92 results on '"Girguis PR"'
Search Results
2. Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity
- Author
-
Girguis, PR
- Published
- 2013
- Full Text
- View/download PDF
3. Duty Cycling Influences Current Generation in Multi-Anode Environmental Microbial Fuel Cells
- Author
-
Girguis, PR
- Published
- 2012
- Full Text
- View/download PDF
4. Perspectives on the future of ecology, evolution, and biodiversity from the Council on Microbial Sciences of the American Society for Microbiology.
- Author
-
Akob DM, Oates AE, Girguis PR, Badgley BD, Cooper VS, Poretsky RS, Tierney BT, Litchman E, Whitaker RJ, Whiteson KL, and Metcalf CJE
- Subjects
- United States, Biological Evolution, Humans, Microbiota, Biodiversity, Ecology, Microbiology, Societies, Scientific
- Abstract
The field of microbial ecology, evolution, and biodiversity (EEB) is at the leading edge of understanding how microbes shape our biosphere and influence the well-being of humankind and Earth. To that end, EEB is developing new transdisciplinary tools to analyze these ecologically critical, complex microbial communities. The American Society for Microbiology's Council on Microbial Sciences hosted a virtual retreat in 2023 to discuss the trajectory of EEB both within the Society and microbiology writ large. The retreat emphasized the interconnectedness of microbes and their outsized global influence on environmental and host health. The maximal potential impact of EEB will not be achieved without contributions from disparate fields that unite diverse technologies and data sets. In turn, this level of transdisciplinary efforts requires actively encouraging "broad" research, spanning inclusive global collaborations that incorporate both scientists and the public. Together, the American Society for Microbiology and EEB are poised to lead a paradigm shift that will result in a new era of collaboration, innovation, and societal relevance for microbiology., Competing Interests: The authors declare no conflict of interest.
- Published
- 2024
- Full Text
- View/download PDF
5. Co-expression analysis reveals distinct alliances around two carbon fixation pathways in hydrothermal vent symbionts.
- Author
-
Mitchell JH, Freedman AH, Delaney JA, and Girguis PR
- Subjects
- Animals, Oxidation-Reduction, Citric Acid Cycle, Sulfides metabolism, Gene Expression Regulation, Bacterial, Hydrogenase metabolism, Hydrogenase genetics, Chemoautotrophic Growth, Gene Expression Profiling, Nitrates metabolism, Photosynthesis, Bacteria metabolism, Bacteria genetics, Hydrothermal Vents microbiology, Carbon Cycle, Symbiosis, Polychaeta metabolism
- Abstract
Most autotrophic organisms possess a single carbon fixation pathway. The chemoautotrophic symbionts of the hydrothermal vent tubeworm Riftia pachyptila, however, possess two functional pathways: the Calvin-Benson-Bassham (CBB) and the reductive tricarboxylic acid (rTCA) cycles. How these two pathways are coordinated is unknown. Here we measured net carbon fixation rates, transcriptional/metabolic responses and transcriptional co-expression patterns of Riftia pachyptila endosymbionts by incubating tubeworms collected from the East Pacific Rise at environmental pressures, temperature and geochemistry. Results showed that rTCA and CBB transcriptional patterns varied in response to different geochemical regimes and that each pathway is allied to specific metabolic processes; the rTCA is allied to hydrogenases and dissimilatory nitrate reduction, whereas the CBB is allied to sulfide oxidation and assimilatory nitrate reduction, suggesting distinctive yet complementary roles in metabolic function. Furthermore, our network analysis implicates the rTCA and a group 1e hydrogenase as key players in the physiological response to limitation of sulfide and oxygen. Net carbon fixation rates were also exemplary, and accordingly, we propose that co-activity of CBB and rTCA may be an adaptation for maintaining high carbon fixation rates, conferring a fitness advantage in dynamic vent environments., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
6. Sulfur cycling likely obscures dynamic biologically-driven iron redox cycling in contemporary methane seep environments.
- Author
-
Baker IR and Girguis PR
- Subjects
- Seawater microbiology, Seawater chemistry, Sulfides metabolism, Sulfates metabolism, RNA, Ribosomal, 16S genetics, Phylogeny, Oxidation-Reduction, Methane metabolism, Iron metabolism, Sulfur metabolism, Geologic Sediments microbiology, Geologic Sediments chemistry, Bacteria metabolism, Bacteria genetics, Bacteria classification
- Abstract
Deep-sea methane seeps are amongst the most biologically productive environments on Earth and are often characterised by stable, low oxygen concentrations and microbial communities that couple the anaerobic oxidation of methane to sulfate reduction or iron reduction in the underlying sediment. At these sites, ferrous iron (Fe
2+ ) can be produced by organoclastic iron reduction, methanotrophic-coupled iron reduction, or through the abiotic reduction by sulfide produced by the abundant sulfate-reducing bacteria at these sites. The prevalence of Fe2+ in the anoxic sediments, as well as the availability of oxygen in the overlying water, suggests that seeps could also harbour communities of iron-oxidising microbes. However, it is unclear to what extent Fe2+ remains bioavailable and in solution given that the abiotic reaction between sulfide and ferrous iron is often assumed to scavenge all ferrous iron as insoluble iron sulfides and pyrite. Accordingly, we searched the sea floor at methane seeps along the Cascadia Margin for microaerobic, neutrophilic iron-oxidising bacteria, operating under the reasoning that if iron-oxidising bacteria could be isolated from these environments, it could indicate that porewater Fe2+ can persist is long enough for biology to outcompete pyritisation. We found that the presence of sulfate in our enrichment media muted any obvious microbially-driven iron oxidation with most iron being precipitated as iron sulfides. Transfer of enrichment cultures to sulfate-depleted media led to dynamic iron redox cycling relative to abiotic controls and sulfate-containing cultures, and demonstrated the capacity for biogenic iron (oxyhydr)oxides from a methane seep-derived community. 16S rRNA analyses revealed that removing sulfate drastically reduced the diversity of enrichment cultures and caused a general shift from a Gammaproteobacteria-domainated ecosystem to one dominated by Rhodobacteraceae (Alphaproteobacteria). Our data suggest that, in most cases, sulfur cycling may restrict the biological "ferrous wheel" in contemporary environments through a combination of the sulfur-adapted sediment-dwelling ecosystems and the abiotic reactions they influence., (© 2024 The Authors. Environmental Microbiology Reports published by John Wiley & Sons Ltd.)- Published
- 2024
- Full Text
- View/download PDF
7. Genomic language model predicts protein co-regulation and function.
- Author
-
Hwang Y, Cornman AL, Kellogg EH, Ovchinnikov S, and Girguis PR
- Subjects
- Phylogeny, Operon, Proteins, Metagenomics, Semantics, Machine Learning
- Abstract
Deciphering the relationship between a gene and its genomic context is fundamental to understanding and engineering biological systems. Machine learning has shown promise in learning latent relationships underlying the sequence-structure-function paradigm from massive protein sequence datasets. However, to date, limited attempts have been made in extending this continuum to include higher order genomic context information. Evolutionary processes dictate the specificity of genomic contexts in which a gene is found across phylogenetic distances, and these emergent genomic patterns can be leveraged to uncover functional relationships between gene products. Here, we train a genomic language model (gLM) on millions of metagenomic scaffolds to learn the latent functional and regulatory relationships between genes. gLM learns contextualized protein embeddings that capture the genomic context as well as the protein sequence itself, and encode biologically meaningful and functionally relevant information (e.g. enzymatic function, taxonomy). Our analysis of the attention patterns demonstrates that gLM is learning co-regulated functional modules (i.e. operons). Our findings illustrate that gLM's unsupervised deep learning of the metagenomic corpus is an effective and promising approach to encode functional semantics and regulatory syntax of genes in their genomic contexts and uncover complex relationships between genes in a genomic region., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
8. Deep sea treasures - Insights from museum archives shed light on coral microbial diversity within deepest ocean ecosystems.
- Author
-
Ricci F, Leggat W, Pasella MM, Bridge T, Horowitz J, Girguis PR, and Ainsworth T
- Abstract
Deep sea benthic habitats are low productivity ecosystems that host an abundance of organisms within the Cnidaria phylum. The technical limitations and the high cost of deep sea surveys have made exploring deep sea environments and the biology of the organisms that inhabit them challenging. In spite of the widespread recognition of Cnidaria's environmental importance in these ecosystems, the microbial assemblage and its role in coral functioning have only been studied for a few deep water corals. Here, we explored the microbial diversity of deep sea corals by recovering nucleic acids from museum archive specimens. Firstly, we amplified and sequenced the V1-V3 regions of the 16S rRNA gene of these specimens, then we utilized the generated sequences to shed light on the microbial diversity associated with seven families of corals collected from depth in the Coral Sea (depth range 1309 to 2959 m) and Southern Ocean (depth range 1401 to 2071 m) benthic habitats. Surprisingly, Cyanobacteria sequences were consistently associated with six out of seven coral families from both sampling locations, suggesting that these bacteria are potentially ubiquitous members of the microbiome within these cold and deep sea water corals. Additionally, we show that Cnidaria might benefit from symbiotic associations with a range of chemosynthetic bacteria including nitrite, carbon monoxide and sulfur oxidizers. Consistent with previous studies, we show that sequences associated with the bacterial phyla Proteobacteria, Verrucomicrobia, Planctomycetes and Acidobacteriota dominated the microbial community of corals in the deep sea. We also explored genomes of the bacterial genus Mycoplasma, which we identified as associated with specimens of three deep sea coral families, finding evidence that these bacteria may aid the host immune system. Importantly our results show that museum specimens retain components of host microbiome that can provide new insights into the diversity of deep sea coral microbiomes (and potentially other organisms), as well as the diversity of microbes writ large in deep sea ecosystems., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2024 Published by Elsevier Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
9. Aerobic iron-oxidizing bacteria secrete metabolites that markedly impede abiotic iron oxidation.
- Author
-
Baker IR, Matzen SL, Schuler CJ, Toner BM, and Girguis PR
- Abstract
Iron is one of the Earth's most abundant elements and is required for essentially all forms of life. Yet, iron's reactivity with oxygen and poor solubility in its oxidized form (Fe
3+ ) mean that it is often a limiting nutrient in oxic, near-neutral pH environments like Earth's ocean. In addition to being a vital nutrient, there is a diversity of aerobic organisms that oxidize ferrous iron (Fe2+ ) to harness energy for growth and biosynthesis. Accordingly, these organisms rely on access to co-existing Fe2+ and O2 to survive. It is generally presumed that such aerobic iron-oxidizing bacteria (FeOB) are relegated to low-oxygen regimes where abiotic iron oxidation rates are slower, yet some FeOB live in higher oxygen environments where they cannot rely on lower oxygen concentrations to overcome abiotic competition. We hypothesized that FeOB chemically alter their environment to limit abiotic interactions between Fe2+ and O2 . To test this, we incubated the secreted metabolites (collectively known as the exometabolome) of the deep-sea iron- and hydrogen-oxidizing bacterium Ghiorsea bivora TAG-1 with ferrous iron and oxygen. We found that this FeOB's iron-oxidizing exometabolome markedly impedes the abiotic oxidation of ferrous iron, increasing the half-life of Fe2+ 100-fold from ∼3 to ∼335 days in the presence of O2 , while the exometabolome of TAG-1 grown on hydrogen had no effect. Moreover, the few precipitates that formed in the presence of TAG-1's iron-oxidizing exometabolome were poorly crystalline, compared with the abundant iron particles that mineralized in the absence of abiotic controls. We offer an initial exploration of TAG-1's iron-oxidizing exometabolome and discuss potential key contributors to this process. Overall, our findings demonstrate that the exometabolome as a whole leads to a sustained accumulation of ferrous iron in the presence of oxygen, consequently altering the redox equilibrium. This previously unknown adaptation likely enables these microorganisms to persist in an iron-oxidizing and iron-precipitating world and could have impacts on the bioavailability of iron to FeOB and other life in iron-limiting environments., (© The Author(s) 2023. Published by Oxford University Press on behalf of National Academy of Sciences.)- Published
- 2023
- Full Text
- View/download PDF
10. Proterozoic Acquisition of Archaeal Genes for Extracellular Electron Transfer: A Metabolic Adaptation of Aerobic Ammonia-Oxidizing Bacteria to Oxygen Limitation.
- Author
-
Gulay A, Fournier G, Smets BF, and Girguis PR
- Subjects
- Oxidation-Reduction, Electrons, Phylogeny, Oxygen, Genes, Archaeal, Ammonia metabolism, Gammaproteobacteria metabolism
- Abstract
Many aerobic microbes can utilize alternative electron acceptors under oxygen-limited conditions. In some cases, this is mediated by extracellular electron transfer (or EET), wherein electrons are transferred to extracellular oxidants such as iron oxide and manganese oxide minerals. Here, we show that an ammonia-oxidizer previously known to be strictly aerobic, Nitrosomonas communis, may have been able to utilize a poised electrode to maintain metabolic activity in anoxic conditions. The presence and activity of multiheme cytochromes in N. communis further suggest a capacity for EET. Molecular clock analysis shows that the ancestors of β-proteobacterial ammonia oxidizers appeared after Earth's atmospheric oxygenation when the oxygen levels were >10-4pO2 (present atmospheric level [PAL]), consistent with aerobic origins. Equally important, phylogenetic reconciliations of gene and species trees show that the multiheme c-type EET proteins in Nitrosomonas and Nitrosospira lineages were likely acquired by gene transfer from γ-proteobacteria when the oxygen levels were between 0.1 and 1 pO2 (PAL). These results suggest that β-proteobacterial EET evolved during the Proterozoic when oxygen limitation was widespread, but oxidized minerals were abundant., (© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)
- Published
- 2023
- Full Text
- View/download PDF
11. The metabolic rate of the biosphere and its components.
- Author
-
Hoehler TM, Mankel DJ, Girguis PR, McCollom TM, Kiang NY, and Jørgensen BB
- Subjects
- Animals, Biomass, Carbon, Geologic Sediments, Basal Metabolism, Biota
- Abstract
We assessed the relationship between rates of biological energy utilization and the biomass sustained by that energy utilization, at both the organism and biosphere level. We compiled a dataset comprising >10,000 basal, field, and maximum metabolic rate measurements made on >2,900 individual species, and, in parallel, we quantified rates of energy utilization, on a biomass-normalized basis, by the global biosphere and by its major marine and terrestrial components. The organism-level data, which are dominated by animal species, have a geometric mean among basal metabolic rates of 0.012 W (g C)
-1 and an overall range of more than six orders of magnitude. The biosphere as a whole uses energy at an average rate of 0.005 W (g C)-1 but exhibits a five order of magnitude range among its components, from 0.00002 W (g C)-1 for global marine subsurface sediments to 2.3 W (g C)-1 for global marine primary producers. While the average is set primarily by plants and microorganisms, and by the impact of humanity upon those populations, the extremes reflect systems populated almost exclusively by microbes. Mass-normalized energy utilization rates correlate strongly with rates of biomass carbon turnover. Based on our estimates of energy utilization rates in the biosphere, this correlation predicts global mean biomass carbon turnover rates of ~2.3 y-1 for terrestrial soil biota, ~8.5 y-1 for marine water column biota, and ~1.0 y-1 and ~0.01 y-1 for marine sediment biota in the 0 to 0.1 m and >0.1 m depth intervals, respectively.- Published
- 2023
- Full Text
- View/download PDF
12. Viruses interact with hosts that span distantly related microbial domains in dense hydrothermal mats.
- Author
-
Hwang Y, Roux S, Coclet C, Krause SJE, and Girguis PR
- Subjects
- Ecosystem, DNA, Microbial Interactions, Bacteria genetics, Viruses genetics
- Abstract
Many microbes in nature reside in dense, metabolically interdependent communities. We investigated the nature and extent of microbe-virus interactions in relation to microbial density and syntrophy by examining microbe-virus interactions in a biomass dense, deep-sea hydrothermal mat. Using metagenomic sequencing, we find numerous instances where phylogenetically distant (up to domain level) microbes encode CRISPR-based immunity against the same viruses in the mat. Evidence of viral interactions with hosts cross-cutting microbial domains is particularly striking between known syntrophic partners, for example those engaged in anaerobic methanotrophy. These patterns are corroborated by proximity-ligation-based (Hi-C) inference. Surveys of public datasets reveal additional viruses interacting with hosts across domains in diverse ecosystems known to harbour syntrophic biofilms. We propose that the entry of viral particles and/or DNA to non-primary host cells may be a common phenomenon in densely populated ecosystems, with eco-evolutionary implications for syntrophic microbes and CRISPR-mediated inter-population augmentation of resilience against viruses., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
13. Composition and metabolic potential of microbiomes associated with mesopelagic animals from Monterey Canyon.
- Author
-
Breusing C, Osborn KJ, Girguis PR, and Reese AT
- Abstract
There is growing recognition that microbiomes play substantial roles in animal eco-physiology and evolution. To date, microbiome research has largely focused on terrestrial animals, with far fewer studies on aquatic organisms, especially pelagic marine species. Pelagic animals are critical for nutrient cycling, yet are also subject to nutrient limitation and might thus rely strongly on microbiome digestive functions to meet their nutritional requirements. To better understand the composition and metabolic potential of midwater host-associated microbiomes, we applied amplicon and shotgun metagenomic sequencing to eleven mesopelagic animal species. Our analyses reveal that mesopelagic animal microbiomes are typically composed of bacterial taxa from the phyla Proteobacteria, Firmicutes, Bacteroidota and, in some cases, Campylobacterota. Overall, compositional and functional microbiome variation appeared to be primarily governed by host taxon and depth and, to a lesser extent, trophic level and diel vertical migratory behavior, though the impact of host specificity seemed to differ between migrating and non-migrating species. Vertical migrators generally showed lower intra-specific microbiome diversity (i.e., higher host specificity) than their non-migrating counterparts. These patterns were not linked to host phylogeny but may reflect differences in feeding behaviors, microbial transmission mode, environmental adaptations and other ecological traits among groups. The results presented here further our understanding of the factors shaping mesopelagic animal microbiomes and also provide some novel, genetically informed insights into their diets., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
14. Using deep-sea images to examine ecosystem services associated with methane seeps.
- Author
-
Le JT, Girguis PR, and Levin LA
- Subjects
- Climate, Carbon, Ecosystem, Methane
- Abstract
Deep-sea images are routinely collected during at-sea expeditions and represent a repository of under-utilized knowledge. We leveraged dive videos collected by the remotely-operated vehicle Hercules (deployed from E/V Nautilus, operated by the Ocean Exploration Trust), and adapted biological trait analysis, to develop an approach that characterizes ecosystem services. Specifically, fisheries and climate-regulating services related to carbon are assessed for three southern California methane seeps: Point Dume (∼725 m), Palos Verdes (∼506 m), and Del Mar (∼1023 m). Our results enable qualitative intra-site comparisons that suggest seep activity influences ecosystem services differentially among sites, and site-to-site comparisons that suggest the Del Mar site provides the highest relative contributions to fisheries and carbon services. This study represents a first step towards ecosystem services characterization and quantification using deep-sea images. The results presented herein are foundational, and continued development should help guide research and management priorities by identifying potential sources of ecosystem services., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Published by Elsevier Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
15. CRISPR/Cas9-induced disruption of Bodo saltans paraflagellar rod-2 gene reveals its importance for cell survival.
- Author
-
Gomaa F, Li ZH, Beaudoin DJ, Alzan H, Girguis PR, Docampo R, and Edgcomb VP
- Subjects
- Cell Survival, DNA, Homologous Recombination, CRISPR-Cas Systems genetics, Gene Editing
- Abstract
Developing transfection protocols for marine protists is an emerging field that will allow the functional characterization of protist genes and their roles in organism responses to the environment. We developed a CRISPR/Cas9 editing protocol for Bodo saltans, a free-living kinetoplastid with tolerance to both marine and freshwater conditions and a close non-parasitic relative of trypanosomatids. Our results show that SaCas9/single-guide RNA (sgRNA) ribonucleoprotein (RNP) complex-mediated disruption of the paraflagellar rod 2 gene (BsPFR2) was achieved using electroporation-mediated transfection. The use of CRISPR/Cas9 genome editing can increase the efficiency of targeted homologous recombination when a repair DNA template is provided. Our sequence analysis suggests two mechanisms for repairing double-strand breaks in B. saltans are active; homologous-directed repair (HDR) utilizing an exogenous DNA template that carries an antibiotic resistance gene and likley non-homologous end joining (NHEJ). However, HDR was only achieved when a single (vs. multiple) SaCas9 RNP complex was provided. Furthermore, the biallelic knockout of BsPFR2 was detrimental for the cell, highlighting its essential role for cell survival because it facilitates the movement of food particles into the cytostome. Our Cas9/sgRNA RNP complex protocol provides a new tool for assessing gene functions in B. saltans and perhaps similar protists with polycistronic transcription., (© 2022 Woods Hole Oceanographic Institution. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
16. Differentiated Evolutionary Strategies of Genetic Diversification in Atlantic and Pacific Thaumarchaeal Populations.
- Author
-
Hwang Y and Girguis PR
- Subjects
- Phylogeny, Oceans and Seas, Archaea genetics, Ammonia, Ecosystem
- Abstract
Some marine microbes are seemingly "ubiquitous," thriving across a wide range of environmental conditions. While the increased depth in metagenomic sequencing has led to a growing body of research on within-population heterogeneity in environmental microbial populations, there have been fewer systematic comparisons and characterizations of population-level genetic diversity over broader expanses of time and space. Here, we investigated the factors that govern the diversification of ubiquitous microbial taxa found within and between ocean basins. Specifically, we use mapped metagenomic paired reads to examine the genetic diversity of ammonia-oxidizing archaeal (" Candidatus Nitrosopelagicus brevis") populations in the Pacific (Hawaii Ocean Time-series [HOT]) and Atlantic (Bermuda Atlantic Time Series [BATS]) Oceans sampled over 2 years. We observed higher nucleotide diversity in " Ca. N. brevis" at HOT, driven by a higher rate of homologous recombination. In contrast, " Ca. N. brevis" at BATS featured a more open pangenome with a larger set of genes that were specific to BATS, suggesting a history of dynamic gene gain and loss events. Furthermore, we identified highly differentiated genes that were regulatory in function, some of which exhibited evidence of recent selective sweeps. These findings indicate that different modes of genetic diversification likely incur specific adaptive advantages depending on the selective pressures that they are under. Within-population diversity generated by the environment-specific strategies of genetic diversification is likely key to the ecological success of " Ca. N. brevis." IMPORTANCE Ammonia-oxidizing archaea (AOA) are one of the most abundant chemolithoautotrophic microbes in the marine water column and are major contributors to global carbon and nitrogen cycling. Despite their ecological importance and geographical pervasiveness, there have been limited systematic comparisons and characterizations of their population-level genetic diversity over time and space. Here, we use metagenomic time series from two ocean observatories to address the fundamental questions of how abiotic and biotic factors shape the population-level genetic diversity and how natural microbial populations adapt across diverse habitats. We show that the marine AOA " Candidatus Nitrosopelagicus brevis" in different ocean basins exhibits distinct modes of genetic diversification in response to their selective regimes shaped by nutrient availability and patterns of environmental fluctuations. Our findings specific to " Ca. N. brevis" have broader implications, particularly in understanding the population-level responses to the changing climate and predicting its impact on biogeochemical cycles.
- Published
- 2022
- Full Text
- View/download PDF
17. Cooccurring Activities of Two Autotrophic Pathways in Symbionts of the Hydrothermal Vent Tubeworm Riftia pachyptila .
- Author
-
Leonard JM, Mitchell J, Beinart RA, Delaney JA, Sanders JG, Ellis G, Goddard EA, Girguis PR, and Scott KM
- Subjects
- Animals, Autotrophic Processes, Bacterial Proteins genetics, Bacterial Proteins metabolism, Citric Acid Cycle, Gammaproteobacteria classification, Gammaproteobacteria genetics, Gammaproteobacteria isolation & purification, Hydrothermal Vents microbiology, Hydrothermal Vents parasitology, Photosynthesis, Polychaeta physiology, Sulfides metabolism, Sulfur metabolism, Gammaproteobacteria physiology, Polychaeta microbiology, Symbiosis
- Abstract
Genome and proteome data predict the presence of both the reductive citric acid cycle (rCAC; also called the reductive tricarboxylic acid cycle) and the Calvin-Benson-Bassham cycle (CBB) in " Candidatus Endoriftia persephonae," the autotrophic sulfur-oxidizing bacterial endosymbiont from the giant hydrothermal vent tubeworm Riftia pachyptila. We tested whether these cycles were differentially induced by sulfide supply, since the synthesis of biosynthetic intermediates by the rCAC is less energetically expensive than that by the CBB. R. pachyptila was incubated under in situ conditions in high-pressure aquaria under low (28 to 40 μmol · h
-1 ) or high (180 to 276 μmol · h-1 ) rates of sulfide supply. Symbiont-bearing trophosome samples excised from R. pachyptila maintained under the two conditions were capable of similar rates of CO2 fixation. Activities of the rCAC enzyme ATP-dependent citrate lyase (ACL) and the CBB enzyme 1,3-bisphosphate carboxylase/oxygenase (RubisCO) did not differ between the two conditions, although transcript abundances for ATP-dependent citrate lyase were 4- to 5-fold higher under low-sulfide conditions. δ13 C values of internal dissolved inorganic carbon (DIC) pools were varied and did not correlate with sulfide supply rate. In samples taken from freshly collected R. pachyptila , δ13 C values of lipids fell between those collected for organisms using either the rCAC or the CBB exclusively. These observations are consistent with cooccurring activities of the rCAC and the CBB in this symbiosis. IMPORTANCE Previous to this study, the activities of the rCAC and CBB in R. pachyptila had largely been inferred from "omics" studies of R. pachyptila without direct assessment of in situ conditions prior to collection. In this study, R. pachyptila was maintained and monitored in high-pressure aquaria prior to measuring its CO2 fixation parameters. Results suggest that ranges in sulfide concentrations similar to those experienced in situ do not exert a strong influence on the relative activities of the rCAC and the CBB. This observation highlights the importance of further study of this symbiosis and other organisms with multiple CO2 -fixing pathways, which recent genomics and biochemical studies suggest are likely to be more prevalent than anticipated.- Published
- 2021
- Full Text
- View/download PDF
18. Sulfur bacteria promote dissolution of authigenic carbonates at marine methane seeps.
- Author
-
Leprich DJ, Flood BE, Schroedl PR, Ricci E, Marlow JJ, Girguis PR, and Bailey JV
- Subjects
- Carbonates, Geologic Sediments, Oxidation-Reduction, Solubility, Sulfur, Methane, Rhodobacteraceae
- Abstract
Carbonate rocks at marine methane seeps are commonly colonized by sulfur-oxidizing bacteria that co-occur with etch pits that suggest active dissolution. We show that sulfur-oxidizing bacteria are abundant on the surface of an exemplar seep carbonate collected from Del Mar East Methane Seep Field, USA. We then used bioreactors containing aragonite mineral coupons that simulate certain seep conditions to investigate plausible in situ rates of carbonate dissolution associated with sulfur-oxidizing bacteria. Bioreactors inoculated with a sulfur-oxidizing bacterial strain, Celeribacter baekdonensis LH4, growing on aragonite coupons induced dissolution rates in sulfidic, heterotrophic, and abiotic conditions of 1773.97 (±324.35), 152.81 (±123.27), and 272.99 (±249.96) μmol CaCO
3 • cm-2 • yr-1 , respectively. Steep gradients in pH were also measured within carbonate-attached biofilms using pH-sensitive fluorophores. Together, these results show that the production of acidic microenvironments in biofilms of sulfur-oxidizing bacteria are capable of dissolving carbonate rocks, even under well-buffered marine conditions. Our results support the hypothesis that authigenic carbonate rock dissolution driven by lithotrophic sulfur-oxidation constitutes a previously unknown carbon flux from the rock reservoir to the ocean and atmosphere.- Published
- 2021
- Full Text
- View/download PDF
19. Carbonate-hosted microbial communities are prolific and pervasive methane oxidizers at geologically diverse marine methane seep sites.
- Author
-
Marlow JJ, Hoer D, Jungbluth SP, Reynard LM, Gartman A, Chavez MS, El-Naggar MY, Tuross N, Orphan VJ, and Girguis PR
- Subjects
- Geography, Kinetics, Oxidation-Reduction, RNA, Ribosomal, 16S genetics, Carbonates chemistry, Geological Phenomena, Methane metabolism, Microbiota genetics, Seawater microbiology
- Abstract
At marine methane seeps, vast quantities of methane move through the shallow subseafloor, where it is largely consumed by microbial communities. This process plays an important role in global methane dynamics, but we have yet to identify all of the methane sinks in the deep sea. Here, we conducted a continental-scale survey of seven geologically diverse seafloor seeps and found that carbonate rocks from all sites host methane-oxidizing microbial communities with substantial methanotrophic potential. In laboratory-based mesocosm incubations, chimney-like carbonates from the newly described Point Dume seep off the coast of Southern California exhibited the highest rates of anaerobic methane oxidation measured to date. After a thorough analysis of physicochemical, electrical, and biological factors, we attribute this substantial metabolic activity largely to higher cell density, mineral composition, kinetic parameters including an elevated V
max , and the presence of specific microbial lineages. Our data also suggest that other features, such as electrical conductance, rock particle size, and microbial community alpha diversity, may influence a sample's methanotrophic potential, but these factors did not demonstrate clear patterns with respect to methane oxidation rates. Based on the apparent pervasiveness within seep carbonates of microbial communities capable of performing anaerobic oxidation of methane, as well as the frequent occurrence of carbonates at seeps, we suggest that rock-hosted methanotrophy may be an important contributor to marine methane consumption., Competing Interests: The authors declare no competing interest., (Copyright © 2021 the Author(s). Published by PNAS.)- Published
- 2021
- Full Text
- View/download PDF
20. The Grayness of the Origin of Life.
- Author
-
Smith HH, Hyde AS, Simkus DN, Libby E, Maurer SE, Graham HV, Kempes CP, Sherwood Lollar B, Chou L, Ellington AD, Fricke GM, Girguis PR, Grefenstette NM, Pozarycki CI, House CH, and Johnson SS
- Abstract
In the search for life beyond Earth, distinguishing the living from the non-living is paramount. However, this distinction is often elusive, as the origin of life is likely a stepwise evolutionary process, not a singular event. Regardless of the favored origin of life model, an inherent "grayness" blurs the theorized threshold defining life. Here, we explore the ambiguities between the biotic and the abiotic at the origin of life. The role of grayness extends into later transitions as well. By recognizing the limitations posed by grayness, life detection researchers will be better able to develop methods sensitive to prebiotic chemical systems and life with alternative biochemistries.
- Published
- 2021
- Full Text
- View/download PDF
21. Interactions Between Iron Sulfide Minerals and Organic Carbon: Implications for Biosignature Preservation and Detection.
- Author
-
Picard A, Gartman A, and Girguis PR
- Subjects
- Extraterrestrial Environment, Ferrous Compounds, Minerals, Carbon, Mars
- Abstract
Microbe-mineral interactions can produce unique composite materials, which can preserve biosignatures. Geological evidence suggests that iron sulfide (Fe-S) minerals are abundant in the subsurface of Mars. On Earth, the formation of Fe-S minerals is driven by sulfate-reducing microorganisms (SRM) that produce reactive sulfide. Moreover, SRM metabolites, as well as intact cells, can influence the morphology, particle size, aggregation, and composition of biogenic Fe-S minerals. In this work, we evaluated how simple and complex organic molecules-hexoses and amino acid/peptide mixtures, respectively-influence the formation of Fe-S minerals (simulated prebiotic conditions), and whether the observed patterns mimic the biological influence of SRM. To this end, organo-mineral aggregates were characterized with X-ray diffraction, scanning electron microscopy, and scanning transmission X-ray microscopy coupled to near-edge X-ray absorption fine structure spectroscopy. Overall, Fe-S minerals were found to have a strong affinity for proteinaceous organic matter. Fe-S minerals precipitated at simulated prebiotic conditions yielded organic carbon distributions that were more homogeneous than treatments with whole SRM cells. In prebiotic experiments, spectroscopy detected potential organic transformations during Fe-S mineral formation, including conversion of hexoses to sugar acids and polymerization of amino acids/peptides into larger peptides/proteins. In addition, prebiotic mineral-carbon assemblages produced nanometer-scaled filamentous aggregated morphologies. On the contrary, in biotic treatments with cells, organic carbon in minerals displayed a more heterogeneous distribution. Notably, "hot spots" of organic carbon and oxygen-containing functional groups, with the size, shape, and composition of microbial cells, were preserved in mineral aggregates. We propose a list of characteristics that could be used to help distinguish biogenic from prebiotic/abiotic Fe-S minerals and help refine the search of extant or extinct microbial life in the martian subsurface.
- Published
- 2021
- Full Text
- View/download PDF
22. Multiple carbon incorporation strategies support microbial survival in cold subseafloor crustal fluids.
- Author
-
Trembath-Reichert E, Shah Walter SR, Ortiz MAF, Carter PD, Girguis PR, and Huber JA
- Abstract
Biogeochemical processes occurring in fluids that permeate oceanic crust make measurable contributions to the marine carbon cycle, but quantitative assessments of microbial impacts on this vast, subsurface carbon pool are lacking. We provide bulk and single-cell estimates of microbial biomass production from carbon and nitrogen substrates in cool, oxic basement fluids from the western flank of the Mid-Atlantic Ridge. The wide range in carbon and nitrogen incorporation rates indicates a microbial community well poised for dynamic conditions, potentially anabolizing carbon and nitrogen at rates ranging from those observed in subsurface sediments to those found in on-axis hydrothermal vent environments. Bicarbonate incorporation rates were highest where fluids are most isolated from recharging bottom seawater, suggesting that anabolism of inorganic carbon may be a potential strategy for supplementing the ancient and recalcitrant dissolved organic carbon that is prevalent in the globally distributed subseafloor crustal environment., (Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).)
- Published
- 2021
- Full Text
- View/download PDF
23. Evidence for Horizontal and Vertical Transmission of Mtr-Mediated Extracellular Electron Transfer among the Bacteria .
- Author
-
Baker IR, Conley BE, Gralnick JA, and Girguis PR
- Subjects
- Ferric Compounds metabolism, Phylogeny, Electron Transport, Oxidation-Reduction, Bacteria metabolism, Archaea metabolism, Electrons, Shewanella genetics
- Abstract
Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in Shewanella oneidensis MR-1, recent investigations in Vibrio and Aeromonas species have revealed that the electron-donating proteins that support MtrCAB in Shewanella are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found mtrCAB in the genomes of numerous diverse Bacteria from a wide range of environments, and the patterns therein strongly suggest that mtrCAB was distributed through both horizontal and subsequent vertical transmission, and with some cases indicating downstream modular diversification of both its core and accessory components. Our data point to an emerging evolutionary story about metal-oxidizing and -reducing metabolism, demonstrates that this capacity for EET has broad relevance to a diversity of taxa and the biogeochemical cycles they drive, and lays the foundation for further studies to shed light on how this mechanism may have coevolved with Earth's redox landscape. IMPORTANCE While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly "plug in" to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Yet the diversity, distribution, and evolution of EET mechanisms are poorly constrained. Here, we present findings showing that the genes encoding one such EET system ( mtrCAB ) are present in a broad diversity of bacteria found in a wide range of environments, emphasizing the ubiquity and potential impact of EET in our biosphere. Our results suggest that these genes have been disseminated largely through horizontal transfer, and the changes they have accrued in these lineages potentially reflect adaptations to changing environments.
- Published
- 2021
- Full Text
- View/download PDF
24. Author Correction: Roadmap for naming uncultivated Archaea and Bacteria.
- Author
-
Murray AE, Freudenstein J, Gribaldo S, Hatzenpichler R, Hugenholtz P, Kämpfer P, Konstantinidis KT, Lane CE, Papke RT, Parks DH, Rossello-Mora R, Stott MB, Sutcliffe IC, Thrash JC, Venter SN, Whitman WB, Acinas SG, Amann RI, Anantharaman K, Armengaud J, Baker BJ, Barco RA, Bode HB, Boyd ES, Brady CL, Carini P, Chain PSG, Colman DR, DeAngelis KM, de Los Rios MA, Estrada-de Los Santos P, Dunlap CA, Eisen JA, Emerson D, Ettema TJG, Eveillard D, Girguis PR, Hentschel U, Hollibaugh JT, Hug LA, Inskeep WP, Ivanova EP, Klenk HP, Li WJ, Lloyd KG, Löffler FE, Makhalanyane TP, Moser DP, Nunoura T, Palmer M, Parro V, Pedrós-Alió C, Probst AJ, Smits THM, Steen AD, Steenkamp ET, Spang A, Stewart FJ, Tiedje JM, Vandamme P, Wagner M, Wang FP, Yarza P, Hedlund BP, and Reysenbach AL
- Published
- 2021
- Full Text
- View/download PDF
25. Physiological dynamics of chemosynthetic symbionts in hydrothermal vent snails.
- Author
-
Breusing C, Mitchell J, Delaney J, Sylva SP, Seewald JS, Girguis PR, and Beinart RA
- Subjects
- Animals, Ecosystem, Phylogeny, Symbiosis, Gammaproteobacteria genetics, Hydrothermal Vents
- Abstract
Symbioses between invertebrate animals and chemosynthetic bacteria form the basis of hydrothermal vent ecosystems worldwide. In the Lau Basin, deep-sea vent snails of the genus Alviniconcha associate with either Gammaproteobacteria (A. kojimai, A. strummeri) or Campylobacteria (A. boucheti) that use sulfide and/or hydrogen as energy sources. While the A. boucheti host-symbiont combination (holobiont) dominates at vents with higher concentrations of sulfide and hydrogen, the A. kojimai and A. strummeri holobionts are more abundant at sites with lower concentrations of these reductants. We posit that adaptive differences in symbiont physiology and gene regulation might influence the observed niche partitioning between host taxa. To test this hypothesis, we used high-pressure respirometers to measure symbiont metabolic rates and examine changes in gene expression among holobionts exposed to in situ concentrations of hydrogen (H
2 : ~25 µM) or hydrogen sulfide (H2 S: ~120 µM). The campylobacterial symbiont exhibited the lowest rate of H2 S oxidation but the highest rate of H2 oxidation, with fewer transcriptional changes and less carbon fixation relative to the gammaproteobacterial symbionts under each experimental condition. These data reveal potential physiological adaptations among symbiont types, which may account for the observed net differences in metabolic activity and contribute to the observed niche segregation among holobionts.- Published
- 2020
- Full Text
- View/download PDF
26. Roadmap for naming uncultivated Archaea and Bacteria.
- Author
-
Murray AE, Freudenstein J, Gribaldo S, Hatzenpichler R, Hugenholtz P, Kämpfer P, Konstantinidis KT, Lane CE, Papke RT, Parks DH, Rossello-Mora R, Stott MB, Sutcliffe IC, Thrash JC, Venter SN, Whitman WB, Acinas SG, Amann RI, Anantharaman K, Armengaud J, Baker BJ, Barco RA, Bode HB, Boyd ES, Brady CL, Carini P, Chain PSG, Colman DR, DeAngelis KM, de Los Rios MA, Estrada-de Los Santos P, Dunlap CA, Eisen JA, Emerson D, Ettema TJG, Eveillard D, Girguis PR, Hentschel U, Hollibaugh JT, Hug LA, Inskeep WP, Ivanova EP, Klenk HP, Li WJ, Lloyd KG, Löffler FE, Makhalanyane TP, Moser DP, Nunoura T, Palmer M, Parro V, Pedrós-Alió C, Probst AJ, Smits THM, Steen AD, Steenkamp ET, Spang A, Stewart FJ, Tiedje JM, Vandamme P, Wagner M, Wang FP, Yarza P, Hedlund BP, and Reysenbach AL
- Subjects
- Archaea genetics, Bacteria genetics, DNA, Bacterial, Metagenome, Phylogeny, Prokaryotic Cells classification, Sequence Analysis, DNA, Terminology as Topic, Archaea classification, Bacteria classification
- Abstract
The assembly of single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) has led to a surge in genome-based discoveries of members affiliated with Archaea and Bacteria, bringing with it a need to develop guidelines for nomenclature of uncultivated microorganisms. The International Code of Nomenclature of Prokaryotes (ICNP) only recognizes cultures as 'type material', thereby preventing the naming of uncultivated organisms. In this Consensus Statement, we propose two potential paths to solve this nomenclatural conundrum. One option is the adoption of previously proposed modifications to the ICNP to recognize DNA sequences as acceptable type material; the other option creates a nomenclatural code for uncultivated Archaea and Bacteria that could eventually be merged with the ICNP in the future. Regardless of the path taken, we believe that action is needed now within the scientific community to develop consistent rules for nomenclature of uncultivated taxa in order to provide clarity and stability, and to effectively communicate microbial diversity.
- Published
- 2020
- Full Text
- View/download PDF
27. Genetic tool development in marine protists: emerging model organisms for experimental cell biology.
- Author
-
Faktorová D, Nisbet RER, Fernández Robledo JA, Casacuberta E, Sudek L, Allen AE, Ares M Jr, Aresté C, Balestreri C, Barbrook AC, Beardslee P, Bender S, Booth DS, Bouget FY, Bowler C, Breglia SA, Brownlee C, Burger G, Cerutti H, Cesaroni R, Chiurillo MA, Clemente T, Coles DB, Collier JL, Cooney EC, Coyne K, Docampo R, Dupont CL, Edgcomb V, Einarsson E, Elustondo PA, Federici F, Freire-Beneitez V, Freyria NJ, Fukuda K, García PA, Girguis PR, Gomaa F, Gornik SG, Guo J, Hampl V, Hanawa Y, Haro-Contreras ER, Hehenberger E, Highfield A, Hirakawa Y, Hopes A, Howe CJ, Hu I, Ibañez J, Irwin NAT, Ishii Y, Janowicz NE, Jones AC, Kachale A, Fujimura-Kamada K, Kaur B, Kaye JZ, Kazana E, Keeling PJ, King N, Klobutcher LA, Lander N, Lassadi I, Li Z, Lin S, Lozano JC, Luan F, Maruyama S, Matute T, Miceli C, Minagawa J, Moosburner M, Najle SR, Nanjappa D, Nimmo IC, Noble L, Novák Vanclová AMG, Nowacki M, Nuñez I, Pain A, Piersanti A, Pucciarelli S, Pyrih J, Rest JS, Rius M, Robertson D, Ruaud A, Ruiz-Trillo I, Sigg MA, Silver PA, Slamovits CH, Jason Smith G, Sprecher BN, Stern R, Swart EC, Tsaousis AD, Tsypin L, Turkewitz A, Turnšek J, Valach M, Vergé V, von Dassow P, von der Haar T, Waller RF, Wang L, Wen X, Wheeler G, Woods A, Zhang H, Mock T, Worden AZ, and Lukeš J
- Subjects
- Biodiversity, Ecosystem, Environment, Eukaryota classification, Species Specificity, DNA administration & dosage, Eukaryota physiology, Green Fluorescent Proteins metabolism, Marine Biology, Models, Biological, Transformation, Genetic
- Abstract
Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways.
- Published
- 2020
- Full Text
- View/download PDF
28. Publisher Correction: Genetic tool development in marine protists: emerging model organisms for experimental cell biology.
- Author
-
Faktorová D, Nisbet RER, Fernández Robledo JA, Casacuberta E, Sudek L, Allen AE, Ares M Jr, Aresté C, Balestreri C, Barbrook AC, Beardslee P, Bender S, Booth DS, Bouget FY, Bowler C, Breglia SA, Brownlee C, Burger G, Cerutti H, Cesaroni R, Chiurillo MA, Clemente T, Coles DB, Collier JL, Cooney EC, Coyne K, Docampo R, Dupont CL, Edgcomb V, Einarsson E, Elustondo PA, Federici F, Freire-Beneitez V, Freyria NJ, Fukuda K, García PA, Girguis PR, Gomaa F, Gornik SG, Guo J, Hampl V, Hanawa Y, Haro-Contreras ER, Hehenberger E, Highfield A, Hirakawa Y, Hopes A, Howe CJ, Hu I, Ibañez J, Irwin NAT, Ishii Y, Janowicz NE, Jones AC, Kachale A, Fujimura-Kamada K, Kaur B, Kaye JZ, Kazana E, Keeling PJ, King N, Klobutcher LA, Lander N, Lassadi I, Li Z, Lin S, Lozano JC, Luan F, Maruyama S, Matute T, Miceli C, Minagawa J, Moosburner M, Najle SR, Nanjappa D, Nimmo IC, Noble L, Novák Vanclová AMG, Nowacki M, Nuñez I, Pain A, Piersanti A, Pucciarelli S, Pyrih J, Rest JS, Rius M, Robertson D, Ruaud A, Ruiz-Trillo I, Sigg MA, Silver PA, Slamovits CH, Jason Smith G, Sprecher BN, Stern R, Swart EC, Tsaousis AD, Tsypin L, Turkewitz A, Turnšek J, Valach M, Vergé V, von Dassow P, von der Haar T, Waller RF, Wang L, Wen X, Wheeler G, Woods A, Zhang H, Mock T, Worden AZ, and Lukeš J
- Abstract
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
- Published
- 2020
- Full Text
- View/download PDF
29. Author Correction: A distinct and active bacterial community in cold oxygenated fluids circulating beneath the western flank of the Mid-Atlantic ridge.
- Author
-
Meyer JL, Jaekel U, Tully BJ, Glazer BT, Wheat CG, Lin HT, Hsieh CC, Cowen JP, Hulme SM, Girguis PR, and Huber JA
- Abstract
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
- Published
- 2020
- Full Text
- View/download PDF
30. Vortex fluidics-mediated DNA rescue from formalin-fixed museum specimens.
- Author
-
Totoiu CA, Phillips JM, Reese AT, Majumdar S, Girguis PR, Raston CL, and Weiss GA
- Subjects
- Animals, Base Sequence, DNA genetics, Nephropidae genetics, Polymerase Chain Reaction, DNA isolation & purification, Formaldehyde, Hydrodynamics, Museums, Tissue Fixation
- Abstract
DNA from formalin-preserved tissue could unlock a vast repository of genetic information stored in museums worldwide. However, formaldehyde crosslinks proteins and DNA, and prevents ready amplification and DNA sequencing. Formaldehyde acylation also fragments the DNA. Treatment with proteinase K proteolyzes crosslinked proteins to rescue the DNA, though the process is quite slow. To reduce processing time and improve rescue efficiency, we applied the mechanical energy of a vortex fluidic device (VFD) to drive the catalytic activity of proteinase K and recover DNA from American lobster tissue (Homarus americanus) fixed in 3.7% formalin for >1-year. A scan of VFD rotational speeds identified the optimal rotational speed for recovery of PCR-amplifiable DNA and while 500+ base pairs were sequenced, shorter read lengths were more consistently obtained. This VFD-based method also effectively recovered DNA from formalin-preserved samples. The results provide a roadmap for exploring DNA from millions of historical and even extinct species., Competing Interests: I have read the journal’s policy and the authors of this manuscript have the following competing interests: GAW and CLR, through their universities, have filed a patent titled "Method for Improving Protein Functionality using Vortexing Fluid Shear Forces (U.S. App No. 14/913,951). Debut Biotechnology, a company co-founded by GAW, has licensed this patent. GAW and CLR both serve on the Scientific Advisory Board of Debut Biotechnology and own shares of stock in the company. This does not alter our adherence to PLOS ONE policies on sharing data and materials.
- Published
- 2020
- Full Text
- View/download PDF
31. Hydrogen Does Not Appear To Be a Major Electron Donor for Symbiosis with the Deep-Sea Hydrothermal Vent Tubeworm Riftia pachyptila.
- Author
-
Mitchell JH, Leonard JM, Delaney J, Girguis PR, and Scott KM
- Subjects
- Animals, Bacterial Proteins genetics, Bacterial Proteins metabolism, Carbon metabolism, Genes, Bacterial, Genome, Bacterial, Host Microbial Interactions physiology, Hydrogenase genetics, Hydrogenase metabolism, Polychaeta metabolism, Reducing Agents metabolism, Symbiosis, Chemoautotrophic Growth physiology, Gammaproteobacteria metabolism, Hydrogen metabolism, Hydrothermal Vents chemistry, Hydrothermal Vents microbiology, Polychaeta microbiology
- Abstract
Use of hydrogen gas (H
2 ) as an electron donor is common among free-living chemolithotrophic microorganisms. Given the presence of this dissolved gas at deep-sea hydrothermal vents, it has been suggested that it may also be a major electron donor for the free-living and symbiotic chemolithoautotrophic bacteria that are the primary producers at these sites. Giant Riftia pachyptila siboglinid tubeworms and their symbiotic bacteria (" Candidatus Endoriftia persephone") dominate many vents in the Eastern Pacific, and their use of sulfide as a major electron donor has been documented. Genes encoding hydrogenase are present in the " Ca Endoriftia persephone" genome, and proteome data suggest that these genes are expressed. In this study, high-pressure respirometry of intact R. pachyptila and incubations of trophosome homogenate were used to determine whether this symbiotic association could also use H2 as a major electron donor. Measured rates of H2 uptake by intact R. pachyptila in high-pressure respirometers were similar to rates measured in the absence of tubeworms. Oxygen uptake rates in the presence of H2 were always markedly lower than those measured in the presence of sulfide, as was the incorporation of13 C-labeled dissolved inorganic carbon. Carbon fixation by trophosome homogenate was not stimulated by H2 , nor was hydrogenase activity detectable in these samples. Though genes encoding [NiFe] group 1e and [NiFe] group 3b hydrogenases are present in the genome and transcribed, it does not appear that H2 is a major electron donor for this system, and it may instead play a role in intracellular redox homeostasis. IMPORTANCE Despite the presence of hydrogenase genes, transcripts, and proteins in the " Ca Endoriftia persephone" genome, transcriptome, and proteome, it does not appear that R. pachyptila can use H2 as a major electron donor. For many uncultivable microorganisms, omic analyses are the basis for inferences about their activities in situ However, as is apparent from the study reported here, there are dangers in extrapolating from omics data to function, and it is essential, whenever possible, to verify functions predicted from omics data with physiological and biochemical measurements., (Copyright © 2019 American Society for Microbiology.)- Published
- 2019
- Full Text
- View/download PDF
32. The Bacterial Symbionts of Closely Related Hydrothermal Vent Snails With Distinct Geochemical Habitats Show Broad Similarity in Chemoautotrophic Gene Content.
- Author
-
Beinart RA, Luo C, Konstantinidis KT, Stewart FJ, and Girguis PR
- Abstract
Symbiosis has evolved between a diversity of invertebrate taxa and chemosynthetic bacterial lineages. At the broadest level, these symbioses share primary function: the bacterial symbionts use the energy harnessed from the oxidation of reduced chemicals to power the fixation of inorganic carbon and/or other nutrients, providing the bulk of host nutrition. However, it is unclear to what extent the ecological niche of the host species is influenced by differences in symbiont traits, particularly those involved in chemoautotrophic function and interaction with the geochemical environment. Hydrothermal vents in the Lau Basin (Tonga) are home to four morphologically and physiologically similar snail species from the sister genera Alviniconcha and Ifremeria . Here, we assembled nearly complete genomes from their symbionts to determine whether differences in chemoautotrophic capacity exist among these symbionts that could explain the observed distribution of these snail species into distinct geochemical habitats. Phylogenomic analyses confirmed that the symbionts have evolved from four distinct lineages in the classes γ -proteobacteria or Campylobacteria . The genomes differed with respect to genes related to motility, adhesion, secretion, and amino acid uptake or excretion, though were quite similar in chemoautotrophic function, with all four containing genes for carbon fixation, sulfur and hydrogen oxidation, and oxygen and nitrate respiration. This indicates that differences in the presence or absence of symbiont chemoautotrophic functions does not likely explain the observed geochemical habitat partitioning. Rather, differences in gene expression and regulation, biochemical differences among these chemoautotrophic pathways, and/or differences in host physiology could all influence the observed patterns of habitat partitioning.
- Published
- 2019
- Full Text
- View/download PDF
33. Synergistic substrate cofeeding stimulates reductive metabolism.
- Author
-
Park JO, Liu N, Holinski KM, Emerson DF, Qiao K, Woolston BM, Xu J, Lazar Z, Islam MA, Vidoudez C, Girguis PR, and Stephanopoulos G
- Subjects
- Adenosine Triphosphate metabolism, Citric Acid Cycle physiology, Glucose metabolism, NADP metabolism, Oxidation-Reduction, Pentose Phosphate Pathway physiology, Moorella metabolism, Yarrowia metabolism
- Abstract
Advanced bioproduct synthesis via reductive metabolism requires coordinating carbons, ATP and reducing agents, which are generated with varying efficiencies depending on metabolic pathways. Substrate mixtures with direct access to multiple pathways may optimally satisfy these biosynthetic requirements. However, native regulation favouring preferential use precludes cells from co-metabolizing multiple substrates. Here we explore mixed substrate metabolism and tailor pathway usage to synergistically stimulate carbon reduction. By controlled cofeeding of superior ATP and NADPH generators as 'dopant' substrates to cells primarily using inferior substrates, we circumvent catabolite repression and drive synergy in two divergent organisms. Glucose doping in Moorella thermoacetica stimulates CO
2 reduction (2.3 g gCDW-1 h-1 ) into acetate by augmenting ATP synthesis via pyruvate kinase. Gluconate doping in Yarrowia lipolytica accelerates acetate-driven lipogenesis (0.046 g gCDW-1 h-1 ) by obligatory NADPH synthesis through the pentose cycle. Together, synergistic cofeeding produces CO2 -derived lipids with 38% energy yield and demonstrates the potential to convert CO2 into advanced bioproducts. This work advances the systems-level control of metabolic networks and CO2 use, the most pressing and difficult reduction challenge.- Published
- 2019
- Full Text
- View/download PDF
34. Toward establishing model organisms for marine protists: Successful transfection protocols for Parabodo caudatus (Kinetoplastida: Excavata).
- Author
-
Gomaa F, Garcia PA, Delaney J, Girguis PR, Buie CR, and Edgcomb VP
- Subjects
- Animals, Cell Survival physiology, Kinetoplastida physiology, Microfluidics instrumentation, Microfluidics methods, Promoter Regions, Genetic genetics, Electroporation methods, Genes, Reporter genetics, Green Fluorescent Proteins genetics, Kinetoplastida genetics, Plasmids genetics, Transfection methods
- Abstract
We developed protocols for, and demonstrated successful transfection of, the free-living kinetoplastid flagellate Parabodo caudatus with three plasmids carrying a fluorescence reporter gene (pEF-GFP with the EF1 alpha promoter, pUB-GFP with Ubiquitin C promoter, and pEYFP-Mitotrap with CMV promoter). We evaluated three electroporation approaches: (1) a square-wave electroporator designed for eukaryotes, (2) a novel microfluidic transfection system employing hydrodynamically-controlled electric field waveforms, and (3) a traditional exponential decay electroporator. We found the microfluidic device provides a simple and efficient platform to quickly test a wide range of electric field parameters to find the optimal set of conditions for electroporation of target species. It also allows for processing large sample volumes (>10 ml) within minutes, increasing throughput 100 times over cuvettes. Fluorescence signal from the reporter gene was detected a few hours after transfection and persisted for 3 days in cells transfected by pEF-GFP and pUB-GFP plasmids and for at least 5 days post-transfection for cells transfected with pEYFP-Mitotrap. Expression of the reporter genes (GFP and YFP) was also confirmed using reverse transcription-PCR (RT-PCR). This work opens the door for further efforts with this taxon and close relatives toward establishing model systems for genome editing., (© 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.)
- Published
- 2017
- Full Text
- View/download PDF
35. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents.
- Author
-
Meier DV, Pjevac P, Bach W, Hourdez S, Girguis PR, Vidoudez C, Amann R, and Meyerdierks A
- Subjects
- Carbon Cycle, Environmental Microbiology, Genome, Bacterial, Metagenome, Oxidation-Reduction, Oxides, Phylogeny, RNA, Ribosomal, 16S genetics, Sulfur chemistry, Sulfur Compounds, Epsilonproteobacteria classification, Epsilonproteobacteria physiology, Hydrothermal Vents microbiology, Seawater microbiology, Sulfur metabolism
- Abstract
At deep-sea hydrothermal vents, primary production is carried out by chemolithoautotrophic microorganisms, with the oxidation of reduced sulfur compounds being a major driver for microbial carbon fixation. Dense and highly diverse assemblies of sulfur-oxidizing bacteria (SOB) are observed, yet the principles of niche differentiation between the different SOB across geochemical gradients remain poorly understood. In this study niche differentiation of the key SOB was addressed by extensive sampling of active sulfidic vents at six different hydrothermal venting sites in the Manus Basin, off Papua New Guinea. We subjected 33 diffuse fluid and water column samples and 23 samples from surfaces of chimneys, rocks and fauna to a combined analysis of 16S rRNA gene sequences, metagenomes and real-time in situ measured geochemical parameters. We found Sulfurovum Epsilonproteobacteria mainly attached to surfaces exposed to diffuse venting, while the SUP05-clade dominated the bacterioplankton in highly diluted mixtures of vent fluids and seawater. We propose that the high diversity within Sulfurimonas- and Sulfurovum-related Epsilonproteobacteria observed in this study derives from the high variation of environmental parameters such as oxygen and sulfide concentrations across small spatial and temporal scales.
- Published
- 2017
- Full Text
- View/download PDF
36. Co-registered Geochemistry and Metatranscriptomics Reveal Unexpected Distributions of Microbial Activity within a Hydrothermal Vent Field.
- Author
-
Olins HC, Rogers DR, Preston C, Ussler W 3rd, Pargett D, Jensen S, Roman B, Birch JM, Scholin CA, Haroon MF, and Girguis PR
- Abstract
Despite years of research into microbial activity at diffuse flow hydrothermal vents, the extent of microbial niche diversity in these settings is not known. To better understand the relationship between microbial activity and the associated physical and geochemical conditions, we obtained co-registered metatranscriptomic and geochemical data from a variety of different fluid regimes within the ASHES vent field on the Juan de Fuca Ridge. Microbial activity in the majority of the cool and warm fluids sampled was dominated by a population of Gammaproteobacteria (likely sulfur oxidizers) that appear to thrive in a variety of chemically distinct fluids. Only the warmest, most hydrothermally-influenced flows were dominated by active populations of canonically vent-endemic Epsilonproteobacteria . These data suggest that the Gammaproteobacteria collected during this study may be generalists, capable of thriving over a broader range of geochemical conditions than the Epsilonproteobacteria . Notably, the apparent metabolic activity of the Gammaproteobacteria -particularly carbon fixation-in the seawater found between discrete fluid flows (the intra-field water) suggests that this area within the Axial caldera is a highly productive, and previously overlooked, habitat. By extension, our findings suggest that analogous, diffuse flow fields may be similarly productive and thus constitute a very important and underappreciated aspect of deep-sea biogeochemical cycling that is occurring at the global scale.
- Published
- 2017
- Full Text
- View/download PDF
37. Opinion: Telepresence is a potentially transformative tool for field science.
- Author
-
Marlow J, Borrelli C, Jungbluth SP, Hoffman C, Marlow J, and Girguis PR
- Abstract
Competing Interests: The authors declare no conflict of interest.
- Published
- 2017
- Full Text
- View/download PDF
38. Geochemically distinct carbon isotope distributions in Allochromatium vinosum DSM 180 T grown photoautotrophically and photoheterotrophically.
- Author
-
Tang T, Mohr W, Sattin SR, Rogers DR, Girguis PR, and Pearson A
- Subjects
- Acetates metabolism, Amino Acids analysis, Carbon Cycle, Carbon Dioxide metabolism, Chromatiaceae metabolism, Fatty Acids analysis, Phytol analysis, Proteins analysis, RNA, Bacterial analysis, Carbon Isotopes analysis, Chromatiaceae chemistry, Chromatiaceae growth & development
- Abstract
Anoxygenic, photosynthetic bacteria are common at redox boundaries. They are of interest in microbial ecology and geosciences through their role in linking the carbon, sulfur, and iron cycles, yet much remains unknown about how their flexible carbon metabolism-permitting either autotrophic or heterotrophic growth-is recorded in the bulk sedimentary and lipid biomarker records. Here, we investigated patterns of carbon isotope fractionation in a model photosynthetic sulfur-oxidizing bacterium, Allochromatium vinosum DSM180
T . In one treatment, A. vinosum was grown with CO2 as the sole carbon source, while in a second treatment, it was grown on acetate. Different intracellular isotope patterns were observed for fatty acids, phytol, individual amino acids, intact proteins, and total RNA between the two experiments. Photoautotrophic CO2 fixation yielded typical isotopic ordering for the lipid biomarkers: δ13 C values of phytol > n-alkyl lipids. In contrast, growth on acetate greatly suppressed intracellular isotopic heterogeneity across all molecular classes, except for a marked13 C-depletion in phytol. This caused isotopic "inversion" in the lipids (δ13 C values of phytol < n-alkyl lipids). The finding suggests that inverse δ13 C patterns of n-alkanes and pristane/phytane in the geologic record may be at least in part a signal for photoheterotrophy. In both experimental scenarios, the relative isotope distributions could be predicted from an isotope flux-balance model, demonstrating that microbial carbon metabolisms can be interrogated by combining compound-specific stable isotope analysis with metabolic modeling. Isotopic differences among molecular classes may be a means of fingerprinting microbial carbon metabolism, both in the modern environment and the geologic record., (© 2017 John Wiley & Sons Ltd.)- Published
- 2017
- Full Text
- View/download PDF
39. Proteome Evolution of Deep-Sea Hydrothermal Vent Alvinellid Polychaetes Supports the Ancestry of Thermophily and Subsequent Adaptation to Cold in Some Lineages.
- Author
-
Fontanillas E, Galzitskaya OV, Lecompte O, Lobanov MY, Tanguy A, Mary J, Girguis PR, Hourdez S, and Jollivet D
- Subjects
- Animals, Cold Temperature, Genetic Loci, Hydrothermal Vents, Phylogeny, Selection, Genetic, Acclimatization, Evolution, Molecular, Polychaeta genetics, Proteome genetics
- Abstract
Temperature, perhaps more than any other environmental factor, is likely to influence the evolution of all organisms. It is also a very interesting factor to understand how genomes are shaped by selection over evolutionary timescales, as it potentially affects the whole genome. Among thermophilic prokaryotes, temperature affects both codon usage and protein composition to increase the stability of the transcriptional/translational machinery, and the resulting proteins need to be functional at high temperatures. Among eukaryotes less is known about genome evolution, and the tube-dwelling worms of the family Alvinellidae represent an excellent opportunity to test hypotheses about the emergence of thermophily in ectothermic metazoans. The Alvinellidae are a group of worms that experience varying thermal regimes, presumably having evolved into these niches over evolutionary times. Here we analyzed 423 putative orthologous loci derived from 6 alvinellid species including the thermophilic Alvinella pompejana and Paralvinella sulfincola. This comparative approach allowed us to assess amino acid composition, codon usage, divergence, direction of residue changes and the strength of selection along the alvinellid phylogeny, and to design a new eukaryotic thermophilic criterion based on significant differences in the residue composition of proteins. Contrary to expectations, the alvinellid ancestor of all present-day species seems to have been thermophilic, a trait subsequently maintained by purifying selection in lineages that still inhabit higher temperature environments. In contrast, lineages currently living in colder habitats likely evolved under selective relaxation, with some degree of positive selection for low-temperature adaptation at the protein level., (© The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)
- Published
- 2017
- Full Text
- View/download PDF
40. Heterotrophic Proteobacteria in the vicinity of diffuse hydrothermal venting.
- Author
-
Meier DV, Bach W, Girguis PR, Gruber-Vodicka HR, Reeves EP, Richter M, Vidoudez C, Amann R, and Meyerdierks A
- Subjects
- DNA, Bacterial genetics, Ecosystem, Heterotrophic Processes, In Situ Hybridization, Fluorescence, Metagenome, Proteobacteria classification, Proteobacteria genetics, RNA, Ribosomal, 16S genetics, Hydrothermal Vents microbiology, Proteobacteria isolation & purification, Proteobacteria metabolism
- Abstract
Deep-sea hydrothermal vents are highly dynamic habitats characterized by steep temperature and chemical gradients. The oxidation of reduced compounds dissolved in the venting fluids fuels primary production providing the basis for extensive life. Until recently studies of microbial vent communities have focused primarily on chemolithoautotrophic organisms. In our study, we targeted the change of microbial community compositions along mixing gradients, focusing on distribution and capabilities of heterotrophic microorganisms. Samples were retrieved from different venting areas within the Menez Gwen hydrothermal field, taken along mixing gradients, including diffuse fluid discharge points, their immediate surroundings and the buoyant parts of hydrothermal plumes. High throughput 16S rRNA gene amplicon sequencing, fluorescence in situ hybridization, and targeted metagenome analysis were combined with geochemical analyses. Close to diffuse venting orifices dominated by chemolithoautotrophic Epsilonproteobacteria, in areas where environmental conditions still supported chemolithoautotrophic processes, we detected microbial communities enriched for versatile heterotrophic Alpha- and Gammaproteobacteria. The potential for alkane degradation could be shown for several genera and yet uncultured clades. We propose that hotspots of chemolithoautotrophic life support a 'belt' of heterotrophic bacteria significantly different from the dominating oligotrophic microbiota of the deep sea., (© 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.)
- Published
- 2016
- Full Text
- View/download PDF
41. NC10 bacteria in marine oxygen minimum zones.
- Author
-
Padilla CC, Bristow LA, Sarode N, Garcia-Robledo E, Gómez Ramírez E, Benson CR, Bourbonnais A, Altabet MA, Girguis PR, Thamdrup B, and Stewart FJ
- Subjects
- Bacteria enzymology, Bacteria genetics, Bacterial Proteins genetics, Costa Rica, Denitrification, Methane analysis, Methane metabolism, Mexico, Nitrites analysis, Nitrites metabolism, Nitrogen metabolism, Oceans and Seas, Oxidation-Reduction, Oxidoreductases genetics, Oxygenases genetics, Phylogeny, Bacteria classification, Oxygen metabolism
- Abstract
Bacteria of the NC10 phylum link anaerobic methane oxidation to nitrite denitrification through a unique O2-producing intra-aerobic methanotrophy pathway. A niche for NC10 in the pelagic ocean has not been confirmed. We show that NC10 bacteria are present and transcriptionally active in oceanic oxygen minimum zones (OMZs) off northern Mexico and Costa Rica. NC10 16S rRNA genes were detected at all sites, peaking in abundance in the anoxic zone with elevated nitrite and methane concentrations. Phylogenetic analysis of particulate methane monooxygenase genes further confirmed the presence of NC10. rRNA and mRNA transcripts assignable to NC10 peaked within the OMZ and included genes of the putative nitrite-dependent intra-aerobic pathway, with high representation of transcripts containing the unique motif structure of the nitric oxide (NO) reductase of NC10 bacteria, hypothesized to participate in O2-producing NO dismutation. These findings confirm pelagic OMZs as a niche for NC10, suggesting a role for this group in OMZ nitrogen, methane and oxygen cycling.
- Published
- 2016
- Full Text
- View/download PDF
42. Metatranscriptional Response of Chemoautotrophic Ifremeria nautilei Endosymbionts to Differing Sulfur Regimes.
- Author
-
Seston SL, Beinart RA, Sarode N, Shockey AC, Ranjan P, Ganesh S, Girguis PR, and Stewart FJ
- Abstract
Endosymbioses between animals and chemoautotrophic bacteria are ubiquitous at hydrothermal vents. These environments are distinguished by high physico-chemical variability, yet we know little about how these symbioses respond to environmental fluctuations. We therefore examined how the γ-proteobacterial symbionts of the vent snail Ifremeria nautilei respond to changes in sulfur geochemistry. Via shipboard high-pressure incubations, we subjected snails to 105 μM hydrogen sulfide (LS), 350 μM hydrogen sulfide (HS), 300 μM thiosulfate (TS) and seawater without any added inorganic electron donor (ND). While transcript levels of sulfur oxidation genes were largely consistent across treatments, HS and TS treatments stimulated genes for denitrification, nitrogen assimilation, and CO2 fixation, coincident with previously reported enhanced rates of inorganic carbon incorporation and sulfur oxidation in these treatments. Transcripts for genes mediating oxidative damage were enriched in the ND and LS treatments, potentially due to a reduction in O2 scavenging when electron donors were scarce. Oxidative TCA cycle gene transcripts were also more abundant in ND and LS treatments, suggesting that I. nautilei symbionts may be mixotrophic when inorganic electron donors are limiting. These data reveal the extent to which I. nautilei symbionts respond to changes in sulfur concentration and species, and, interpreted alongside coupled biochemical metabolic rates, identify gene targets whose expression patterns may be predictive of holobiont physiology in environmental samples.
- Published
- 2016
- Full Text
- View/download PDF
43. A distinct and active bacterial community in cold oxygenated fluids circulating beneath the western flank of the Mid-Atlantic ridge.
- Author
-
Meyer JL, Jaekel U, Tully BJ, Glazer BT, Wheat CG, Lin HT, Hsieh CC, Cowen JP, Hulme SM, Girguis PR, and Huber JA
- Subjects
- Atlantic Ocean, Aquatic Organisms growth & development, Bacteria growth & development, Microbial Consortia physiology, Water Microbiology
- Abstract
The rock-hosted, oceanic crustal aquifer is one of the largest ecosystems on Earth, yet little is known about its indigenous microorganisms. Here we provide the first phylogenetic and functional description of an active microbial community residing in the cold oxic crustal aquifer. Using subseafloor observatories, we recovered crustal fluids and found that the geochemical composition is similar to bottom seawater, as are cell abundances. However, based on relative abundances and functional potential of key bacterial groups, the crustal fluid microbial community is heterogeneous and markedly distinct from seawater. Potential rates of autotrophy and heterotrophy in the crust exceeded those of seawater, especially at elevated temperatures (25 °C) and deeper in the crust. Together, these results reveal an active, distinct, and diverse bacterial community engaged in both heterotrophy and autotrophy in the oxygenated crustal aquifer, providing key insight into the role of microbial communities in the ubiquitous cold dark subseafloor biosphere.
- Published
- 2016
- Full Text
- View/download PDF
44. Nanoporous microscale microbial incubators.
- Author
-
Ge Z, Girguis PR, and Buie CR
- Subjects
- Porosity, Bioreactors, Escherichia coli growth & development, Nanopores
- Abstract
Reconstruction of phylogenetic trees based on 16S rRNA gene sequencing reveals abundant microbial diversity that has not been cultured in the laboratory. Many attribute this so-called 'great plate count anomaly' to traditional microbial cultivation techniques, which largely facilitate the growth of a single species. Yet, it is widely recognized that bacteria in nature exist in complex communities. One technique to increase the pool of cultivated bacterial species is to co-culture multiple species in a simulated natural environment. Here, we present nanoporous microscale microbial incubators (NMMI) that enable high-throughput screening and real-time observation of multi-species co-culture. The key innovation in NMMI is that they facilitate inter-species communication while maintaining physical isolation between species, which is ideal for genomic analysis. Co-culture of a quorum sensing pair demonstrates that the NMMI can be used to culture multiple species in chemical communication while monitoring the growth dynamics of individual species.
- Published
- 2016
- Full Text
- View/download PDF
45. Patterns of sulfur isotope fractionation during microbial sulfate reduction.
- Author
-
Bradley AS, Leavitt WD, Schmidt M, Knoll AH, Girguis PR, and Johnston DT
- Subjects
- Oxidation-Reduction, Desulfovibrio growth & development, Desulfovibrio metabolism, Environmental Microbiology, Sulfates metabolism, Sulfur Isotopes analysis
- Abstract
Studies of microbial sulfate reduction have suggested that the magnitude of sulfur isotope fractionation varies with sulfate concentration. Small apparent sulfur isotope fractionations preserved in Archean rocks have been interpreted as suggesting Archean sulfate concentrations of <200 μm, while larger fractionations thereafter have been interpreted to require higher concentrations. In this work, we demonstrate that fractionation imposed by sulfate reduction can be a function of concentration over a millimolar range, but that nature of this relationship depends on the organism studied. Two sulfate-reducing bacteria grown in continuous culture with sulfate concentrations ranging from 0.1 to 6 mm showed markedly different relationships between sulfate concentration and isotope fractionation. Desulfovibrio vulgaris str. Hildenborough showed a large and relatively constant isotope fractionation ((34) εSO 4-H2S ≅ 25‰), while fractionation by Desulfovibrio alaskensis G20 strongly correlated with sulfate concentration over the same range. Both data sets can be modeled as Michaelis-Menten (MM)-type relationships but with very different MM constants, suggesting that the fractionations imposed by these organisms are highly dependent on strain-specific factors. These data reveal complexity in the sulfate concentration-fractionation relationship. Fractionation during MSR relates to sulfate concentration but also to strain-specific physiological parameters such as the affinity for sulfate and electron donors. Previous studies have suggested that the sulfate concentration-fractionation relationship is best described with a MM fit. We present a simple model in which the MM fit with sulfate concentration and hyperbolic fit with growth rate emerge from simple physiological assumptions. As both environmental and biological factors influence the fractionation recorded in geological samples, understanding their relationship is critical to interpreting the sulfur isotope record. As the uptake machinery for both sulfate and electrons has been subject to selective pressure over Earth history, its evolution may complicate efforts to uniquely reconstruct ambient sulfate concentrations from a single sulfur isotopic composition., (© 2015 John Wiley & Sons Ltd.)
- Published
- 2016
- Full Text
- View/download PDF
46. Key Factors Influencing Rates of Heterotrophic Sulfate Reduction in Active Seafloor Hydrothermal Massive Sulfide Deposits.
- Author
-
Frank KL, Rogers KL, Rogers DR, Johnston DT, and Girguis PR
- Abstract
Hydrothermal vents are thermally and geochemically dynamic habitats, and the organisms therein are subject to steep gradients in temperature and chemistry. To date, the influence of these environmental dynamics on microbial sulfate reduction has not been well constrained. Here, via multivariate experiments, we evaluate the effects of key environmental variables (temperature, pH, H2S, [Formula: see text], DOC) on sulfate reduction rates and metabolic energy yields in material recovered from a hydrothermal flange from the Grotto edifice in the Main Endeavor Field, Juan de Fuca Ridge. Sulfate reduction was measured in batch reactions across a range of physico-chemical conditions. Temperature and pH were the strongest stimuli, and maximum sulfate reduction rates were observed at 50°C and pH 6, suggesting that the in situ community of sulfate-reducing organisms in Grotto flanges may be most active in a slightly acidic and moderate thermal/chemical regime. At pH 4, sulfate reduction rates increased with sulfide concentrations most likely due to the mitigation of metal toxicity. While substrate concentrations also influenced sulfate reduction rates, energy-rich conditions muted the effect of metabolic energetics on sulfate reduction rates. We posit that variability in sulfate reduction rates reflect the response of the active microbial consortia to environmental constraints on in situ microbial physiology, toxicity, and the type and extent of energy limitation. These experiments help to constrain models of the spatial contribution of heterotrophic sulfate reduction within the complex gradients inherent to seafloor hydrothermal deposits.
- Published
- 2015
- Full Text
- View/download PDF
47. Ubiquitous Presence and Novel Diversity of Anaerobic Alkane Degraders in Cold Marine Sediments.
- Author
-
Gittel A, Donhauser J, Røy H, Girguis PR, Jørgensen BB, and Kjeldsen KU
- Abstract
Alkanes are major constituents of crude oil and are released to the marine environment by natural seepage and from anthropogenic sources. Due to their chemical inertness, their removal from anoxic marine sediments is primarily controlled by the activity of anaerobic alkane-degrading microorganisms. To facilitate comprehensive cultivation-independent surveys of the diversity and distribution of anaerobic alkane degraders, we designed novel PCR primers that cover all known diversity of the 1-methylalkyl succinate synthase gene (masD/assA), which catalyzes the initial activation of alkanes. We studied masD/assA gene diversity in pristine and seepage-impacted Danish coastal sediments, as well as in sediments and alkane-degrading enrichment cultures from the Middle Valley (MV) hydrothermal vent system in the Pacific Northwest. MasD/assA genes were ubiquitously present, and the primers captured the diversity of both known and previously undiscovered masD/assA gene diversity. Seepage sediments were dominated by a single masD/assA gene cluster, which is presumably indicative of a substrate-adapted community, while pristine sediments harbored a diverse range of masD/assA phylotypes including those present in seepage sediments. This rare biosphere of anaerobic alkane degraders will likely increase in abundance in the event of seepage or accidental oil spillage. Nanomolar concentrations of short-chain alkanes (SCA) were detected in pristine and seepage sediments. Interestingly, anaerobic alkane degraders closely related to strain BuS5, the only SCA degrader in pure culture, were found in mesophilic MV enrichments, but not in cold sediments from Danish waters. We propose that the new masD/assA gene lineages in these sediments represent novel phylotypes that are either fueled by naturally occurring low levels of SCA or that metabolize medium- to long-chain alkanes. Our study highlights that masD/assA genes are a relevant diagnostic marker to identify seepage and microseepage, e.g., during prospecting for oil and gas, and may act as an indicator of anthropogenic oil spills in marine sediments.
- Published
- 2015
- Full Text
- View/download PDF
48. Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores.
- Author
-
Sanders JG, Beichman AC, Roman J, Scott JJ, Emerson D, McCarthy JJ, and Girguis PR
- Subjects
- Animals, Carnivory, Feces microbiology, Fermentation, Genes, Bacterial, Herbivory, Metagenomics, Gastrointestinal Microbiome, RNA, Ribosomal, 16S chemistry, Whales microbiology
- Abstract
Mammals host gut microbiomes of immense physiological consequence, but the determinants of diversity in these communities remain poorly understood. Diet appears to be the dominant factor, but host phylogeny also seems to be an important, if unpredictable, correlate. Here we show that baleen whales, which prey on animals (fish and crustaceans), harbor unique gut microbiomes with surprising parallels in functional capacity and higher level taxonomy to those of terrestrial herbivores. These similarities likely reflect a shared role for fermentative metabolisms despite a shift in primary carbon sources from plant-derived to animal-derived polysaccharides, such as chitin. In contrast, protein catabolism and essential amino acid synthesis pathways in baleen whale microbiomes more closely resemble those of terrestrial carnivores. Our results demonstrate that functional attributes of the microbiome can vary independently even given an animal-derived diet, illustrating how diet and evolutionary history combine to shape microbial diversity in the mammalian gut.
- Published
- 2015
- Full Text
- View/download PDF
49. Carbon fixation by basalt-hosted microbial communities.
- Author
-
Orcutt BN, Sylvan JB, Rogers DR, Delaney J, Lee RW, and Girguis PR
- Abstract
Oceanic crust is a massive potential habitat for microbial life on Earth, yet our understanding of this ecosystem is limited due to difficulty in access. In particular, measurements of rates of microbial activity are sparse. We used stable carbon isotope incubations of crustal samples, coupled with functional gene analyses, to examine the potential for carbon fixation on oceanic crust. Both seafloor-exposed and subseafloor basalts were recovered from different mid-ocean ridge and hot spot environments (i.e., the Juan de Fuca Ridge, the Mid-Atlantic Ridge, and the Loihi Seamount) and incubated with (13)C-labeled bicarbonate. Seafloor-exposed basalts revealed incorporation of (13)C-label into organic matter over time, though the degree of incorporation was heterogeneous. The incorporation of (13)C into biomass was inconclusive in subseafloor basalts. Translating these measurements into potential rates of carbon fixation indicated that 0.1-10 nmol C g(-1) rock d(-1) could be fixed by seafloor-exposed rocks. When scaled to the global production of oceanic crust, this suggests carbon fixation rates of 10(9)-10(12) g C year(-1), which matches earlier predictions based on thermodynamic calculations. Functional gene analyses indicate that the Calvin cycle is likely the dominant biochemical mechanism for carbon fixation in basalt-hosted biofilms, although the reductive acetyl-CoA pathway and reverse TCA cycle likely play some role in net carbon fixation. These results provide empirical evidence for autotrophy in oceanic crust, suggesting that basalt-hosted autotrophy could be a significant contributor of organic matter in this remote and vast environment.
- Published
- 2015
- Full Text
- View/download PDF
50. Enhancing the response of microbial fuel cell based toxicity sensors to Cu(II) with the applying of flow-through electrodes and controlled anode potentials.
- Author
-
Jiang Y, Liang P, Zhang C, Bian Y, Yang X, Huang X, and Girguis PR
- Subjects
- Biosensing Techniques instrumentation, Equipment Design, Equipment Failure Analysis, Rheology instrumentation, Sensitivity and Specificity, Toxicity Tests instrumentation, Water Pollutants, Chemical analysis, Bacterial Physiological Phenomena drug effects, Bioelectric Energy Sources microbiology, Biological Assay instrumentation, Copper analysis, Electrodes, Environmental Monitoring instrumentation
- Abstract
The application of microbial fuel cell (MFC)-based toxicity sensors to real-world water monitoring is partly impeded by the limited sensitivity. To address this limitation, this study optimized the flow configurations and the control modes. Results revealed that the sensitivity increased by ∼15-41times with the applying of a flow-through anode, compared to those with a flow-by anode. The sensors operated in the controlled anode potential (CP) mode delivered better sensitivity than those operated in the constant external resistance (ER) mode over a broad range of anode potentials from -0.41V to +0.1V. Electrodeposition of Cu(II) was found to bias the toxicity measurement at low anode potentials. The optimal anode potential was approximately -0.15V, at which the sensor achieved an unbiased measurement of toxicity and the highest sensitivity. This value was greater than those required for electrodeposition while smaller than those for power overshoot., (Copyright © 2015 Elsevier Ltd. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.