation at different conditions. Metal atoms exclusively activate hydrogen chloride, while metal-neighboring sites in the support bind acetylene. Resolving the coordination environment of working metal atoms guides theoretical simulations in proposing potential binding sites for acetylene in the support and a viable reaction profile. Expanding from single-atom to ensemble catalysis, these results reinforce the importance of optimizing both metal and support components to leverage the distinct functions of each for advancing catalyst design., (© 2023. Springer Nature Limited.)
- Published
- 2023
- Full Text
- View/download PDF
4. Economic and Environmental Competitiveness of Ethane-Based Technologies for Vinyl Chloride Synthesis.
- Author
-
Medrano-García JD, Giulimondi V, Ceruti A, Zichittella G, Pérez-Ramírez J, and Guillén-Gosálbez G
- Abstract
The synthesis of the vinyl chloride monomer (VCM), employed to manufacture poly(vinyl chloride) (PVC) plastic, primarily relies on oil-derived ethylene, resulting in high costs and carbon footprint. Natural gas-derived ethane in VCM synthesis has long been considered a transformative feedstock to lower emissions and expenses. In this work, we evaluate the environmental potential and economics of recently developed catalytic ethane chlorination technologies for VCM synthesis. We consider the ethylene-based business-as-usual (BAU) route and two different ethane-based processes evaluated at their current development level and their full potential, i.e. , ideal conversion and selectivity. All routes are assessed under two temporal scenarios: present (2020) and prospective (2050). Combining process simulation and life cycle assessment (LCA), we find that catalytic ethane chlorination technologies can lower the production cost by 32% at their current development state and by 56% when considering their full potential. Though environmentally disadvantageous in the 2020 scenario, they emerge as more sustainable alternatives to the BAU in the 2050 scenario, reducing the carbon footprint of VCM synthesis by up to 26% at their current state and up to 58% at their full potential. Going beyond VCM synthesis, our results highlight prospective LCA as a powerful tool for assessing the true environmental implications of emerging technologies under more decarbonized future energy scenarios., Competing Interests: The authors declare no competing financial interest., (© 2023 The Authors. Published by American Chemical Society.)
- Published
- 2023
- Full Text
- View/download PDF
5. Challenges and Opportunities in Engineering the Electronic Structure of Single-Atom Catalysts.
- Author
-
Giulimondi V, Mitchell S, and Pérez-Ramírez J
- Abstract
Controlling the electronic structure of transition-metal single-atom heterogeneous catalysts (SACs) is crucial to unlocking their full potential. The ability to do this with increasing precision offers a rational strategy to optimize processes associated with the adsorption and activation of reactive intermediates, charge transfer dynamics, and light absorption. While several methods have been proposed to alter the electronic characteristics of SACs, such as the oxidation state, band structure, orbital occupancy, and associated spin, the lack of a systematic approach to their application makes it difficult to control their effects. In this Perspective, we examine how the electronic configuration of SACs can be engineered for thermochemical, electrochemical, and photochemical applications, exploring the relationship with their activity, selectivity, and stability. We discuss synthetic and analytical challenges in controlling and discriminating the electronic structure of SACs and possible directions toward closing the gap between computational and experimental efforts. By bringing this topic to the center, we hope to stimulate research to understand, control, and exploit electronic effects in SACs and ultimately spur technological developments., Competing Interests: The authors declare no competing financial interest., (© 2023 The Authors. Published by American Chemical Society.)
- Published
- 2023
- Full Text
- View/download PDF
6. Controlled Formation of Dimers and Spatially Isolated Atoms in Bimetallic Au-Ru Catalysts via Carbon-Host Functionalization.
- Author
-
Giulimondi V, Kaiser SK, Martín AJ, Büchele S, Krumeich F, Clark AH, and Pérez-Ramírez J
- Subjects
- Adsorption, Catalysis, Hydrogen chemistry, Carbon, Protons
- Abstract
The introduction of a foreign metal atom in the coordination environment of single-atom catalysts constitutes an exciting frontier of active-site engineering, generating bimetallic low-nuclearity catalysts often exhibiting unique catalytic synergies. To date, the exploration of their full scope is thwarted by (i) the lack of synthetic techniques with control over intermetallic coordination, and (ii) the challenging characterization of these materials. Herein, carbon-host functionalization is presented as a strategy to selectively generate Au-Ru dimers and isolated sites by simple incipient wetness impregnation, as corroborated by careful X-ray absorption spectroscopy analysis. The distinct catalytic fingerprints are unveiled via the hydrogen evolution reaction, employed as a probe for proton adsorption properties. Intriguingly, the virtually inactive Au atoms enhance the reaction kinetics of their Ru counterparts already when spatially isolated, by shifting the proton adsorption free energy closer to neutrality. Remarkably, the effect is magnified by a factor of 2 in dimers. These results exemplify the relevance of controlling intermetallic coordination for the rational design of bimetallic low-nuclearity catalysts., (© 2022 The Authors. Small published by Wiley-VCH GmbH.)
- Published
- 2022
- Full Text
- View/download PDF
7. Redispersion strategy for high-loading carbon-supported metal catalysts with controlled nuclearity.
- Author
-
Giulimondi V, Kaiser SK, Agrachev M, Krumeich F, Clark AH, Mitchell S, Jeschke G, and Pérez-Ramírez J
- Abstract
Supported low-nuclearity metal catalysts integrating single atoms or small clusters have emerged as promising materials for diverse applications. While sophisticated synthetic methods provide a high level of nuclearity control in the subnanometre regime, these routes do not fulfil the requirements for translation into industrial practice of (i) effectiveness for high metal contents and (ii) facile scalability. Herein, we present a gas-phase redispersion strategy consisting of sequential C
2 H2 and HCl treatments to gradually disperse Ru, Rh and Ir nanoparticles supported on commercial activated carbon with metal content up to 10 wt% and initial average sizes of ≈ 1 nm into small clusters and eventually single atoms. Avoidance of nanoparticle surface overchlorination, which hinders C2 H2 adsorption, is identified as key for the redispersion process, as demonstrated by the inefficacy of both C2 H2 -HCl cofeeding and inverse sequence ( i.e ., HCl first) treatments. Precise size control (±0.1 nm) is enabled by regulating the number of C2 H2 -HCl cycles. Detailed characterisation by X-ray absorption spectroscopy, electron paramagnetic resonance and time-resolved mass spectrometry reveals that the redispersion occurs via a layer-by-layer mechanism. Specifically, the migration of surface chlorinated metal species to the carbon support is induced by the C2 H2 treatment, depleting accessible surface Cl atoms, while the subsequent HCl treatment rechlorinates the cluster surface. The strategy paves the way for the generation of high-density metal sites with tuneable nuclearity for tailored applications., Competing Interests: There are no conflicts to declare., (This journal is © The Royal Society of Chemistry.)- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.